1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-07-11 11:39:15 +00:00

Endgame's apply() method can be 'const'

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba 2010-04-27 06:17:32 +01:00
parent bedf80a4c0
commit 83631c89ce
2 changed files with 23 additions and 23 deletions

View file

@ -104,7 +104,7 @@ namespace {
/// attacking side a bonus for driving the defending king towards the edge /// attacking side a bonus for driving the defending king towards the edge
/// of the board, and for keeping the distance between the two kings small. /// of the board, and for keeping the distance between the two kings small.
template<> template<>
Value EvaluationFunction<KXK>::apply(const Position& pos) { Value EvaluationFunction<KXK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(weakerSide) == Value(0)); assert(pos.non_pawn_material(weakerSide) == Value(0));
assert(pos.piece_count(weakerSide, PAWN) == Value(0)); assert(pos.piece_count(weakerSide, PAWN) == Value(0));
@ -130,7 +130,7 @@ Value EvaluationFunction<KXK>::apply(const Position& pos) {
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the /// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
/// defending king towards a corner square of the right color. /// defending king towards a corner square of the right color.
template<> template<>
Value EvaluationFunction<KBNK>::apply(const Position& pos) { Value EvaluationFunction<KBNK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(weakerSide) == Value(0)); assert(pos.non_pawn_material(weakerSide) == Value(0));
assert(pos.piece_count(weakerSide, PAWN) == Value(0)); assert(pos.piece_count(weakerSide, PAWN) == Value(0));
@ -159,7 +159,7 @@ Value EvaluationFunction<KBNK>::apply(const Position& pos) {
/// KP vs K. This endgame is evaluated with the help of a bitbase. /// KP vs K. This endgame is evaluated with the help of a bitbase.
template<> template<>
Value EvaluationFunction<KPK>::apply(const Position& pos) { Value EvaluationFunction<KPK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == Value(0)); assert(pos.non_pawn_material(strongerSide) == Value(0));
assert(pos.non_pawn_material(weakerSide) == Value(0)); assert(pos.non_pawn_material(weakerSide) == Value(0));
@ -207,7 +207,7 @@ Value EvaluationFunction<KPK>::apply(const Position& pos) {
/// far advanced with support of the king, while the attacking king is far /// far advanced with support of the king, while the attacking king is far
/// away. /// away.
template<> template<>
Value EvaluationFunction<KRKP>::apply(const Position& pos) { Value EvaluationFunction<KRKP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -264,7 +264,7 @@ Value EvaluationFunction<KRKP>::apply(const Position& pos) {
/// KR vs KB. This is very simple, and always returns drawish scores. The /// KR vs KB. This is very simple, and always returns drawish scores. The
/// score is slightly bigger when the defending king is close to the edge. /// score is slightly bigger when the defending king is close to the edge.
template<> template<>
Value EvaluationFunction<KRKB>::apply(const Position& pos) { Value EvaluationFunction<KRKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -280,7 +280,7 @@ Value EvaluationFunction<KRKB>::apply(const Position& pos) {
/// KR vs KN. The attacking side has slightly better winning chances than /// KR vs KN. The attacking side has slightly better winning chances than
/// in KR vs KB, particularly if the king and the knight are far apart. /// in KR vs KB, particularly if the king and the knight are far apart.
template<> template<>
Value EvaluationFunction<KRKN>::apply(const Position& pos) { Value EvaluationFunction<KRKN>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -304,7 +304,7 @@ Value EvaluationFunction<KRKN>::apply(const Position& pos) {
/// for the defending side in the search, this is usually sufficient to be /// for the defending side in the search, this is usually sufficient to be
/// able to win KQ vs KR. /// able to win KQ vs KR.
template<> template<>
Value EvaluationFunction<KQKR>::apply(const Position& pos) { Value EvaluationFunction<KQKR>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame); assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -323,7 +323,7 @@ Value EvaluationFunction<KQKR>::apply(const Position& pos) {
} }
template<> template<>
Value EvaluationFunction<KBBKN>::apply(const Position& pos) { Value EvaluationFunction<KBBKN>::apply(const Position& pos) const {
assert(pos.piece_count(strongerSide, BISHOP) == 2); assert(pos.piece_count(strongerSide, BISHOP) == 2);
assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame); assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
@ -352,12 +352,12 @@ Value EvaluationFunction<KBBKN>::apply(const Position& pos) {
/// K and two minors vs K and one or two minors or K and two knights against /// K and two minors vs K and one or two minors or K and two knights against
/// king alone are always draw. /// king alone are always draw.
template<> template<>
Value EvaluationFunction<KmmKm>::apply(const Position&) { Value EvaluationFunction<KmmKm>::apply(const Position&) const {
return Value(0); return Value(0);
} }
template<> template<>
Value EvaluationFunction<KNNK>::apply(const Position&) { Value EvaluationFunction<KNNK>::apply(const Position&) const {
return Value(0); return Value(0);
} }
@ -367,7 +367,7 @@ Value EvaluationFunction<KNNK>::apply(const Position&) {
/// returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling /// returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
/// will be used. /// will be used.
template<> template<>
ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) { ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame); assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, BISHOP) == 1);
@ -421,7 +421,7 @@ ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) {
/// It tests for fortress draws with a rook on the third rank defended by /// It tests for fortress draws with a rook on the third rank defended by
/// a pawn. /// a pawn.
template<> template<>
ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) { ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame); assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, QUEEN) == 1); assert(pos.piece_count(strongerSide, QUEEN) == 1);
@ -452,7 +452,7 @@ ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) {
/// It would also be nice to rewrite the actual code for this function, /// It would also be nice to rewrite the actual code for this function,
/// which is mostly copied from Glaurung 1.x, and not very pretty. /// which is mostly copied from Glaurung 1.x, and not very pretty.
template<> template<>
ScaleFactor ScalingFunction<KRPKR>::apply(const Position &pos) { ScaleFactor ScalingFunction<KRPKR>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 1); assert(pos.piece_count(strongerSide, PAWN) == 1);
@ -570,7 +570,7 @@ ScaleFactor ScalingFunction<KRPKR>::apply(const Position &pos) {
/// single pattern: If the stronger side has no pawns and the defending king /// single pattern: If the stronger side has no pawns and the defending king
/// is actively placed, the position is drawish. /// is actively placed, the position is drawish.
template<> template<>
ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position &pos) { ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 2); assert(pos.piece_count(strongerSide, PAWN) == 2);
@ -609,7 +609,7 @@ ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position &pos) {
/// against king. There is just a single rule here: If all pawns are on /// against king. There is just a single rule here: If all pawns are on
/// the same rook file and are blocked by the defending king, it's a draw. /// the same rook file and are blocked by the defending king, it's a draw.
template<> template<>
ScaleFactor ScalingFunction<KPsK>::apply(const Position &pos) { ScaleFactor ScalingFunction<KPsK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == Value(0)); assert(pos.non_pawn_material(strongerSide) == Value(0));
assert(pos.piece_count(strongerSide, PAWN) >= 2); assert(pos.piece_count(strongerSide, PAWN) >= 2);
@ -655,7 +655,7 @@ ScaleFactor ScalingFunction<KPsK>::apply(const Position &pos) {
/// it's a draw. If the two bishops have opposite color, it's almost always /// it's a draw. If the two bishops have opposite color, it's almost always
/// a draw. /// a draw.
template<> template<>
ScaleFactor ScalingFunction<KBPKB>::apply(const Position &pos) { ScaleFactor ScalingFunction<KBPKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame); assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, BISHOP) == 1);
@ -708,7 +708,7 @@ ScaleFactor ScalingFunction<KBPKB>::apply(const Position &pos) {
/// KBPPKBScalingFunction scales KBPP vs KB endgames. It detects a few basic /// KBPPKBScalingFunction scales KBPP vs KB endgames. It detects a few basic
/// draws with opposite-colored bishops. /// draws with opposite-colored bishops.
template<> template<>
ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) { ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame); assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, BISHOP) == 1);
@ -784,7 +784,7 @@ ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) {
/// square of the king is not of the same color as the stronger side's bishop, /// square of the king is not of the same color as the stronger side's bishop,
/// it's a draw. /// it's a draw.
template<> template<>
ScaleFactor ScalingFunction<KBPKN>::apply(const Position &pos) { ScaleFactor ScalingFunction<KBPKN>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame); assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, BISHOP) == 1);
@ -811,7 +811,7 @@ ScaleFactor ScalingFunction<KBPKN>::apply(const Position &pos) {
/// If the pawn is a rook pawn on the 7th rank and the defending king prevents /// If the pawn is a rook pawn on the 7th rank and the defending king prevents
/// the pawn from advancing, the position is drawn. /// the pawn from advancing, the position is drawn.
template<> template<>
ScaleFactor ScalingFunction<KNPK>::apply(const Position &pos) { ScaleFactor ScalingFunction<KNPK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame); assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
assert(pos.piece_count(strongerSide, KNIGHT) == 1); assert(pos.piece_count(strongerSide, KNIGHT) == 1);
@ -841,7 +841,7 @@ ScaleFactor ScalingFunction<KNPK>::apply(const Position &pos) {
/// advanced and not on a rook file; in this case it is often possible to win /// advanced and not on a rook file; in this case it is often possible to win
/// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1). /// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
template<> template<>
ScaleFactor ScalingFunction<KPKP>::apply(const Position &pos) { ScaleFactor ScalingFunction<KPKP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == Value(0)); assert(pos.non_pawn_material(strongerSide) == Value(0));
assert(pos.non_pawn_material(weakerSide) == Value(0)); assert(pos.non_pawn_material(weakerSide) == Value(0));

View file

@ -68,7 +68,7 @@ class EndgameFunctionBase {
public: public:
EndgameFunctionBase(Color c) : strongerSide(c), weakerSide(opposite_color(c)) {} EndgameFunctionBase(Color c) : strongerSide(c), weakerSide(opposite_color(c)) {}
virtual ~EndgameFunctionBase() {} virtual ~EndgameFunctionBase() {}
virtual T apply(const Position&) = 0; virtual T apply(const Position&) const = 0;
Color color() const { return strongerSide; } Color color() const { return strongerSide; }
protected: protected:
@ -85,14 +85,14 @@ template<EndgameType>
struct EvaluationFunction : public EndgameEvaluationFunctionBase { struct EvaluationFunction : public EndgameEvaluationFunctionBase {
typedef EndgameEvaluationFunctionBase Base; typedef EndgameEvaluationFunctionBase Base;
explicit EvaluationFunction(Color c): EndgameEvaluationFunctionBase(c) {} explicit EvaluationFunction(Color c): EndgameEvaluationFunctionBase(c) {}
Value apply(const Position&); Value apply(const Position&) const;
}; };
template<EndgameType> template<EndgameType>
struct ScalingFunction : public EndgameScalingFunctionBase { struct ScalingFunction : public EndgameScalingFunctionBase {
typedef EndgameScalingFunctionBase Base; typedef EndgameScalingFunctionBase Base;
explicit ScalingFunction(Color c) : EndgameScalingFunctionBase(c) {} explicit ScalingFunction(Color c) : EndgameScalingFunctionBase(c) {}
ScaleFactor apply(const Position&); ScaleFactor apply(const Position&) const;
}; };