mirror of
https://github.com/sockspls/badfish
synced 2025-05-02 17:49:35 +00:00
Update NNUE architecture to SFNNv5. Update network to nn-3c0aa92af1da.nnue.
Architecture changes: Duplicated activation after the 1024->15 layer with squared crelu (so 15->15*2). As proposed by vondele. Trainer changes: Added bias to L1 factorization, which was previously missing (no measurable improvement but at least neutral in principle) For retraining linearly reduce lambda parameter from 1.0 at epoch 0 to 0.75 at epoch 800. reduce max_skipping_rate from 15 to 10 (compared to vondele's outstanding PR) Note: This network was trained with a ~0.8% error in quantization regarding the newly added activation function. This will be fixed in the released trainer version. Expect a trainer PR tomorrow. Note: The inference implementation cuts a corner to merge results from two activation functions. This could possibly be resolved nicer in the future. AVX2 implementation likely not necessary, but NEON is missing. First training session invocation: python3 train.py \ ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \ ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \ --gpus "$3," \ --threads 4 \ --num-workers 8 \ --batch-size 16384 \ --progress_bar_refresh_rate 20 \ --random-fen-skipping 3 \ --features=HalfKAv2_hm^ \ --lambda=1.0 \ --max_epochs=400 \ --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2 Second training session invocation: python3 train.py \ ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \ ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \ --gpus "$3," \ --threads 4 \ --num-workers 8 \ --batch-size 16384 \ --progress_bar_refresh_rate 20 \ --random-fen-skipping 3 \ --features=HalfKAv2_hm^ \ --start-lambda=1.0 \ --end-lambda=0.75 \ --gamma=0.995 \ --lr=4.375e-4 \ --max_epochs=800 \ --resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp367/nn-exp367-run3-epoch399.pt \ --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2 Passed STC: LLR: 2.95 (-2.94,2.94) <0.00,2.50> Total: 27288 W: 7445 L: 7178 D: 12665 Ptnml(0-2): 159, 3002, 7054, 3271, 158 https://tests.stockfishchess.org/tests/view/627e8c001919125939623644 Passed LTC: LLR: 2.95 (-2.94,2.94) <0.50,3.00> Total: 21792 W: 5969 L: 5727 D: 10096 Ptnml(0-2): 25, 2152, 6294, 2406, 19 https://tests.stockfishchess.org/tests/view/627f2a855734b18b2e2ece47 closes https://github.com/official-stockfish/Stockfish/pull/4020 Bench: 6481017
This commit is contained in:
parent
9eb7b607cf
commit
c079acc26f
3 changed files with 128 additions and 3 deletions
|
@ -39,7 +39,7 @@ namespace Eval {
|
||||||
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
|
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
|
||||||
// for the build process (profile-build and fishtest) to work. Do not change the
|
// for the build process (profile-build and fishtest) to work. Do not change the
|
||||||
// name of the macro, as it is used in the Makefile.
|
// name of the macro, as it is used in the Makefile.
|
||||||
#define EvalFileDefaultName "nn-d0b74ce1e5eb.nnue"
|
#define EvalFileDefaultName "nn-3c0aa92af1da.nnue"
|
||||||
|
|
||||||
namespace NNUE {
|
namespace NNUE {
|
||||||
|
|
||||||
|
|
120
src/nnue/layers/sqr_clipped_relu.h
Normal file
120
src/nnue/layers/sqr_clipped_relu.h
Normal file
|
@ -0,0 +1,120 @@
|
||||||
|
/*
|
||||||
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||||
|
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
|
||||||
|
|
||||||
|
Stockfish is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
Stockfish is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
// Definition of layer ClippedReLU of NNUE evaluation function
|
||||||
|
|
||||||
|
#ifndef NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
|
||||||
|
#define NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
|
||||||
|
|
||||||
|
#include "../nnue_common.h"
|
||||||
|
|
||||||
|
namespace Stockfish::Eval::NNUE::Layers {
|
||||||
|
|
||||||
|
// Clipped ReLU
|
||||||
|
template <IndexType InDims>
|
||||||
|
class SqrClippedReLU {
|
||||||
|
public:
|
||||||
|
// Input/output type
|
||||||
|
using InputType = std::int32_t;
|
||||||
|
using OutputType = std::uint8_t;
|
||||||
|
|
||||||
|
// Number of input/output dimensions
|
||||||
|
static constexpr IndexType InputDimensions = InDims;
|
||||||
|
static constexpr IndexType OutputDimensions = InputDimensions;
|
||||||
|
static constexpr IndexType PaddedOutputDimensions =
|
||||||
|
ceil_to_multiple<IndexType>(OutputDimensions, 32);
|
||||||
|
|
||||||
|
using OutputBuffer = OutputType[PaddedOutputDimensions];
|
||||||
|
|
||||||
|
// Hash value embedded in the evaluation file
|
||||||
|
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
|
||||||
|
std::uint32_t hashValue = 0x538D24C7u;
|
||||||
|
hashValue += prevHash;
|
||||||
|
return hashValue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Read network parameters
|
||||||
|
bool read_parameters(std::istream&) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Write network parameters
|
||||||
|
bool write_parameters(std::ostream&) const {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Forward propagation
|
||||||
|
const OutputType* propagate(
|
||||||
|
const InputType* input, OutputType* output) const {
|
||||||
|
|
||||||
|
#if defined(USE_SSE2)
|
||||||
|
constexpr IndexType NumChunks = InputDimensions / 16;
|
||||||
|
|
||||||
|
#ifdef USE_SSE41
|
||||||
|
const __m128i Zero = _mm_setzero_si128();
|
||||||
|
#else
|
||||||
|
const __m128i k0x80s = _mm_set1_epi8(-128);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static_assert(WeightScaleBits == 6);
|
||||||
|
const auto in = reinterpret_cast<const __m128i*>(input);
|
||||||
|
const auto out = reinterpret_cast<__m128i*>(output);
|
||||||
|
for (IndexType i = 0; i < NumChunks; ++i) {
|
||||||
|
__m128i words0 = _mm_packs_epi32(
|
||||||
|
_mm_load_si128(&in[i * 4 + 0]),
|
||||||
|
_mm_load_si128(&in[i * 4 + 1]));
|
||||||
|
__m128i words1 = _mm_packs_epi32(
|
||||||
|
_mm_load_si128(&in[i * 4 + 2]),
|
||||||
|
_mm_load_si128(&in[i * 4 + 3]));
|
||||||
|
|
||||||
|
// Not sure if
|
||||||
|
words0 = _mm_srli_epi16(_mm_mulhi_epi16(words0, words0), 3);
|
||||||
|
words1 = _mm_srli_epi16(_mm_mulhi_epi16(words1, words1), 3);
|
||||||
|
|
||||||
|
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
|
||||||
|
|
||||||
|
_mm_store_si128(&out[i],
|
||||||
|
|
||||||
|
#ifdef USE_SSE41
|
||||||
|
_mm_max_epi8(packedbytes, Zero)
|
||||||
|
#else
|
||||||
|
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
);
|
||||||
|
}
|
||||||
|
constexpr IndexType Start = NumChunks * 16;
|
||||||
|
|
||||||
|
#else
|
||||||
|
constexpr IndexType Start = 0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (IndexType i = Start; i < InputDimensions; ++i) {
|
||||||
|
output[i] = static_cast<OutputType>(
|
||||||
|
// realy should be /127 but we need to make it fast
|
||||||
|
// needs to be accounted for in the trainer
|
||||||
|
std::max(0ll, std::min(127ll, (((long long)input[i] * input[i]) >> (2 * WeightScaleBits)) / 128)));
|
||||||
|
}
|
||||||
|
|
||||||
|
return output;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace Stockfish::Eval::NNUE::Layers
|
||||||
|
|
||||||
|
#endif // NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
|
|
@ -29,6 +29,7 @@
|
||||||
|
|
||||||
#include "layers/affine_transform.h"
|
#include "layers/affine_transform.h"
|
||||||
#include "layers/clipped_relu.h"
|
#include "layers/clipped_relu.h"
|
||||||
|
#include "layers/sqr_clipped_relu.h"
|
||||||
|
|
||||||
#include "../misc.h"
|
#include "../misc.h"
|
||||||
|
|
||||||
|
@ -48,8 +49,9 @@ struct Network
|
||||||
static constexpr int FC_1_OUTPUTS = 32;
|
static constexpr int FC_1_OUTPUTS = 32;
|
||||||
|
|
||||||
Layers::AffineTransform<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
|
Layers::AffineTransform<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
|
||||||
|
Layers::SqrClippedReLU<FC_0_OUTPUTS + 1> ac_sqr_0;
|
||||||
Layers::ClippedReLU<FC_0_OUTPUTS + 1> ac_0;
|
Layers::ClippedReLU<FC_0_OUTPUTS + 1> ac_0;
|
||||||
Layers::AffineTransform<FC_0_OUTPUTS, FC_1_OUTPUTS> fc_1;
|
Layers::AffineTransform<FC_0_OUTPUTS * 2, FC_1_OUTPUTS> fc_1;
|
||||||
Layers::ClippedReLU<FC_1_OUTPUTS> ac_1;
|
Layers::ClippedReLU<FC_1_OUTPUTS> ac_1;
|
||||||
Layers::AffineTransform<FC_1_OUTPUTS, 1> fc_2;
|
Layers::AffineTransform<FC_1_OUTPUTS, 1> fc_2;
|
||||||
|
|
||||||
|
@ -93,6 +95,7 @@ struct Network
|
||||||
struct alignas(CacheLineSize) Buffer
|
struct alignas(CacheLineSize) Buffer
|
||||||
{
|
{
|
||||||
alignas(CacheLineSize) decltype(fc_0)::OutputBuffer fc_0_out;
|
alignas(CacheLineSize) decltype(fc_0)::OutputBuffer fc_0_out;
|
||||||
|
alignas(CacheLineSize) decltype(ac_sqr_0)::OutputType ac_sqr_0_out[ceil_to_multiple<IndexType>(FC_0_OUTPUTS * 2, 32)];
|
||||||
alignas(CacheLineSize) decltype(ac_0)::OutputBuffer ac_0_out;
|
alignas(CacheLineSize) decltype(ac_0)::OutputBuffer ac_0_out;
|
||||||
alignas(CacheLineSize) decltype(fc_1)::OutputBuffer fc_1_out;
|
alignas(CacheLineSize) decltype(fc_1)::OutputBuffer fc_1_out;
|
||||||
alignas(CacheLineSize) decltype(ac_1)::OutputBuffer ac_1_out;
|
alignas(CacheLineSize) decltype(ac_1)::OutputBuffer ac_1_out;
|
||||||
|
@ -114,8 +117,10 @@ struct Network
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
fc_0.propagate(transformedFeatures, buffer.fc_0_out);
|
fc_0.propagate(transformedFeatures, buffer.fc_0_out);
|
||||||
|
ac_sqr_0.propagate(buffer.fc_0_out, buffer.ac_sqr_0_out);
|
||||||
ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out);
|
ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out);
|
||||||
fc_1.propagate(buffer.ac_0_out, buffer.fc_1_out);
|
std::memcpy(buffer.ac_sqr_0_out + FC_0_OUTPUTS, buffer.ac_0_out, FC_0_OUTPUTS * sizeof(decltype(ac_0)::OutputType));
|
||||||
|
fc_1.propagate(buffer.ac_sqr_0_out, buffer.fc_1_out);
|
||||||
ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out);
|
ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out);
|
||||||
fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);
|
fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue