mirror of
https://github.com/sockspls/badfish
synced 2025-05-02 09:39:36 +00:00

Architecture changes: Duplicated activation after the 1024->15 layer with squared crelu (so 15->15*2). As proposed by vondele. Trainer changes: Added bias to L1 factorization, which was previously missing (no measurable improvement but at least neutral in principle) For retraining linearly reduce lambda parameter from 1.0 at epoch 0 to 0.75 at epoch 800. reduce max_skipping_rate from 15 to 10 (compared to vondele's outstanding PR) Note: This network was trained with a ~0.8% error in quantization regarding the newly added activation function. This will be fixed in the released trainer version. Expect a trainer PR tomorrow. Note: The inference implementation cuts a corner to merge results from two activation functions. This could possibly be resolved nicer in the future. AVX2 implementation likely not necessary, but NEON is missing. First training session invocation: python3 train.py \ ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \ ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \ --gpus "$3," \ --threads 4 \ --num-workers 8 \ --batch-size 16384 \ --progress_bar_refresh_rate 20 \ --random-fen-skipping 3 \ --features=HalfKAv2_hm^ \ --lambda=1.0 \ --max_epochs=400 \ --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2 Second training session invocation: python3 train.py \ ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \ ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \ --gpus "$3," \ --threads 4 \ --num-workers 8 \ --batch-size 16384 \ --progress_bar_refresh_rate 20 \ --random-fen-skipping 3 \ --features=HalfKAv2_hm^ \ --start-lambda=1.0 \ --end-lambda=0.75 \ --gamma=0.995 \ --lr=4.375e-4 \ --max_epochs=800 \ --resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp367/nn-exp367-run3-epoch399.pt \ --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2 Passed STC: LLR: 2.95 (-2.94,2.94) <0.00,2.50> Total: 27288 W: 7445 L: 7178 D: 12665 Ptnml(0-2): 159, 3002, 7054, 3271, 158 https://tests.stockfishchess.org/tests/view/627e8c001919125939623644 Passed LTC: LLR: 2.95 (-2.94,2.94) <0.50,3.00> Total: 21792 W: 5969 L: 5727 D: 10096 Ptnml(0-2): 25, 2152, 6294, 2406, 19 https://tests.stockfishchess.org/tests/view/627f2a855734b18b2e2ece47 closes https://github.com/official-stockfish/Stockfish/pull/4020 Bench: 6481017
120 lines
3.7 KiB
C++
120 lines
3.7 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Definition of layer ClippedReLU of NNUE evaluation function
|
|
|
|
#ifndef NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
|
|
#define NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
|
|
|
|
#include "../nnue_common.h"
|
|
|
|
namespace Stockfish::Eval::NNUE::Layers {
|
|
|
|
// Clipped ReLU
|
|
template <IndexType InDims>
|
|
class SqrClippedReLU {
|
|
public:
|
|
// Input/output type
|
|
using InputType = std::int32_t;
|
|
using OutputType = std::uint8_t;
|
|
|
|
// Number of input/output dimensions
|
|
static constexpr IndexType InputDimensions = InDims;
|
|
static constexpr IndexType OutputDimensions = InputDimensions;
|
|
static constexpr IndexType PaddedOutputDimensions =
|
|
ceil_to_multiple<IndexType>(OutputDimensions, 32);
|
|
|
|
using OutputBuffer = OutputType[PaddedOutputDimensions];
|
|
|
|
// Hash value embedded in the evaluation file
|
|
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
|
|
std::uint32_t hashValue = 0x538D24C7u;
|
|
hashValue += prevHash;
|
|
return hashValue;
|
|
}
|
|
|
|
// Read network parameters
|
|
bool read_parameters(std::istream&) {
|
|
return true;
|
|
}
|
|
|
|
// Write network parameters
|
|
bool write_parameters(std::ostream&) const {
|
|
return true;
|
|
}
|
|
|
|
// Forward propagation
|
|
const OutputType* propagate(
|
|
const InputType* input, OutputType* output) const {
|
|
|
|
#if defined(USE_SSE2)
|
|
constexpr IndexType NumChunks = InputDimensions / 16;
|
|
|
|
#ifdef USE_SSE41
|
|
const __m128i Zero = _mm_setzero_si128();
|
|
#else
|
|
const __m128i k0x80s = _mm_set1_epi8(-128);
|
|
#endif
|
|
|
|
static_assert(WeightScaleBits == 6);
|
|
const auto in = reinterpret_cast<const __m128i*>(input);
|
|
const auto out = reinterpret_cast<__m128i*>(output);
|
|
for (IndexType i = 0; i < NumChunks; ++i) {
|
|
__m128i words0 = _mm_packs_epi32(
|
|
_mm_load_si128(&in[i * 4 + 0]),
|
|
_mm_load_si128(&in[i * 4 + 1]));
|
|
__m128i words1 = _mm_packs_epi32(
|
|
_mm_load_si128(&in[i * 4 + 2]),
|
|
_mm_load_si128(&in[i * 4 + 3]));
|
|
|
|
// Not sure if
|
|
words0 = _mm_srli_epi16(_mm_mulhi_epi16(words0, words0), 3);
|
|
words1 = _mm_srli_epi16(_mm_mulhi_epi16(words1, words1), 3);
|
|
|
|
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
|
|
|
|
_mm_store_si128(&out[i],
|
|
|
|
#ifdef USE_SSE41
|
|
_mm_max_epi8(packedbytes, Zero)
|
|
#else
|
|
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
|
|
#endif
|
|
|
|
);
|
|
}
|
|
constexpr IndexType Start = NumChunks * 16;
|
|
|
|
#else
|
|
constexpr IndexType Start = 0;
|
|
#endif
|
|
|
|
for (IndexType i = Start; i < InputDimensions; ++i) {
|
|
output[i] = static_cast<OutputType>(
|
|
// realy should be /127 but we need to make it fast
|
|
// needs to be accounted for in the trainer
|
|
std::max(0ll, std::min(127ll, (((long long)input[i] * input[i]) >> (2 * WeightScaleBits)) / 128)));
|
|
}
|
|
|
|
return output;
|
|
}
|
|
};
|
|
|
|
} // namespace Stockfish::Eval::NNUE::Layers
|
|
|
|
#endif // NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
|