1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-07-11 19:49:14 +00:00

Wrap in a class Skill Level code

Note that the actual pickup is done in the class
d'tor so to be sure it is always triggered, even
in case of a sudden exit due to a 'stop' signal.

No functional change.
This commit is contained in:
Marco Costalba 2012-10-24 12:05:20 +02:00
parent 9c2b3faec4
commit e8e5b9f537

View file

@ -90,9 +90,7 @@ namespace {
size_t MultiPV, UCIMultiPV, PVIdx;
TimeManager TimeMgr;
int BestMoveChanges;
int SkillLevel;
Move skillBest;
bool SkillLevelEnabled, Chess960;
bool Chess960;
Value DrawValue[COLOR_NB];
History H;
@ -108,9 +106,24 @@ namespace {
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply);
bool connected_threat(const Position& pos, Move m, Move threat);
Move do_skill_level();
string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
struct Skill {
Skill(int l) : level(l), best(MOVE_NONE) {}
~Skill() {
if (enabled()) // Swap best PV line with the sub-optimal one
std::swap(RootMoves[0], *std::find(RootMoves.begin(),
RootMoves.end(), best ? best : pick_move()));
}
bool enabled() const { return level < 20; }
bool time_to_pick(int depth) const { return depth == 1 + level; }
Move pick_move();
int level;
Move best;
};
} // namespace
@ -210,15 +223,6 @@ void Search::think() {
}
}
UCIMultiPV = Options["MultiPV"];
SkillLevel = Options["Skill Level"];
// Do we have to play with skill handicap? In this case enable MultiPV that
// we will use behind the scenes to retrieve a set of possible moves.
SkillLevelEnabled = (SkillLevel < 20);
skillBest = MOVE_NONE;
MultiPV = (SkillLevelEnabled ? std::max(UCIMultiPV, (size_t)4) : UCIMultiPV);
if (Options["Use Search Log"])
{
Log log(Options["Search Log Filename"]);
@ -248,15 +252,6 @@ void Search::think() {
Threads.set_timer(0); // Stop timer
Threads.sleep();
// When using skills swap best PV line with the sub-optimal one
if (SkillLevelEnabled)
{
if (skillBest == MOVE_NONE) // Still unassigned ?
skillBest = do_skill_level();
std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), skillBest));
}
if (Options["Use Search Log"])
{
Time::point elapsed = Time::now() - SearchTime + 1;
@ -304,6 +299,13 @@ namespace {
bestValue = delta = -VALUE_INFINITE;
ss->currentMove = MOVE_NULL; // Hack to skip update gains
UCIMultiPV = Options["MultiPV"];
Skill skill(Options["Skill Level"]);
// Do we have to play with skill handicap? In this case enable MultiPV that
// we will use behind the scenes to retrieve a set of possible moves.
MultiPV = skill.enabled() ? std::max(UCIMultiPV, (size_t)4) : UCIMultiPV;
// Iterative deepening loop until requested to stop or target depth reached
while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth))
{
@ -359,13 +361,9 @@ namespace {
return;
// In case of failing high/low increase aspiration window and
// research, otherwise sort multi-PV lines and exit the loop.
// research, otherwise exit the loop.
if (bestValue > alpha && bestValue < beta)
{
sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx);
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
break;
}
// Give some update (without cluttering the UI) before to research
if (Time::now() - SearchTime > 3000)
@ -392,11 +390,15 @@ namespace {
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
}
// Sort the PV lines searched so far and update the GUI
sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx);
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
}
// Skills: Do we need to pick now the best move ?
if (SkillLevelEnabled && depth == 1 + SkillLevel)
skillBest = do_skill_level();
// Do we need to pick now the sub-optimal best move ?
if (skill.enabled() && skill.time_to_pick(depth))
skill.pick_move();
if (Options["Use Search Log"])
{
@ -1437,9 +1439,9 @@ split_point_start: // At split points actual search starts from here
// When playing with strength handicap choose best move among the MultiPV set
// using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
Move do_skill_level() {
Move Skill::pick_move() {
assert(MultiPV > 1);
@ -1452,9 +1454,9 @@ split_point_start: // At split points actual search starts from here
// RootMoves are already sorted by score in descending order
size_t size = std::min(MultiPV, RootMoves.size());
int variance = std::min(RootMoves[0].score - RootMoves[size - 1].score, PawnValueMg);
int weakness = 120 - 2 * SkillLevel;
int weakness = 120 - 2 * level;
int max_s = -VALUE_INFINITE;
Move best = MOVE_NONE;
best = MOVE_NONE;
// Choose best move. For each move score we add two terms both dependent on
// weakness, one deterministic and bigger for weaker moves, and one random,