1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00

Standardize Comments

use double slashes (//) only for comments.

closes #4820

No functional change.
This commit is contained in:
FauziAkram 2023-10-04 18:14:40 +03:00 committed by Joost VandeVondele
parent fe53a18f7a
commit edb4ab924f
28 changed files with 491 additions and 493 deletions

View file

@ -95,17 +95,17 @@ const std::vector<std::string> Defaults = {
namespace Stockfish { namespace Stockfish {
/// setup_bench() builds a list of UCI commands to be run by bench. There // setup_bench() builds a list of UCI commands to be run by bench. There
/// are five parameters: TT size in MB, number of search threads that // are five parameters: TT size in MB, number of search threads that
/// should be used, the limit value spent for each position, a file name // should be used, the limit value spent for each position, a file name
/// where to look for positions in FEN format, and the type of the limit: // where to look for positions in FEN format, and the type of the limit:
/// depth, perft, nodes and movetime (in milliseconds). Examples: // depth, perft, nodes and movetime (in milliseconds). Examples:
/// //
/// bench : search default positions up to depth 13 // bench : search default positions up to depth 13
/// bench 64 1 15 : search default positions up to depth 15 (TT = 64MB) // bench 64 1 15 : search default positions up to depth 15 (TT = 64MB)
/// bench 64 1 100000 default nodes : search default positions for 100K nodes each // bench 64 1 100000 default nodes : search default positions for 100K nodes each
/// bench 64 4 5000 current movetime : search current position with 4 threads for 5 sec // bench 64 4 5000 current movetime : search current position with 4 threads for 5 sec
/// bench 16 1 5 blah perft : run a perft 5 on positions in file "blah" // bench 16 1 5 blah perft : run a perft 5 on positions in file "blah"
std::vector<std::string> setup_bench(const Position& current, std::istream& is) { std::vector<std::string> setup_bench(const Position& current, std::istream& is) {

View file

@ -46,8 +46,8 @@ namespace {
} }
/// safe_destination() returns the bitboard of target square for the given step // safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard. // from the given square. If the step is off the board, returns empty bitboard.
inline Bitboard safe_destination(Square s, int step) { inline Bitboard safe_destination(Square s, int step) {
Square to = Square(s + step); Square to = Square(s + step);
@ -55,8 +55,8 @@ inline Bitboard safe_destination(Square s, int step) {
} }
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable // Bitboards::pretty() returns an ASCII representation of a bitboard suitable
/// to be printed to standard output. Useful for debugging. // to be printed to standard output. Useful for debugging.
std::string Bitboards::pretty(Bitboard b) { std::string Bitboards::pretty(Bitboard b) {
@ -75,8 +75,8 @@ std::string Bitboards::pretty(Bitboard b) {
} }
/// Bitboards::init() initializes various bitboard tables. It is called at // Bitboards::init() initializes various bitboard tables. It is called at
/// startup and relies on global objects to be already zero-initialized. // startup and relies on global objects to be already zero-initialized.
void Bitboards::init() { void Bitboards::init() {

View file

@ -64,7 +64,7 @@ extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
/// Magic holds all magic bitboards relevant data for a single square // Magic holds all magic bitboards relevant data for a single square
struct Magic { struct Magic {
Bitboard mask; Bitboard mask;
Bitboard magic; Bitboard magic;
@ -95,8 +95,8 @@ inline Bitboard square_bb(Square s) {
} }
/// Overloads of bitwise operators between a Bitboard and a Square for testing // Overloads of bitwise operators between a Bitboard and a Square for testing
/// whether a given bit is set in a bitboard, and for setting and clearing bits. // whether a given bit is set in a bitboard, and for setting and clearing bits.
inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); } inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); }
inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); } inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); }
@ -115,8 +115,8 @@ constexpr bool more_than_one(Bitboard b) {
} }
/// rank_bb() and file_bb() return a bitboard representing all the squares on // rank_bb() and file_bb() return a bitboard representing all the squares on
/// the given file or rank. // the given file or rank.
constexpr Bitboard rank_bb(Rank r) { constexpr Bitboard rank_bb(Rank r) {
return Rank1BB << (8 * r); return Rank1BB << (8 * r);
@ -135,7 +135,7 @@ constexpr Bitboard file_bb(Square s) {
} }
/// shift() moves a bitboard one or two steps as specified by the direction D // shift() moves a bitboard one or two steps as specified by the direction D
template<Direction D> template<Direction D>
constexpr Bitboard shift(Bitboard b) { constexpr Bitboard shift(Bitboard b) {
@ -148,8 +148,8 @@ constexpr Bitboard shift(Bitboard b) {
} }
/// pawn_attacks_bb() returns the squares attacked by pawns of the given color // pawn_attacks_bb() returns the squares attacked by pawns of the given color
/// from the squares in the given bitboard. // from the squares in the given bitboard.
template<Color C> template<Color C>
constexpr Bitboard pawn_attacks_bb(Bitboard b) { constexpr Bitboard pawn_attacks_bb(Bitboard b) {
@ -163,10 +163,10 @@ inline Bitboard pawn_attacks_bb(Color c, Square s) {
return PawnAttacks[c][s]; return PawnAttacks[c][s];
} }
/// line_bb() returns a bitboard representing an entire line (from board edge // line_bb() returns a bitboard representing an entire line (from board edge
/// to board edge) that intersects the two given squares. If the given squares // to board edge) that intersects the two given squares. If the given squares
/// are not on a same file/rank/diagonal, the function returns 0. For instance, // are not on a same file/rank/diagonal, the function returns 0. For instance,
/// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal. // line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal.
inline Bitboard line_bb(Square s1, Square s2) { inline Bitboard line_bb(Square s1, Square s2) {
@ -176,13 +176,13 @@ inline Bitboard line_bb(Square s1, Square s2) {
} }
/// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open // between_bb(s1, s2) returns a bitboard representing the squares in the semi-open
/// segment between the squares s1 and s2 (excluding s1 but including s2). If the // segment between the squares s1 and s2 (excluding s1 but including s2). If the
/// given squares are not on a same file/rank/diagonal, it returns s2. For instance, // given squares are not on a same file/rank/diagonal, it returns s2. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but // between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but
/// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick // between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick
/// allows to generate non-king evasion moves faster: the defending piece must either // allows to generate non-king evasion moves faster: the defending piece must either
/// interpose itself to cover the check or capture the checking piece. // interpose itself to cover the check or capture the checking piece.
inline Bitboard between_bb(Square s1, Square s2) { inline Bitboard between_bb(Square s1, Square s2) {
@ -191,16 +191,16 @@ inline Bitboard between_bb(Square s1, Square s2) {
return BetweenBB[s1][s2]; return BetweenBB[s1][s2];
} }
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a // aligned() returns true if the squares s1, s2 and s3 are aligned either on a
/// straight or on a diagonal line. // straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) { inline bool aligned(Square s1, Square s2, Square s3) {
return line_bb(s1, s2) & s3; return line_bb(s1, s2) & s3;
} }
/// distance() functions return the distance between x and y, defined as the // distance() functions return the distance between x and y, defined as the
/// number of steps for a king in x to reach y. // number of steps for a king in x to reach y.
template<typename T1 = Square> inline int distance(Square x, Square y); template<typename T1 = Square> inline int distance(Square x, Square y);
template<> inline int distance<File>(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); } template<> inline int distance<File>(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); }
@ -209,8 +209,8 @@ template<> inline int distance<Square>(Square x, Square y) { return SquareDistan
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); } inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
/// attacks_bb(Square) returns the pseudo attacks of the given piece type // attacks_bb(Square) returns the pseudo attacks of the given piece type
/// assuming an empty board. // assuming an empty board.
template<PieceType Pt> template<PieceType Pt>
inline Bitboard attacks_bb(Square s) { inline Bitboard attacks_bb(Square s) {
@ -221,9 +221,9 @@ inline Bitboard attacks_bb(Square s) {
} }
/// attacks_bb(Square, Bitboard) returns the attacks by the given piece // attacks_bb(Square, Bitboard) returns the attacks by the given piece
/// assuming the board is occupied according to the passed Bitboard. // assuming the board is occupied according to the passed Bitboard.
/// Sliding piece attacks do not continue passed an occupied square. // Sliding piece attacks do not continue passed an occupied square.
template<PieceType Pt> template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Bitboard occupied) { inline Bitboard attacks_bb(Square s, Bitboard occupied) {
@ -253,7 +253,7 @@ inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
} }
/// popcount() counts the number of non-zero bits in a bitboard // popcount() counts the number of non-zero bits in a bitboard
inline int popcount(Bitboard b) { inline int popcount(Bitboard b) {
@ -274,7 +274,7 @@ inline int popcount(Bitboard b) {
} }
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard // lsb() and msb() return the least/most significant bit in a non-zero bitboard
#if defined(__GNUC__) // GCC, Clang, ICX #if defined(__GNUC__) // GCC, Clang, ICX
@ -342,15 +342,15 @@ inline Square msb(Bitboard b) {
#endif #endif
/// least_significant_square_bb() returns the bitboard of the least significant // least_significant_square_bb() returns the bitboard of the least significant
/// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)). // square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
inline Bitboard least_significant_square_bb(Bitboard b) { inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b); assert(b);
return b & -b; return b & -b;
} }
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard // pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard& b) { inline Square pop_lsb(Bitboard& b) {
assert(b); assert(b);

View file

@ -57,13 +57,13 @@ namespace Eval {
std::string currentEvalFileName = "None"; std::string currentEvalFileName = "None";
/// NNUE::init() tries to load a NNUE network at startup time, or when the engine // NNUE::init() tries to load a NNUE network at startup time, or when the engine
/// receives a UCI command "setoption name EvalFile value nn-[a-z0-9]{12}.nnue" // receives a UCI command "setoption name EvalFile value nn-[a-z0-9]{12}.nnue"
/// The name of the NNUE network is always retrieved from the EvalFile option. // The name of the NNUE network is always retrieved from the EvalFile option.
/// We search the given network in three locations: internally (the default // We search the given network in three locations: internally (the default
/// network may be embedded in the binary), in the active working directory and // network may be embedded in the binary), in the active working directory and
/// in the engine directory. Distro packagers may define the DEFAULT_NNUE_DIRECTORY // in the engine directory. Distro packagers may define the DEFAULT_NNUE_DIRECTORY
/// variable to have the engine search in a special directory in their distro. // variable to have the engine search in a special directory in their distro.
void NNUE::init() { void NNUE::init() {
@ -105,7 +105,7 @@ namespace Eval {
} }
} }
/// NNUE::verify() verifies that the last net used was loaded successfully // NNUE::verify() verifies that the last net used was loaded successfully
void NNUE::verify() { void NNUE::verify() {
std::string eval_file = std::string(Options["EvalFile"]); std::string eval_file = std::string(Options["EvalFile"]);
@ -135,9 +135,9 @@ namespace Eval {
} }
/// simple_eval() returns a static, purely materialistic evaluation of the position // simple_eval() returns a static, purely materialistic evaluation of the position
/// from the point of view of the given color. It can be divided by PawnValue to get // from the point of view of the given color. It can be divided by PawnValue to get
/// an approximation of the material advantage on the board in terms of pawns. // an approximation of the material advantage on the board in terms of pawns.
Value Eval::simple_eval(const Position& pos, Color c) { Value Eval::simple_eval(const Position& pos, Color c) {
return PawnValue * (pos.count<PAWN>(c) - pos.count<PAWN>(~c)) return PawnValue * (pos.count<PAWN>(c) - pos.count<PAWN>(~c))
@ -145,8 +145,8 @@ Value Eval::simple_eval(const Position& pos, Color c) {
} }
/// evaluate() is the evaluator for the outer world. It returns a static evaluation // evaluate() is the evaluator for the outer world. It returns a static evaluation
/// of the position from the point of view of the side to move. // of the position from the point of view of the side to move.
Value Eval::evaluate(const Position& pos) { Value Eval::evaluate(const Position& pos) {
@ -189,10 +189,10 @@ Value Eval::evaluate(const Position& pos) {
return v; return v;
} }
/// trace() is like evaluate(), but instead of returning a value, it returns // trace() is like evaluate(), but instead of returning a value, it returns
/// a string (suitable for outputting to stdout) that contains the detailed // a string (suitable for outputting to stdout) that contains the detailed
/// descriptions and values of each evaluation term. Useful for debugging. // descriptions and values of each evaluation term. Useful for debugging.
/// Trace scores are from white's point of view // Trace scores are from white's point of view
std::string Eval::trace(Position& pos) { std::string Eval::trace(Position& pos) {

View file

@ -71,14 +71,14 @@ namespace Stockfish {
namespace { namespace {
/// Version number or dev. // Version number or dev.
constexpr std::string_view version = "dev"; constexpr std::string_view version = "dev";
/// Our fancy logging facility. The trick here is to replace cin.rdbuf() and // Our fancy logging facility. The trick here is to replace cin.rdbuf() and
/// cout.rdbuf() with two Tie objects that tie cin and cout to a file stream. We // cout.rdbuf() with two Tie objects that tie cin and cout to a file stream. We
/// can toggle the logging of std::cout and std:cin at runtime whilst preserving // can toggle the logging of std::cout and std:cin at runtime whilst preserving
/// usual I/O functionality, all without changing a single line of code! // usual I/O functionality, all without changing a single line of code!
/// Idea from http://groups.google.com/group/comp.lang.c++/msg/1d941c0f26ea0d81 // Idea from http://groups.google.com/group/comp.lang.c++/msg/1d941c0f26ea0d81
struct Tie: public std::streambuf { // MSVC requires split streambuf for cin and cout struct Tie: public std::streambuf { // MSVC requires split streambuf for cin and cout
@ -141,15 +141,15 @@ public:
} // namespace } // namespace
/// engine_info() returns the full name of the current Stockfish version. // engine_info() returns the full name of the current Stockfish version.
/// For local dev compiles we try to append the commit sha and commit date // For local dev compiles we try to append the commit sha and commit date
/// from git if that fails only the local compilation date is set and "nogit" is specified: // from git if that fails only the local compilation date is set and "nogit" is specified:
/// Stockfish dev-YYYYMMDD-SHA // Stockfish dev-YYYYMMDD-SHA
/// or // or
/// Stockfish dev-YYYYMMDD-nogit // Stockfish dev-YYYYMMDD-nogit
/// //
/// For releases (non dev builds) we only include the version number: // For releases (non-dev builds) we only include the version number:
/// Stockfish version // Stockfish version
std::string engine_info(bool to_uci) { std::string engine_info(bool to_uci) {
std::stringstream ss; std::stringstream ss;
@ -185,20 +185,20 @@ std::string engine_info(bool to_uci) {
} }
/// compiler_info() returns a string trying to describe the compiler we use // compiler_info() returns a string trying to describe the compiler we use
std::string compiler_info() { std::string compiler_info() {
#define make_version_string(major, minor, patch) stringify(major) "." stringify(minor) "." stringify(patch) #define make_version_string(major, minor, patch) stringify(major) "." stringify(minor) "." stringify(patch)
/// Predefined macros hell: // Predefined macros hell:
/// //
/// __GNUC__ Compiler is GCC, Clang or ICX // __GNUC__ Compiler is GCC, Clang or ICX
/// __clang__ Compiler is Clang or ICX // __clang__ Compiler is Clang or ICX
/// __INTEL_LLVM_COMPILER Compiler is ICX // __INTEL_LLVM_COMPILER Compiler is ICX
/// _MSC_VER Compiler is MSVC // _MSC_VER Compiler is MSVC
/// _WIN32 Building on Windows (any) // _WIN32 Building on Windows (any)
/// _WIN64 Building on Windows 64 bit // _WIN64 Building on Windows 64 bit
std::string compiler = "\nCompiled by : "; std::string compiler = "\nCompiled by : ";
@ -305,7 +305,7 @@ std::string compiler_info() {
} }
/// Debug functions used mainly to collect run-time statistics // Debug functions used mainly to collect run-time statistics
constexpr int MaxDebugSlots = 32; constexpr int MaxDebugSlots = 32;
namespace { namespace {
@ -397,8 +397,8 @@ void dbg_print() {
} }
/// Used to serialize access to std::cout to avoid multiple threads writing at // Used to serialize access to std::cout to avoid multiple threads writing at
/// the same time. // the same time.
std::ostream& operator<<(std::ostream& os, SyncCout sc) { std::ostream& operator<<(std::ostream& os, SyncCout sc) {
@ -414,13 +414,13 @@ std::ostream& operator<<(std::ostream& os, SyncCout sc) {
} }
/// Trampoline helper to avoid moving Logger to misc.h // Trampoline helper to avoid moving Logger to misc.h
void start_logger(const std::string& fname) { Logger::start(fname); } void start_logger(const std::string& fname) { Logger::start(fname); }
/// prefetch() preloads the given address in L1/L2 cache. This is a non-blocking // prefetch() preloads the given address in L1/L2 cache. This is a non-blocking
/// function that doesn't stall the CPU waiting for data to be loaded from memory, // function that doesn't stall the CPU waiting for data to be loaded from memory,
/// which can be quite slow. // which can be quite slow.
#ifdef NO_PREFETCH #ifdef NO_PREFETCH
void prefetch(void*) {} void prefetch(void*) {}
@ -439,9 +439,9 @@ void prefetch(void* addr) {
#endif #endif
/// std_aligned_alloc() is our wrapper for systems where the c++17 implementation // std_aligned_alloc() is our wrapper for systems where the c++17 implementation
/// does not guarantee the availability of aligned_alloc(). Memory allocated with // does not guarantee the availability of aligned_alloc(). Memory allocated with
/// std_aligned_alloc() must be freed with std_aligned_free(). // std_aligned_alloc() must be freed with std_aligned_free().
void* std_aligned_alloc(size_t alignment, size_t size) { void* std_aligned_alloc(size_t alignment, size_t size) {
@ -470,7 +470,7 @@ void std_aligned_free(void* ptr) {
#endif #endif
} }
/// aligned_large_pages_alloc() will return suitably aligned memory, if possible using large pages. // aligned_large_pages_alloc() will return suitably aligned memory, if possible using large pages.
#if defined(_WIN32) #if defined(_WIN32)
@ -550,7 +550,7 @@ void* aligned_large_pages_alloc(size_t allocSize) {
// Try to allocate large pages // Try to allocate large pages
void* mem = aligned_large_pages_alloc_windows(allocSize); void* mem = aligned_large_pages_alloc_windows(allocSize);
// Fall back to regular, page aligned, allocation if necessary // Fall back to regular, page-aligned, allocation if necessary
if (!mem) if (!mem)
mem = VirtualAlloc(nullptr, allocSize, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); mem = VirtualAlloc(nullptr, allocSize, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
@ -579,7 +579,7 @@ void* aligned_large_pages_alloc(size_t allocSize) {
#endif #endif
/// aligned_large_pages_free() will free the previously allocated ttmem // aligned_large_pages_free() will free the previously allocated ttmem
#if defined(_WIN32) #if defined(_WIN32)
@ -612,9 +612,9 @@ void bindThisThread(size_t) {}
#else #else
/// best_node() retrieves logical processor information using Windows specific // best_node() retrieves logical processor information using Windows specific
/// API and returns the best node id for the thread with index idx. Original // API and returns the best node id for the thread with index idx. Original
/// code from Texel by Peter Österlund. // code from Texel by Peter Österlund.
static int best_node(size_t idx) { static int best_node(size_t idx) {
@ -666,8 +666,8 @@ static int best_node(size_t idx) {
std::vector<int> groups; std::vector<int> groups;
// Run as many threads as possible on the same node until core limit is // Run as many threads as possible on the same node until the core limit is
// reached, then move on filling the next node. // reached, then move on to filling the next node.
for (int n = 0; n < nodes; n++) for (int n = 0; n < nodes; n++)
for (int i = 0; i < cores / nodes; i++) for (int i = 0; i < cores / nodes; i++)
groups.push_back(n); groups.push_back(n);
@ -684,7 +684,7 @@ static int best_node(size_t idx) {
} }
/// bindThisThread() set the group affinity of the current thread // bindThisThread() sets the group affinity of the current thread
void bindThisThread(size_t idx) { void bindThisThread(size_t idx) {
@ -751,7 +751,7 @@ void init([[maybe_unused]] int argc, char* argv[]) {
pathSeparator = "\\"; pathSeparator = "\\";
#ifdef _MSC_VER #ifdef _MSC_VER
// Under windows argv[0] may not have the extension. Also _get_pgmptr() had // Under windows argv[0] may not have the extension. Also _get_pgmptr() had
// issues in some windows 10 versions, so check returned values carefully. // issues in some Windows 10 versions, so check returned values carefully.
char* pgmptr = nullptr; char* pgmptr = nullptr;
if (!_get_pgmptr(&pgmptr) && pgmptr != nullptr && *pgmptr) if (!_get_pgmptr(&pgmptr) && pgmptr != nullptr && *pgmptr)
argv0 = pgmptr; argv0 = pgmptr;

View file

@ -74,7 +74,7 @@ T* align_ptr_up(T* ptr)
} }
// IsLittleEndian : true if and only if the binary is compiled on a little endian machine // IsLittleEndian : true if and only if the binary is compiled on a little-endian machine
static inline const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; static inline const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
static inline const bool IsLittleEndian = (Le.c[0] == 4); static inline const bool IsLittleEndian = (Le.c[0] == 4);
@ -95,20 +95,20 @@ private:
}; };
/// xorshift64star Pseudo-Random Number Generator // xorshift64star Pseudo-Random Number Generator
/// This class is based on original code written and dedicated // This class is based on original code written and dedicated
/// to the public domain by Sebastiano Vigna (2014). // to the public domain by Sebastiano Vigna (2014).
/// It has the following characteristics: // It has the following characteristics:
/// //
/// - Outputs 64-bit numbers // - Outputs 64-bit numbers
/// - Passes Dieharder and SmallCrush test batteries // - Passes Dieharder and SmallCrush test batteries
/// - Does not require warm-up, no zeroland to escape // - Does not require warm-up, no zeroland to escape
/// - Internal state is a single 64-bit integer // - Internal state is a single 64-bit integer
/// - Period is 2^64 - 1 // - Period is 2^64 - 1
/// - Speed: 1.60 ns/call (Core i7 @3.40GHz) // - Speed: 1.60 ns/call (Core i7 @3.40GHz)
/// //
/// For further analysis see // For further analysis see
/// <http://vigna.di.unimi.it/ftp/papers/xorshift.pdf> // <http://vigna.di.unimi.it/ftp/papers/xorshift.pdf>
class PRNG { class PRNG {
@ -125,8 +125,8 @@ public:
template<typename T> T rand() { return T(rand64()); } template<typename T> T rand() { return T(rand64()); }
/// Special generator used to fast init magic numbers. // Special generator used to fast init magic numbers.
/// Output values only have 1/8th of their bits set on average. // Output values only have 1/8th of their bits set on average.
template<typename T> T sparse_rand() template<typename T> T sparse_rand()
{ return T(rand64() & rand64() & rand64()); } { return T(rand64() & rand64() & rand64()); }
}; };
@ -145,11 +145,11 @@ inline uint64_t mul_hi64(uint64_t a, uint64_t b) {
#endif #endif
} }
/// Under Windows it is not possible for a process to run on more than one // Under Windows it is not possible for a process to run on more than one
/// logical processor group. This usually means to be limited to use max 64 // logical processor group. This usually means being limited to using max 64
/// cores. To overcome this, some special platform specific API should be // cores. To overcome this, some special platform-specific API should be
/// called to set group affinity for each thread. Original code from Texel by // called to set group affinity for each thread. Original code from Texel by
/// Peter Österlund. // Peter Österlund.
namespace WinProcGroup { namespace WinProcGroup {
void bindThisThread(size_t idx); void bindThisThread(size_t idx);

View file

@ -234,14 +234,14 @@ namespace {
} // namespace } // namespace
/// <CAPTURES> Generates all pseudo-legal captures plus queen promotions // <CAPTURES> Generates all pseudo-legal captures plus queen promotions
/// <QUIETS> Generates all pseudo-legal non-captures and underpromotions // <QUIETS> Generates all pseudo-legal non-captures and underpromotions
/// <EVASIONS> Generates all pseudo-legal check evasions // <EVASIONS> Generates all pseudo-legal check evasions
/// <NON_EVASIONS> Generates all pseudo-legal captures and non-captures // <NON_EVASIONS> Generates all pseudo-legal captures and non-captures
/// <QUIET_CHECKS> Generates all pseudo-legal non-captures giving check, // <QUIET_CHECKS> Generates all pseudo-legal non-captures giving check,
/// except castling and promotions // except castling and promotions
/// //
/// Returns a pointer to the end of the move list. // Returns a pointer to the end of the move list.
template<GenType Type> template<GenType Type>
ExtMove* generate(const Position& pos, ExtMove* moveList) { ExtMove* generate(const Position& pos, ExtMove* moveList) {
@ -263,7 +263,7 @@ template ExtMove* generate<QUIET_CHECKS>(const Position&, ExtMove*);
template ExtMove* generate<NON_EVASIONS>(const Position&, ExtMove*); template ExtMove* generate<NON_EVASIONS>(const Position&, ExtMove*);
/// generate<LEGAL> generates all the legal moves in the given position // generate<LEGAL> generates all the legal moves in the given position
template<> template<>
ExtMove* generate<LEGAL>(const Position& pos, ExtMove* moveList) { ExtMove* generate<LEGAL>(const Position& pos, ExtMove* moveList) {

View file

@ -56,9 +56,9 @@ inline bool operator<(const ExtMove& f, const ExtMove& s) {
template<GenType> template<GenType>
ExtMove* generate(const Position& pos, ExtMove* moveList); ExtMove* generate(const Position& pos, ExtMove* moveList);
/// The MoveList struct wraps the generate() function and returns a convenient // The MoveList struct wraps the generate() function and returns a convenient
/// list of moves. Using MoveList is sometimes preferable to directly calling // list of moves. Using MoveList is sometimes preferable to directly calling
/// the lower level generate() function. // the lower level generate() function.
template<GenType T> template<GenType T>
struct MoveList { struct MoveList {

View file

@ -55,13 +55,13 @@ namespace {
} // namespace } // namespace
/// Constructors of the MovePicker class. As arguments, we pass information // Constructors of the MovePicker class. As arguments, we pass information
/// to help it return the (presumably) good moves first, to decide which // to help it return the (presumably) good moves first, to decide which
/// moves to return (in the quiescence search, for instance, we only want to // moves to return (in the quiescence search, for instance, we only want to
/// search captures, promotions, and some checks) and how important a good // search captures, promotions, and some checks) and how important a good
/// move ordering is at the current node. // move ordering is at the current node.
/// MovePicker constructor for the main search // MovePicker constructor for the main search
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh, MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh,
const CapturePieceToHistory* cph, const CapturePieceToHistory* cph,
const PieceToHistory** ch, const PieceToHistory** ch,
@ -76,7 +76,7 @@ MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHist
!(ttm && pos.pseudo_legal(ttm)); !(ttm && pos.pseudo_legal(ttm));
} }
/// MovePicker constructor for quiescence search // MovePicker constructor for quiescence search
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh, MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh,
const CapturePieceToHistory* cph, const CapturePieceToHistory* cph,
const PieceToHistory** ch, const PieceToHistory** ch,
@ -90,8 +90,8 @@ MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHist
&& pos.pseudo_legal(ttm)); && pos.pseudo_legal(ttm));
} }
/// MovePicker constructor for ProbCut: we generate captures with SEE greater // MovePicker constructor for ProbCut: we generate captures with SEE greater
/// than or equal to the given threshold. // than or equal to the given threshold.
MovePicker::MovePicker(const Position& p, Move ttm, Value th, const CapturePieceToHistory* cph) MovePicker::MovePicker(const Position& p, Move ttm, Value th, const CapturePieceToHistory* cph)
: pos(p), captureHistory(cph), ttMove(ttm), threshold(th) : pos(p), captureHistory(cph), ttMove(ttm), threshold(th)
{ {
@ -102,9 +102,9 @@ MovePicker::MovePicker(const Position& p, Move ttm, Value th, const CapturePiece
&& pos.see_ge(ttm, threshold)); && pos.see_ge(ttm, threshold));
} }
/// MovePicker::score() assigns a numerical value to each move in a list, used // MovePicker::score() assigns a numerical value to each move in a list, used
/// for sorting. Captures are ordered by Most Valuable Victim (MVV), preferring // for sorting. Captures are ordered by Most Valuable Victim (MVV), preferring
/// captures with a good history. Quiets moves are ordered using the history tables. // captures with a good history. Quiets moves are ordered using the history tables.
template<GenType Type> template<GenType Type>
void MovePicker::score() { void MovePicker::score() {
@ -180,8 +180,8 @@ void MovePicker::score() {
} }
} }
/// MovePicker::select() returns the next move satisfying a predicate function. // MovePicker::select() returns the next move satisfying a predicate function.
/// It never returns the TT move. // It never returns the TT move.
template<MovePicker::PickType T, typename Pred> template<MovePicker::PickType T, typename Pred>
Move MovePicker::select(Pred filter) { Move MovePicker::select(Pred filter) {
@ -198,9 +198,9 @@ Move MovePicker::select(Pred filter) {
return MOVE_NONE; return MOVE_NONE;
} }
/// MovePicker::next_move() is the most important method of the MovePicker class. It // MovePicker::next_move() is the most important method of the MovePicker class. It
/// returns a new pseudo-legal move every time it is called until there are no more // returns a new pseudo-legal move every time it is called until there are no more
/// moves left, picking the move with the highest score from a list of generated moves. // moves left, picking the move with the highest score from a list of generated moves.
Move MovePicker::next_move(bool skipQuiets) { Move MovePicker::next_move(bool skipQuiets) {
top: top:

View file

@ -32,10 +32,10 @@
namespace Stockfish { namespace Stockfish {
class Position; class Position;
/// StatsEntry stores the stat table value. It is usually a number but could // StatsEntry stores the stat table value. It is usually a number but could
/// be a move or even a nested history. We use a class instead of naked value // be a move or even a nested history. We use a class instead of a naked value
/// to directly call history update operator<<() on the entry so to use stats // to directly call history update operator<<() on the entry so to use stats
/// tables at caller sites as simple multi-dim arrays. // tables at caller sites as simple multi-dim arrays.
template<typename T, int D> template<typename T, int D>
class StatsEntry { class StatsEntry {
@ -57,11 +57,11 @@ public:
} }
}; };
/// Stats is a generic N-dimensional array used to store various statistics. // Stats is a generic N-dimensional array used to store various statistics.
/// The first template parameter T is the base type of the array, the second // The first template parameter T is the base type of the array, and the second
/// template parameter D limits the range of updates in [-D, D] when we update // template parameter D limits the range of updates in [-D, D] when we update
/// values with the << operator, while the last parameters (Size and Sizes) // values with the << operator, while the last parameters (Size and Sizes)
/// encode the dimensions of the array. // encode the dimensions of the array.
template <typename T, int D, int Size, int... Sizes> template <typename T, int D, int Size, int... Sizes>
struct Stats : public std::array<Stats<T, D, Sizes...>, Size> struct Stats : public std::array<Stats<T, D, Sizes...>, Size>
{ {
@ -69,7 +69,7 @@ struct Stats : public std::array<Stats<T, D, Sizes...>, Size>
void fill(const T& v) { void fill(const T& v) {
// For standard-layout 'this' points to first struct member // For standard-layout 'this' points to the first struct member
assert(std::is_standard_layout_v<stats>); assert(std::is_standard_layout_v<stats>);
using entry = StatsEntry<T, D>; using entry = StatsEntry<T, D>;
@ -81,40 +81,40 @@ struct Stats : public std::array<Stats<T, D, Sizes...>, Size>
template <typename T, int D, int Size> template <typename T, int D, int Size>
struct Stats<T, D, Size> : public std::array<StatsEntry<T, D>, Size> {}; struct Stats<T, D, Size> : public std::array<StatsEntry<T, D>, Size> {};
/// In stats table, D=0 means that the template parameter is not used // In stats table, D=0 means that the template parameter is not used
enum StatsParams { NOT_USED = 0 }; enum StatsParams { NOT_USED = 0 };
enum StatsType { NoCaptures, Captures }; enum StatsType { NoCaptures, Captures };
/// ButterflyHistory records how often quiet moves have been successful or // ButterflyHistory records how often quiet moves have been successful or
/// unsuccessful during the current search, and is used for reduction and move // unsuccessful during the current search, and is used for reduction and move
/// ordering decisions. It uses 2 tables (one for each color) indexed by // ordering decisions. It uses 2 tables (one for each color) indexed by
/// the move's from and to squares, see www.chessprogramming.org/Butterfly_Boards // the move's from and to squares, see www.chessprogramming.org/Butterfly_Boards
/// (~11 elo) // (~11 elo)
using ButterflyHistory = Stats<int16_t, 7183, COLOR_NB, int(SQUARE_NB) * int(SQUARE_NB)>; using ButterflyHistory = Stats<int16_t, 7183, COLOR_NB, int(SQUARE_NB) * int(SQUARE_NB)>;
/// CounterMoveHistory stores counter moves indexed by [piece][to] of the previous // CounterMoveHistory stores counter moves indexed by [piece][to] of the previous
/// move, see www.chessprogramming.org/Countermove_Heuristic // move, see www.chessprogramming.org/Countermove_Heuristic
using CounterMoveHistory = Stats<Move, NOT_USED, PIECE_NB, SQUARE_NB>; using CounterMoveHistory = Stats<Move, NOT_USED, PIECE_NB, SQUARE_NB>;
/// CapturePieceToHistory is addressed by a move's [piece][to][captured piece type] // CapturePieceToHistory is addressed by a move's [piece][to][captured piece type]
using CapturePieceToHistory = Stats<int16_t, 10692, PIECE_NB, SQUARE_NB, PIECE_TYPE_NB>; using CapturePieceToHistory = Stats<int16_t, 10692, PIECE_NB, SQUARE_NB, PIECE_TYPE_NB>;
/// PieceToHistory is like ButterflyHistory but is addressed by a move's [piece][to] // PieceToHistory is like ButterflyHistory but is addressed by a move's [piece][to]
using PieceToHistory = Stats<int16_t, 29952, PIECE_NB, SQUARE_NB>; using PieceToHistory = Stats<int16_t, 29952, PIECE_NB, SQUARE_NB>;
/// ContinuationHistory is the combined history of a given pair of moves, usually // ContinuationHistory is the combined history of a given pair of moves, usually
/// the current one given a previous one. The nested history table is based on // the current one given a previous one. The nested history table is based on
/// PieceToHistory instead of ButterflyBoards. // PieceToHistory instead of ButterflyBoards.
/// (~63 elo) // (~63 elo)
using ContinuationHistory = Stats<PieceToHistory, NOT_USED, PIECE_NB, SQUARE_NB>; using ContinuationHistory = Stats<PieceToHistory, NOT_USED, PIECE_NB, SQUARE_NB>;
/// MovePicker class is used to pick one pseudo-legal move at a time from the // MovePicker class is used to pick one pseudo-legal move at a time from the
/// current position. The most important method is next_move(), which returns a // current position. The most important method is next_move(), which returns a
/// new pseudo-legal move each time it is called, until there are no moves left, // new pseudo-legal move each time it is called, until there are no moves left,
/// when MOVE_NONE is returned. In order to improve the efficiency of the // when MOVE_NONE is returned. In order to improve the efficiency of the
/// alpha-beta algorithm, MovePicker attempts to return the moves which are most // alpha-beta algorithm, MovePicker attempts to return the moves which are most
/// likely to get a cut-off first. // likely to get a cut-off first.
class MovePicker { class MovePicker {
enum PickType { Next, Best }; enum PickType { Next, Best };

View file

@ -375,7 +375,7 @@ namespace Stockfish::Eval::NNUE {
return write_parameters(stream); return write_parameters(stream);
} }
/// Save eval, to a file given by its name // Save eval, to a file given by its name
bool save_eval(const std::optional<std::string>& filename) { bool save_eval(const std::optional<std::string>& filename) {
std::string actualFilename; std::string actualFilename;

View file

@ -61,7 +61,7 @@ constexpr Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING
} // namespace } // namespace
/// operator<<(Position) returns an ASCII representation of the position // operator<<(Position) returns an ASCII representation of the position
std::ostream& operator<<(std::ostream& os, const Position& pos) { std::ostream& operator<<(std::ostream& os, const Position& pos) {
@ -116,7 +116,7 @@ Key cuckoo[8192];
Move cuckooMove[8192]; Move cuckooMove[8192];
/// Position::init() initializes at startup the various arrays used to compute hash keys // Position::init() initializes at startup the various arrays used to compute hash keys
void Position::init() { void Position::init() {
@ -160,9 +160,9 @@ void Position::init() {
} }
/// Position::set() initializes the position object with the given FEN string. // Position::set() initializes the position object with the given FEN string.
/// This function is not very robust - make sure that input FENs are correct, // This function is not very robust - make sure that input FENs are correct,
/// this is assumed to be the responsibility of the GUI. // this is assumed to be the responsibility of the GUI.
Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) {
/* /*
@ -297,8 +297,8 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th
} }
/// Position::set_castling_right() is a helper function used to set castling // Position::set_castling_right() is a helper function used to set castling
/// rights given the corresponding color and the rook starting square. // rights given the corresponding color and the rook starting square.
void Position::set_castling_right(Color c, Square rfrom) { void Position::set_castling_right(Color c, Square rfrom) {
@ -318,7 +318,7 @@ void Position::set_castling_right(Color c, Square rfrom) {
} }
/// Position::set_check_info() sets king attacks to detect if a move gives check // Position::set_check_info() sets king attacks to detect if a move gives check
void Position::set_check_info() const { void Position::set_check_info() const {
@ -336,9 +336,9 @@ void Position::set_check_info() const {
} }
/// Position::set_state() computes the hash keys of the position, and other // Position::set_state() computes the hash keys of the position, and other
/// data that once computed is updated incrementally as moves are made. // data that once computed is updated incrementally as moves are made.
/// The function is only used when a new position is set up // The function is only used when a new position is set up
void Position::set_state() const { void Position::set_state() const {
@ -372,9 +372,9 @@ void Position::set_state() const {
} }
/// Position::set() is an overload to initialize the position object with // Position::set() is an overload to initialize the position object with
/// the given endgame code string like "KBPKN". It is mainly a helper to // the given endgame code string like "KBPKN". It is mainly a helper to
/// get the material key out of an endgame code. // get the material key out of an endgame code.
Position& Position::set(const string& code, Color c, StateInfo* si) { Position& Position::set(const string& code, Color c, StateInfo* si) {
@ -395,8 +395,8 @@ Position& Position::set(const string& code, Color c, StateInfo* si) {
} }
/// Position::fen() returns a FEN representation of the position. In case of // Position::fen() returns a FEN representation of the position. In case of
/// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. // Chess960 the Shredder-FEN notation is used. This is mainly a debugging function.
string Position::fen() const { string Position::fen() const {
@ -444,9 +444,9 @@ string Position::fen() const {
return ss.str(); return ss.str();
} }
/// update_slider_blockers() calculates st->blockersForKing[c] and st->pinners[~c], // update_slider_blockers() calculates st->blockersForKing[c] and st->pinners[~c],
/// which store respectively the pieces preventing king of color c from being in check // which store respectively the pieces preventing king of color c from being in check
/// and the slider pieces of color ~c pinning pieces of color c to the king. // and the slider pieces of color ~c pinning pieces of color c to the king.
void Position::update_slider_blockers(Color c) const { void Position::update_slider_blockers(Color c) const {
Square ksq = square<KING>(c); Square ksq = square<KING>(c);
@ -474,8 +474,8 @@ void Position::update_slider_blockers(Color c) const {
} }
/// Position::attackers_to() computes a bitboard of all pieces which attack a // Position::attackers_to() computes a bitboard of all pieces which attack a
/// given square. Slider attacks use the occupied bitboard to indicate occupancy. // given square. Slider attacks use the occupied bitboard to indicate occupancy.
Bitboard Position::attackers_to(Square s, Bitboard occupied) const { Bitboard Position::attackers_to(Square s, Bitboard occupied) const {
@ -488,7 +488,7 @@ Bitboard Position::attackers_to(Square s, Bitboard occupied) const {
} }
/// Position::legal() tests whether a pseudo-legal move is legal // Position::legal() tests whether a pseudo-legal move is legal
bool Position::legal(Move m) const { bool Position::legal(Move m) const {
@ -532,7 +532,7 @@ bool Position::legal(Move m) const {
if (attackers_to(s) & pieces(~us)) if (attackers_to(s) & pieces(~us))
return false; return false;
// In case of Chess960, verify if the Rook blocks some checks // In case of Chess960, verify if the Rook blocks some checks.
// For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1. // For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1.
return !chess960 || !(blockers_for_king(us) & to_sq(m)); return !chess960 || !(blockers_for_king(us) & to_sq(m));
} }
@ -549,9 +549,9 @@ bool Position::legal(Move m) const {
} }
/// Position::pseudo_legal() takes a random move and tests whether the move is // Position::pseudo_legal() takes a random move and tests whether the move is
/// pseudo-legal. It is used to validate moves from TT that can be corrupted // pseudo-legal. It is used to validate moves from TT that can be corrupted
/// due to SMP concurrent access or hash position key aliasing. // due to SMP concurrent access or hash position key aliasing.
bool Position::pseudo_legal(const Move m) const { bool Position::pseudo_legal(const Move m) const {
@ -622,7 +622,7 @@ bool Position::pseudo_legal(const Move m) const {
} }
/// Position::gives_check() tests whether a pseudo-legal move gives a check // Position::gives_check() tests whether a pseudo-legal move gives a check
bool Position::gives_check(Move m) const { bool Position::gives_check(Move m) const {
@ -672,9 +672,9 @@ bool Position::gives_check(Move m) const {
} }
/// Position::do_move() makes a move, and saves all information necessary // Position::do_move() makes a move, and saves all information necessary
/// to a StateInfo object. The move is assumed to be legal. Pseudo-legal // to a StateInfo object. The move is assumed to be legal. Pseudo-legal
/// moves should be filtered out before this function is called. // moves should be filtered out before this function is called.
void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
@ -870,8 +870,8 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
} }
/// Position::undo_move() unmakes a move. When it returns, the position should // Position::undo_move() unmakes a move. When it returns, the position should
/// be restored to exactly the same state as before the move was made. // be restored to exactly the same state as before the move was made.
void Position::undo_move(Move m) { void Position::undo_move(Move m) {
@ -934,8 +934,8 @@ void Position::undo_move(Move m) {
} }
/// Position::do_castling() is a helper used to do/undo a castling move. This // Position::do_castling() is a helper used to do/undo a castling move. This
/// is a bit tricky in Chess960 where from/to squares can overlap. // is a bit tricky in Chess960 where from/to squares can overlap.
template<bool Do> template<bool Do>
void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) {
@ -965,8 +965,8 @@ void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Squ
} }
/// Position::do_null_move() is used to do a "null move": it flips // Position::do_null_move() is used to do a "null move": it flips
/// the side to move without executing any move on the board. // the side to move without executing any move on the board.
void Position::do_null_move(StateInfo& newSt) { void Position::do_null_move(StateInfo& newSt) {
@ -1005,7 +1005,7 @@ void Position::do_null_move(StateInfo& newSt) {
} }
/// Position::undo_null_move() must be used to undo a "null move" // Position::undo_null_move() must be used to undo a "null move"
void Position::undo_null_move() { void Position::undo_null_move() {
@ -1016,9 +1016,9 @@ void Position::undo_null_move() {
} }
/// Position::key_after() computes the new hash key after the given move. Needed // Position::key_after() computes the new hash key after the given move. Needed
/// for speculative prefetch. It doesn't recognize special moves like castling, // for speculative prefetch. It doesn't recognize special moves like castling,
/// en passant and promotions. // en passant and promotions.
Key Position::key_after(Move m) const { Key Position::key_after(Move m) const {
@ -1038,9 +1038,9 @@ Key Position::key_after(Move m) const {
} }
/// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the // Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the
/// SEE value of move is greater or equal to the given threshold. We'll use an // SEE value of move is greater or equal to the given threshold. We'll use an
/// algorithm similar to alpha-beta pruning with a null window. // algorithm similar to alpha-beta pruning with a null window.
bool Position::see_ge(Move m, Value threshold) const { bool Position::see_ge(Move m, Value threshold) const {
@ -1143,8 +1143,8 @@ bool Position::see_ge(Move m, Value threshold) const {
return bool(res); return bool(res);
} }
/// Position::is_draw() tests whether the position is drawn by 50-move rule // Position::is_draw() tests whether the position is drawn by 50-move rule
/// or by repetition. It does not detect stalemates. // or by repetition. It does not detect stalemates.
bool Position::is_draw(int ply) const { bool Position::is_draw(int ply) const {
@ -1175,8 +1175,8 @@ bool Position::has_repeated() const {
} }
/// Position::has_game_cycle() tests if the position has a move which draws by repetition, // Position::has_game_cycle() tests if the position has a move which draws by repetition,
/// or an earlier position has a move that directly reaches the current position. // or an earlier position has a move that directly reaches the current position.
bool Position::has_game_cycle(int ply) const { bool Position::has_game_cycle(int ply) const {
@ -1224,8 +1224,8 @@ bool Position::has_game_cycle(int ply) const {
} }
/// Position::flip() flips position with the white and black sides reversed. This // Position::flip() flips position with the white and black sides reversed. This
/// is only useful for debugging e.g. for finding evaluation symmetry bugs. // is only useful for debugging e.g. for finding evaluation symmetry bugs.
void Position::flip() { void Position::flip() {
@ -1259,9 +1259,9 @@ void Position::flip() {
} }
/// Position::pos_is_ok() performs some consistency checks for the // Position::pos_is_ok() performs some consistency checks for the
/// position object and raise an assert if something wrong is detected. // position object and raise an assert if something wrong is detected.
/// This is meant to be helpful when debugging. // This is meant to be helpful when debugging.
bool Position::pos_is_ok() const { bool Position::pos_is_ok() const {

View file

@ -31,9 +31,9 @@
namespace Stockfish { namespace Stockfish {
/// StateInfo struct stores information needed to restore a Position object to // StateInfo struct stores information needed to restore a Position object to
/// its previous state when we retract a move. Whenever a move is made on the // its previous state when we retract a move. Whenever a move is made on the
/// board (by calling Position::do_move), a StateInfo object must be passed. // board (by calling Position::do_move), a StateInfo object must be passed.
struct StateInfo { struct StateInfo {
@ -61,17 +61,17 @@ struct StateInfo {
}; };
/// A list to keep track of the position states along the setup moves (from the // A list to keep track of the position states along the setup moves (from the
/// start position to the position just before the search starts). Needed by // start position to the position just before the search starts). Needed by
/// 'draw by repetition' detection. Use a std::deque because pointers to // 'draw by repetition' detection. Use a std::deque because pointers to
/// elements are not invalidated upon list resizing. // elements are not invalidated upon list resizing.
using StateListPtr = std::unique_ptr<std::deque<StateInfo>>; using StateListPtr = std::unique_ptr<std::deque<StateInfo>>;
/// Position class stores information regarding the board representation as // Position class stores information regarding the board representation as
/// pieces, side to move, hash keys, castling info, etc. Important methods are // pieces, side to move, hash keys, castling info, etc. Important methods are
/// do_move() and undo_move(), used by the search to update node info when // do_move() and undo_move(), used by the search to update node info when
/// traversing the search tree. // traversing the search tree.
class Thread; class Thread;
class Position { class Position {
@ -342,8 +342,8 @@ inline bool Position::capture(Move m) const {
|| type_of(m) == EN_PASSANT; || type_of(m) == EN_PASSANT;
} }
// returns true if a move is generated from the capture stage // Returns true if a move is generated from the capture stage, having also
// having also queen promotions covered, i.e. consistency with the capture stage move generation // queen promotions covered, i.e. consistency with the capture stage move generation
// is needed to avoid the generation of duplicate moves. // is needed to avoid the generation of duplicate moves.
inline bool Position::capture_stage(Move m) const { inline bool Position::capture_stage(Move m) const {
assert(is_ok(m)); assert(is_ok(m));

View file

@ -169,7 +169,7 @@ namespace {
} // namespace } // namespace
/// Search::init() is called at startup to initialize various lookup tables // Search::init() is called at startup to initialize various lookup tables
void Search::init() { void Search::init() {
@ -178,7 +178,7 @@ void Search::init() {
} }
/// Search::clear() resets search state to its initial value // Search::clear() resets search state to its initial value
void Search::clear() { void Search::clear() {
@ -191,8 +191,8 @@ void Search::clear() {
} }
/// MainThread::search() is started when the program receives the UCI 'go' // MainThread::search() is started when the program receives the UCI 'go'
/// command. It searches from the root position and outputs the "bestmove". // command. It searches from the root position and outputs the "bestmove".
void MainThread::search() { void MainThread::search() {
@ -268,9 +268,9 @@ void MainThread::search() {
} }
/// Thread::search() is the main iterative deepening loop. It calls search() // Thread::search() is the main iterative deepening loop. It calls search()
/// repeatedly with increasing depth until the allocated thinking time has been // repeatedly with increasing depth until the allocated thinking time has been
/// consumed, the user stops the search, or the maximum search depth is reached. // consumed, the user stops the search, or the maximum search depth is reached.
void Thread::search() { void Thread::search() {
@ -1837,8 +1837,8 @@ moves_loop: // When in check, search starts here
} // namespace } // namespace
/// MainThread::check_time() is used to print debug info and, more importantly, // MainThread::check_time() is used to print debug info and, more importantly,
/// to detect when we are out of available time and thus stop the search. // to detect when we are out of available time and thus stop the search.
void MainThread::check_time() { void MainThread::check_time() {
@ -1870,8 +1870,8 @@ void MainThread::check_time() {
} }
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires // UCI::pv() formats PV information according to the UCI protocol. UCI requires
/// that all (if any) unsearched PV lines are sent using a previous search score. // that all (if any) unsearched PV lines are sent using a previous search score.
string UCI::pv(const Position& pos, Depth depth) { string UCI::pv(const Position& pos, Depth depth) {
@ -1929,10 +1929,10 @@ string UCI::pv(const Position& pos, Depth depth) {
} }
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move // RootMove::extract_ponder_from_tt() is called in case we have no ponder move
/// before exiting the search, for instance, in case we stop the search during a // before exiting the search, for instance, in case we stop the search during a
/// fail high at root. We try hard to have a ponder move to return to the GUI, // fail high at root. We try hard to have a ponder move to return to the GUI,
/// otherwise in case of 'ponder on' we have nothing to think about. // otherwise in case of 'ponder on' we have nothing to think about.
bool RootMove::extract_ponder_from_tt(Position& pos) { bool RootMove::extract_ponder_from_tt(Position& pos) {

View file

@ -33,9 +33,9 @@ class Position;
namespace Search { namespace Search {
/// Stack struct keeps track of the information we need to remember from nodes // Stack struct keeps track of the information we need to remember from nodes
/// shallower and deeper in the tree during the search. Each search thread has // shallower and deeper in the tree during the search. Each search thread has
/// its own array of Stack objects, indexed by the current ply. // its own array of Stack objects, indexed by the current ply.
struct Stack { struct Stack {
Move* pv; Move* pv;
@ -55,9 +55,9 @@ struct Stack {
}; };
/// RootMove struct is used for moves at the root of the tree. For each root move // RootMove struct is used for moves at the root of the tree. For each root move
/// we store a score and a PV (really a refutation in the case of moves which // we store a score and a PV (really a refutation in the case of moves which
/// fail low). Score is normally set at -VALUE_INFINITE for all non-pv moves. // fail low). Score is normally set at -VALUE_INFINITE for all non-pv moves.
struct RootMove { struct RootMove {
@ -84,8 +84,8 @@ struct RootMove {
using RootMoves = std::vector<RootMove>; using RootMoves = std::vector<RootMove>;
/// LimitsType struct stores information sent by GUI about available time to // LimitsType struct stores information sent by GUI about available time to
/// search the current move, maximum depth/time, or if we are in analysis mode. // search the current move, maximum depth/time, or if we are in analysis mode.
struct LimitsType { struct LimitsType {

View file

@ -139,7 +139,7 @@ template <typename T> int sign_of(T val) {
return (T(0) < val) - (val < T(0)); return (T(0) < val) - (val < T(0));
} }
// Numbers in little endian used by sparseIndex[] to point into blockLength[] // Numbers in little-endian used by sparseIndex[] to point into blockLength[]
struct SparseEntry { struct SparseEntry {
char block[4]; // Number of block char block[4]; // Number of block
char offset[2]; // Offset within the block char offset[2]; // Offset within the block
@ -153,7 +153,7 @@ struct LR {
enum Side { Left, Right }; enum Side { Left, Right };
uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12
// bits is the right-hand symbol. If symbol has length 1, // bits is the right-hand symbol. If the symbol has length 1,
// then the left-hand symbol is the stored value. // then the left-hand symbol is the stored value.
template<Side S> template<Side S>
Sym get() { Sym get() {
@ -301,9 +301,9 @@ public:
std::string TBFile::Paths; std::string TBFile::Paths;
// struct PairsData contains low level indexing information to access TB data. // struct PairsData contains low-level indexing information to access TB data.
// There are 8, 4 or 2 PairsData records for each TBTable, according to type of // There are 8, 4, or 2 PairsData records for each TBTable, according to the type
// table and if positions have pawns or not. It is populated at first access. // of table and if positions have pawns or not. It is populated at first access.
struct PairsData { struct PairsData {
uint8_t flags; // Table flags, see enum TBFlag uint8_t flags; // Table flags, see enum TBFlag
uint8_t maxSymLen; // Maximum length in bits of the Huffman symbols uint8_t maxSymLen; // Maximum length in bits of the Huffman symbols
@ -379,7 +379,7 @@ TBTable<WDL>::TBTable(const std::string& code) : TBTable() {
hasUniquePieces = true; hasUniquePieces = true;
// Set the leading color. In case both sides have pawns the leading color // Set the leading color. In case both sides have pawns the leading color
// is the side with less pawns because this leads to better compression. // is the side with fewer pawns because this leads to better compression.
bool c = !pos.count<PAWN>(BLACK) bool c = !pos.count<PAWN>(BLACK)
|| ( pos.count<PAWN>(WHITE) || ( pos.count<PAWN>(WHITE)
&& pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE));
@ -404,7 +404,7 @@ TBTable<DTZ>::TBTable(const TBTable<WDL>& wdl) : TBTable() {
} }
// class TBTables creates and keeps ownership of the TBTable objects, one for // class TBTables creates and keeps ownership of the TBTable objects, one for
// each TB file found. It supports a fast, hash based, table lookup. Populated // each TB file found. It supports a fast, hash-based, table lookup. Populated
// at init time, accessed at probe time. // at init time, accessed at probe time.
class TBTables { class TBTables {
@ -511,9 +511,9 @@ void TBTables::add(const std::vector<PieceType>& pieces) {
// mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so
// in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long.
// The generator picks the size that leads to the smallest table. The "book" of symbols and // The generator picks the size that leads to the smallest table. The "book" of symbols and
// Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file // Huffman codes are the same for all blocks in the table. A non-symmetric pawnless TB file
// will have one table for wtm and one for btm, a TB file with pawns will have tables per // will have one table for wtm and one for btm, a TB file with pawns will have tables per
// file a,b,c,d also in this case one set for wtm and one for btm. // file a,b,c,d also, in this case, one set for wtm and one for btm.
int decompress_pairs(PairsData* d, uint64_t idx) { int decompress_pairs(PairsData* d, uint64_t idx) {
// Special case where all table positions store the same value // Special case where all table positions store the same value
@ -541,7 +541,7 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block);
int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset);
// Now compute the difference idx - I(k). From definition of k we know that // Now compute the difference idx - I(k). From the definition of k, we know that
// //
// idx = k * d->span + idx % d->span (2) // idx = k * d->span + idx % d->span (2)
// //
@ -551,7 +551,7 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
// Sum the above to offset to find the offset corresponding to our idx // Sum the above to offset to find the offset corresponding to our idx
offset += diff; offset += diff;
// Move to previous/next block, until we reach the correct block that contains idx, // Move to the previous/next block, until we reach the correct block that contains idx,
// that is when 0 <= offset <= d->blockLength[block] // that is when 0 <= offset <= d->blockLength[block]
while (offset < 0) while (offset < 0)
offset += d->blockLength[--block] + 1; offset += d->blockLength[--block] + 1;
@ -564,7 +564,7 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
// Read the first 64 bits in our block, this is a (truncated) sequence of // Read the first 64 bits in our block, this is a (truncated) sequence of
// unknown number of symbols of unknown length but we know the first one // unknown number of symbols of unknown length but we know the first one
// is at the beginning of this 64 bits sequence. // is at the beginning of this 64-bit sequence.
uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2;
int buf64Size = 64; int buf64Size = 64;
Sym sym; Sym sym;
@ -587,8 +587,8 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
// Now add the value of the lowest symbol of length len to get our symbol // Now add the value of the lowest symbol of length len to get our symbol
sym += number<Sym, LittleEndian>(&d->lowestSym[len]); sym += number<Sym, LittleEndian>(&d->lowestSym[len]);
// If our offset is within the number of values represented by symbol sym // If our offset is within the number of values represented by symbol sym,
// we are done... // we are done.
if (offset < d->symlen[sym] + 1) if (offset < d->symlen[sym] + 1)
break; break;
@ -604,7 +604,7 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
} }
} }
// Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. // Now we have our symbol that expands into d->symlen[sym] + 1 symbols.
// We binary-search for our value recursively expanding into the left and // We binary-search for our value recursively expanding into the left and
// right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1
// that will store the value we need. // that will store the value we need.
@ -614,7 +614,7 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
// If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and
// expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then
// we know that, for instance the ten-th value (offset = 10) will be on // we know that, for instance, the tenth value (offset = 10) will be on
// the left side because in Recursive Pairing child symbols are adjacent. // the left side because in Recursive Pairing child symbols are adjacent.
if (offset < d->symlen[left] + 1) if (offset < d->symlen[left] + 1)
sym = left; sym = left;
@ -639,7 +639,7 @@ bool check_dtz_stm(TBTable<DTZ>* entry, int stm, File f) {
// DTZ scores are sorted by frequency of occurrence and then assigned the // DTZ scores are sorted by frequency of occurrence and then assigned the
// values 0, 1, 2, ... in order of decreasing frequency. This is done for each // values 0, 1, 2, ... in order of decreasing frequency. This is done for each
// of the four WDLScore values. The mapping information necessary to reconstruct // of the four WDLScore values. The mapping information necessary to reconstruct
// the original values is stored in the TB file and read during map[] init. // the original values are stored in the TB file and read during map[] init.
WDLScore map_score(TBTable<WDL>*, File, int value, WDLScore) { return WDLScore(value - 2); } WDLScore map_score(TBTable<WDL>*, File, int value, WDLScore) { return WDLScore(value - 2); }
int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) { int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) {
@ -658,7 +658,7 @@ int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) {
} }
// DTZ tables store distance to zero in number of moves or plies. We // DTZ tables store distance to zero in number of moves or plies. We
// want to return plies, so we have convert to plies when needed. // want to return plies, so we have to convert to plies when needed.
if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies))
|| (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) || (wdl == WDLLoss && !(flags & TBFlag::LossPlies))
|| wdl == WDLCursedWin || wdl == WDLCursedWin
@ -669,7 +669,7 @@ int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) {
} }
// Compute a unique index out of a position and use it to probe the TB file. To // Compute a unique index out of a position and use it to probe the TB file. To
// encode k pieces of same type and color, first sort the pieces by square in // encode k pieces of the same type and color, first sort the pieces by square in
// ascending order s1 <= s2 <= ... <= sk then compute the unique index as: // ascending order s1 <= s2 <= ... <= sk then compute the unique index as:
// //
// idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk]
@ -687,13 +687,13 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
// A given TB entry like KRK has associated two material keys: KRvk and Kvkr. // A given TB entry like KRK has associated two material keys: KRvk and Kvkr.
// If both sides have the same pieces keys are equal. In this case TB tables // If both sides have the same pieces keys are equal. In this case TB tables
// only store the 'white to move' case, so if the position to lookup has black // only stores the 'white to move' case, so if the position to lookup has black
// to move, we need to switch the color and flip the squares before to lookup. // to move, we need to switch the color and flip the squares before to lookup.
bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move());
// TB files are calculated for white as stronger side. For instance we have // TB files are calculated for white as the stronger side. For instance, we
// KRvK, not KvKR. A position where stronger side is white will have its // have KRvK, not KvKR. A position where the stronger side is white will have
// material key == entry->key, otherwise we have to switch the color and // its material key == entry->key, otherwise we have to switch the color and
// flip the squares before to lookup. // flip the squares before to lookup.
bool blackStronger = (pos.material_key() != entry->key); bool blackStronger = (pos.material_key() != entry->key);
@ -816,7 +816,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
// Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be
// swapped and still get the same position.) // swapped and still get the same position.)
// //
// In case we have at least 3 unique pieces (included kings) we encode them // In case we have at least 3 unique pieces (including kings) we encode them
// together. // together.
if (entry->hasUniquePieces) { if (entry->hasUniquePieces) {
@ -861,7 +861,7 @@ encode_remaining:
idx *= d->groupIdx[0]; idx *= d->groupIdx[0];
Square* groupSq = squares + d->groupLen[0]; Square* groupSq = squares + d->groupLen[0];
// Encode remaining pawns then pieces according to square, in ascending order // Encode remaining pawns and then pieces according to square, in ascending order
bool remainingPawns = entry->hasPawns && entry->pawnCount[1]; bool remainingPawns = entry->hasPawns && entry->pawnCount[1];
while (d->groupLen[++next]) while (d->groupLen[++next])
@ -870,7 +870,7 @@ encode_remaining:
uint64_t n = 0; uint64_t n = 0;
// Map down a square if "comes later" than a square in the previous // Map down a square if "comes later" than a square in the previous
// groups (similar to what done earlier for leading group pieces). // groups (similar to what was done earlier for leading group pieces).
for (int i = 0; i < d->groupLen[next]; ++i) for (int i = 0; i < d->groupLen[next]; ++i)
{ {
auto f = [&](Square s) { return groupSq[i] > s; }; auto f = [&](Square s) { return groupSq[i] > s; };
@ -888,7 +888,7 @@ encode_remaining:
} }
// Group together pieces that will be encoded together. The general rule is that // Group together pieces that will be encoded together. The general rule is that
// a group contains pieces of same type and color. The exception is the leading // a group contains pieces of the same type and color. The exception is the leading
// group that, in case of positions without pawns, can be formed by 3 different // group that, in case of positions without pawns, can be formed by 3 different
// pieces (default) or by the king pair when there is not a unique piece apart // pieces (default) or by the king pair when there is not a unique piece apart
// from the kings. When there are pawns, pawns are always first in pieces[]. // from the kings. When there are pawns, pawns are always first in pieces[].
@ -953,7 +953,7 @@ void set_groups(T& e, PairsData* d, int order[], File f) {
// In Recursive Pairing each symbol represents a pair of children symbols. So // In Recursive Pairing each symbol represents a pair of children symbols. So
// read d->btree[] symbols data and expand each one in his left and right child // read d->btree[] symbols data and expand each one in his left and right child
// symbol until reaching the leafs that represent the symbol value. // symbol until reaching the leaves that represent the symbol value.
uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) { uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) {
visited[s] = true; // We can set it now because tree is acyclic visited[s] = true; // We can set it now because tree is acyclic
@ -1002,7 +1002,7 @@ uint8_t* set_sizes(PairsData* d, uint8_t* data) {
// See https://en.wikipedia.org/wiki/Huffman_coding // See https://en.wikipedia.org/wiki/Huffman_coding
// The canonical code is ordered such that longer symbols (in terms of // The canonical code is ordered such that longer symbols (in terms of
// the number of bits of their Huffman code) have lower numeric value, // the number of bits of their Huffman code) have a lower numeric value,
// so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian).
// Starting from this we compute a base64[] table indexed by symbol length // Starting from this we compute a base64[] table indexed by symbol length
// and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. // and containing 64 bit values so that d->base64[i] >= d->base64[i+1].
@ -1072,7 +1072,7 @@ uint8_t* set_dtz_map(TBTable<DTZ>& e, uint8_t* data, File maxFile) {
return data += uintptr_t(data) & 1; // Word alignment return data += uintptr_t(data) & 1; // Word alignment
} }
// Populate entry's PairsData records with data from the just memory mapped file. // Populate entry's PairsData records with data from the just memory-mapped file.
// Called at first access. // Called at first access.
template<typename T> template<typename T>
void set(T& e, uint8_t* data) { void set(T& e, uint8_t* data) {
@ -1138,9 +1138,9 @@ void set(T& e, uint8_t* data) {
} }
} }
// If the TB file corresponding to the given position is already memory mapped // If the TB file corresponding to the given position is already memory-mapped
// then return its base address, otherwise try to memory map and init it. Called // then return its base address, otherwise, try to memory map and init it. Called
// at every probe, memory map and init only at first access. Function is thread // at every probe, memory map, and init only at first access. Function is thread
// safe and can be called concurrently. // safe and can be called concurrently.
template<TBType Type> template<TBType Type>
void* mapped(TBTable<Type>& e, const Position& pos) { void* mapped(TBTable<Type>& e, const Position& pos) {
@ -1191,7 +1191,7 @@ Ret probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw)
} }
// For a position where the side to move has a winning capture it is not necessary // For a position where the side to move has a winning capture it is not necessary
// to store a winning value so the generator treats such positions as "don't cares" // to store a winning value so the generator treats such positions as "don't care"
// and tries to assign to it a value that improves the compression ratio. Similarly, // and tries to assign to it a value that improves the compression ratio. Similarly,
// if the side to move has a drawing capture, then the position is at least drawn. // if the side to move has a drawing capture, then the position is at least drawn.
// If the position is won, then the TB needs to store a win value. But if the // If the position is won, then the TB needs to store a win value. But if the
@ -1200,7 +1200,7 @@ Ret probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw)
// their results and must probe the position itself. The "best" result of these // their results and must probe the position itself. The "best" result of these
// probes is the correct result for the position. // probes is the correct result for the position.
// DTZ tables do not store values when a following move is a zeroing winning move // DTZ tables do not store values when a following move is a zeroing winning move
// (winning capture or winning pawn move). Also DTZ store wrong values for positions // (winning capture or winning pawn move). Also, DTZ store wrong values for positions
// where the best move is an ep-move (even if losing). So in all these cases set // where the best move is an ep-move (even if losing). So in all these cases set
// the state to ZEROING_BEST_MOVE. // the state to ZEROING_BEST_MOVE.
template<bool CheckZeroingMoves> template<bool CheckZeroingMoves>
@ -1268,9 +1268,9 @@ WDLScore search(Position& pos, ProbeState* result) {
} // namespace } // namespace
/// Tablebases::init() is called at startup and after every change to // Tablebases::init() is called at startup and after every change to
/// "SyzygyPath" UCI option to (re)create the various tables. It is not thread // "SyzygyPath" UCI option to (re)create the various tables. It is not thread
/// safe, nor it needs to be. // safe, nor it needs to be.
void Tablebases::init(const std::string& paths) { void Tablebases::init(const std::string& paths) {
TBTables.clear(); TBTables.clear();
@ -1302,7 +1302,7 @@ void Tablebases::init(const std::string& paths) {
// MapKK[] encodes all the 462 possible legal positions of two kings where // MapKK[] encodes all the 462 possible legal positions of two kings where
// the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4
// diagonal, the other one shall not to be above the a1-h8 diagonal. // diagonal, the other one shall not be above the a1-h8 diagonal.
std::vector<std::pair<int, Square>> bothOnDiagonal; std::vector<std::pair<int, Square>> bothOnDiagonal;
code = 0; code = 0;
for (int idx = 0; idx < 10; idx++) for (int idx = 0; idx < 10; idx++)
@ -1323,7 +1323,7 @@ void Tablebases::init(const std::string& paths) {
MapKK[idx][s2] = code++; MapKK[idx][s2] = code++;
} }
// Legal positions with both kings on diagonal are encoded as last ones // Legal positions with both kings on a diagonal are encoded as last ones
for (auto p : bothOnDiagonal) for (auto p : bothOnDiagonal)
MapKK[p.first][p.second] = code++; MapKK[p.first][p.second] = code++;
@ -1338,8 +1338,8 @@ void Tablebases::init(const std::string& paths) {
// MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible
// available squares when the leading one is in 's'. Moreover the pawn with // available squares when the leading one is in 's'. Moreover the pawn with
// highest MapPawns[] is the leading pawn, the one nearest the edge and, // highest MapPawns[] is the leading pawn, the one nearest the edge, and
// among pawns with same file, the one with lowest rank. // among pawns with the same file, the one with the lowest rank.
int availableSquares = 47; // Available squares when lead pawn is in a2 int availableSquares = 47; // Available squares when lead pawn is in a2
// Init the tables for the encoding of leading pawns group: with 7-men TB we // Init the tables for the encoding of leading pawns group: with 7-men TB we
@ -1463,7 +1463,7 @@ int Tablebases::probe_dtz(Position& pos, ProbeState* result) {
if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws
return 0; return 0;
// DTZ stores a 'don't care' value in this case, or even a plain wrong // DTZ stores a 'don't care value in this case, or even a plain wrong
// one as in case the best move is a losing ep, so it cannot be probed. // one as in case the best move is a losing ep, so it cannot be probed.
if (*result == ZEROING_BEST_MOVE) if (*result == ZEROING_BEST_MOVE)
return dtz_before_zeroing(wdl); return dtz_before_zeroing(wdl);
@ -1490,7 +1490,7 @@ int Tablebases::probe_dtz(Position& pos, ProbeState* result) {
// For zeroing moves we want the dtz of the move _before_ doing it, // For zeroing moves we want the dtz of the move _before_ doing it,
// otherwise we will get the dtz of the next move sequence. Search the // otherwise we will get the dtz of the next move sequence. Search the
// position after the move to get the score sign (because even in a // position after the move to get the score sign (because even in a
// winning position we could make a losing capture or going for a draw). // winning position we could make a losing capture or go for a draw).
dtz = zeroing ? -dtz_before_zeroing(search<false>(pos, result)) dtz = zeroing ? -dtz_before_zeroing(search<false>(pos, result))
: -probe_dtz(pos, result); : -probe_dtz(pos, result);
@ -1548,10 +1548,9 @@ bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) {
} }
else if (pos.is_draw(1)) else if (pos.is_draw(1))
{ {
// In case a root move leads to a draw by repetition or // In case a root move leads to a draw by repetition or 50-move rule,
// 50-move rule, we set dtz to zero. Note: since we are // we set dtz to zero. Note: since we are only 1 ply from the root,
// only 1 ply from the root, this must be a true 3-fold // this must be a true 3-fold repetition inside the game history.
// repetition inside the game history.
dtz = 0; dtz = 0;
} }
else else

View file

@ -40,8 +40,8 @@ namespace Stockfish {
ThreadPool Threads; // Global object ThreadPool Threads; // Global object
/// Thread constructor launches the thread and waits until it goes to sleep // Thread constructor launches the thread and waits until it goes to sleep
/// in idle_loop(). Note that 'searching' and 'exit' should be already set. // in idle_loop(). Note that 'searching' and 'exit' should be already set.
Thread::Thread(size_t n) : idx(n), stdThread(&Thread::idle_loop, this) { Thread::Thread(size_t n) : idx(n), stdThread(&Thread::idle_loop, this) {
@ -49,8 +49,8 @@ Thread::Thread(size_t n) : idx(n), stdThread(&Thread::idle_loop, this) {
} }
/// Thread destructor wakes up the thread in idle_loop() and waits // Thread destructor wakes up the thread in idle_loop() and waits
/// for its termination. Thread should be already waiting. // for its termination. Thread should be already waiting.
Thread::~Thread() { Thread::~Thread() {
@ -62,7 +62,7 @@ Thread::~Thread() {
} }
/// Thread::clear() reset histories, usually before a new game // Thread::clear() reset histories, usually before a new game
void Thread::clear() { void Thread::clear() {
@ -78,7 +78,7 @@ void Thread::clear() {
} }
/// Thread::start_searching() wakes up the thread that will start the search // Thread::start_searching() wakes up the thread that will start the search
void Thread::start_searching() { void Thread::start_searching() {
mutex.lock(); mutex.lock();
@ -88,8 +88,8 @@ void Thread::start_searching() {
} }
/// Thread::wait_for_search_finished() blocks on the condition variable // Thread::wait_for_search_finished() blocks on the condition variable
/// until the thread has finished searching. // until the thread has finished searching.
void Thread::wait_for_search_finished() { void Thread::wait_for_search_finished() {
@ -98,15 +98,15 @@ void Thread::wait_for_search_finished() {
} }
/// Thread::idle_loop() is where the thread is parked, blocked on the // Thread::idle_loop() is where the thread is parked, blocked on the
/// condition variable, when it has no work to do. // condition variable, when it has no work to do.
void Thread::idle_loop() { void Thread::idle_loop() {
// If OS already scheduled us on a different group than 0 then don't overwrite // If OS already scheduled us on a different group than 0 then don't overwrite
// the choice, eventually we are one of many one-threaded processes running on // the choice, eventually we are one of many one-threaded processes running on
// some Windows NUMA hardware, for instance in fishtest. To make it simple, // some Windows NUMA hardware, for instance in fishtest. To make it simple,
// just check if running threads are below a threshold, in this case all this // just check if running threads are below a threshold, in this case, all this
// NUMA machinery is not needed. // NUMA machinery is not needed.
if (Options["Threads"] > 8) if (Options["Threads"] > 8)
WinProcGroup::bindThisThread(idx); WinProcGroup::bindThisThread(idx);
@ -127,9 +127,9 @@ void Thread::idle_loop() {
} }
} }
/// ThreadPool::set() creates/destroys threads to match the requested number. // ThreadPool::set() creates/destroys threads to match the requested number.
/// Created and launched threads will immediately go to sleep in idle_loop. // Created and launched threads will immediately go to sleep in idle_loop.
/// Upon resizing, threads are recreated to allow for binding if necessary. // Upon resizing, threads are recreated to allow for binding if necessary.
void ThreadPool::set(size_t requested) { void ThreadPool::set(size_t requested) {
@ -158,7 +158,7 @@ void ThreadPool::set(size_t requested) {
} }
/// ThreadPool::clear() sets threadPool data to initial values // ThreadPool::clear() sets threadPool data to initial values
void ThreadPool::clear() { void ThreadPool::clear() {
@ -172,8 +172,8 @@ void ThreadPool::clear() {
} }
/// ThreadPool::start_thinking() wakes up main thread waiting in idle_loop() and // ThreadPool::start_thinking() wakes up main thread waiting in idle_loop() and
/// returns immediately. Main thread will wake up other threads and start the search. // returns immediately. Main thread will wake up other threads and start the search.
void ThreadPool::start_thinking(Position& pos, StateListPtr& states, void ThreadPool::start_thinking(Position& pos, StateListPtr& states,
const Search::LimitsType& limits, bool ponderMode) { const Search::LimitsType& limits, bool ponderMode) {
@ -225,7 +225,7 @@ Thread* ThreadPool::get_best_thread() const {
std::map<Move, int64_t> votes; std::map<Move, int64_t> votes;
Value minScore = VALUE_NONE; Value minScore = VALUE_NONE;
// Find minimum score of all threads // Find the minimum score of all threads
for (Thread* th: threads) for (Thread* th: threads)
minScore = std::min(minScore, th->rootMoves[0].score); minScore = std::min(minScore, th->rootMoves[0].score);
@ -256,7 +256,7 @@ Thread* ThreadPool::get_best_thread() const {
} }
/// Start non-main threads // Start non-main threads
void ThreadPool::start_searching() { void ThreadPool::start_searching() {
@ -266,7 +266,7 @@ void ThreadPool::start_searching() {
} }
/// Wait for non-main threads // Wait for non-main threads
void ThreadPool::wait_for_search_finished() const { void ThreadPool::wait_for_search_finished() const {

View file

@ -34,10 +34,10 @@
namespace Stockfish { namespace Stockfish {
/// Thread class keeps together all the thread-related stuff. We use // Thread class keeps together all the thread-related stuff. We use
/// per-thread pawn and material hash tables so that once we get a // per-thread pawn and material hash tables so that once we get a
/// pointer to an entry its life time is unlimited and we don't have // pointer to an entry its lifetime is unlimited and we don't have
/// to care about someone changing the entry under our feet. // to care about someone changing the entry under our feet.
class Thread { class Thread {
@ -75,7 +75,7 @@ public:
}; };
/// MainThread is a derived class specific for main thread // MainThread is a derived class specific for main thread
struct MainThread : public Thread { struct MainThread : public Thread {
@ -94,9 +94,9 @@ struct MainThread : public Thread {
}; };
/// ThreadPool struct handles all the threads-related stuff like init, starting, // ThreadPool struct handles all the threads-related stuff like init, starting,
/// parking and, most importantly, launching a thread. All the access to threads // parking and, most importantly, launching a thread. All the access to threads
/// is done through this class. // is done through this class.
struct ThreadPool { struct ThreadPool {

View file

@ -21,11 +21,11 @@
#include <thread> #include <thread>
/// On OSX threads other than the main thread are created with a reduced stack // On OSX threads other than the main thread are created with a reduced stack
/// size of 512KB by default, this is too low for deep searches, which require // size of 512KB by default, this is too low for deep searches, which require
/// somewhat more than 1MB stack, so adjust it to TH_STACK_SIZE. // somewhat more than 1MB stack, so adjust it to TH_STACK_SIZE.
/// The implementation calls pthread_create() with the stack size parameter // The implementation calls pthread_create() with the stack size parameter
/// equal to the linux 8MB default, on platforms that support it. // equal to the Linux 8MB default, on platforms that support it.
#if defined(__APPLE__) || defined(__MINGW32__) || defined(__MINGW64__) || defined(USE_PTHREADS) #if defined(__APPLE__) || defined(__MINGW32__) || defined(__MINGW64__) || defined(USE_PTHREADS)

View file

@ -29,14 +29,14 @@ namespace Stockfish {
TimeManagement Time; // Our global time management object TimeManagement Time; // Our global time management object
/// TimeManagement::init() is called at the beginning of the search and calculates // TimeManagement::init() is called at the beginning of the search and calculates
/// the bounds of time allowed for the current game ply. We currently support: // the bounds of time allowed for the current game ply. We currently support:
// 1) x basetime (+ z increment) // 1) x basetime (+ z increment)
// 2) x moves in y seconds (+ z increment) // 2) x moves in y seconds (+ z increment)
void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
// if we have no time, no need to initialize TM, except for the start time, // If we have no time, no need to initialize TM, except for the start time,
// which is used by movetime. // which is used by movetime.
startTime = limits.startTime; startTime = limits.startTime;
if (limits.time[us] == 0) if (limits.time[us] == 0)

View file

@ -28,8 +28,8 @@
namespace Stockfish { namespace Stockfish {
/// The TimeManagement class computes the optimal time to think depending on // The TimeManagement class computes the optimal time to think depending on
/// the maximum available time, the game move number and other parameters. // the maximum available time, the game move number, and other parameters.
class TimeManagement { class TimeManagement {
public: public:

View file

@ -33,8 +33,8 @@ namespace Stockfish {
TranspositionTable TT; // Our global transposition table TranspositionTable TT; // Our global transposition table
/// TTEntry::save() populates the TTEntry with a new node's data, possibly // TTEntry::save() populates the TTEntry with a new node's data, possibly
/// overwriting an old position. Update is not atomic and can be racy. // overwriting an old position. The update is not atomic and can be racy.
void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) { void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) {
@ -59,9 +59,9 @@ void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev)
} }
/// TranspositionTable::resize() sets the size of the transposition table, // TranspositionTable::resize() sets the size of the transposition table,
/// measured in megabytes. Transposition table consists of a power of 2 number // measured in megabytes. Transposition table consists of a power of 2 number
/// of clusters and each cluster consists of ClusterSize number of TTEntry. // of clusters and each cluster consists of ClusterSize number of TTEntry.
void TranspositionTable::resize(size_t mbSize) { void TranspositionTable::resize(size_t mbSize) {
@ -83,7 +83,7 @@ void TranspositionTable::resize(size_t mbSize) {
} }
/// TranspositionTable::clear() initializes the entire transposition table to zero, // TranspositionTable::clear() initializes the entire transposition table to zero,
// in a multi-threaded way. // in a multi-threaded way.
void TranspositionTable::clear() { void TranspositionTable::clear() {
@ -113,12 +113,12 @@ void TranspositionTable::clear() {
} }
/// TranspositionTable::probe() looks up the current position in the transposition // TranspositionTable::probe() looks up the current position in the transposition
/// table. It returns true and a pointer to the TTEntry if the position is found. // table. It returns true and a pointer to the TTEntry if the position is found.
/// Otherwise, it returns false and a pointer to an empty or least valuable TTEntry // Otherwise, it returns false and a pointer to an empty or least valuable TTEntry
/// to be replaced later. The replace value of an entry is calculated as its depth // to be replaced later. The replace value of an entry is calculated as its depth
/// minus 8 times its relative age. TTEntry t1 is considered more valuable than // minus 8 times its relative age. TTEntry t1 is considered more valuable than
/// TTEntry t2 if its replace value is greater than that of t2. // TTEntry t2 if its replace value is greater than that of t2.
TTEntry* TranspositionTable::probe(const Key key, bool& found) const { TTEntry* TranspositionTable::probe(const Key key, bool& found) const {
@ -149,8 +149,8 @@ TTEntry* TranspositionTable::probe(const Key key, bool& found) const {
} }
/// TranspositionTable::hashfull() returns an approximation of the hashtable // TranspositionTable::hashfull() returns an approximation of the hashtable
/// occupation during a search. The hash is x permill full, as per UCI protocol. // occupation during a search. The hash is x permill full, as per UCI protocol.
int TranspositionTable::hashfull() const { int TranspositionTable::hashfull() const {

View file

@ -27,16 +27,16 @@
namespace Stockfish { namespace Stockfish {
/// TTEntry struct is the 10 bytes transposition table entry, defined as below: // TTEntry struct is the 10 bytes transposition table entry, defined as below:
/// //
/// key 16 bit // key 16 bit
/// depth 8 bit // depth 8 bit
/// generation 5 bit // generation 5 bit
/// pv node 1 bit // pv node 1 bit
/// bound type 2 bit // bound type 2 bit
/// move 16 bit // move 16 bit
/// value 16 bit // value 16 bit
/// eval value 16 bit // eval value 16 bit
struct TTEntry { struct TTEntry {
@ -60,11 +60,11 @@ private:
}; };
/// A TranspositionTable is an array of Cluster, of size clusterCount. Each // A TranspositionTable is an array of Cluster, of size clusterCount. Each
/// cluster consists of ClusterSize number of TTEntry. Each non-empty TTEntry // cluster consists of ClusterSize number of TTEntry. Each non-empty TTEntry
/// contains information on exactly one position. The size of a Cluster should // contains information on exactly one position. The size of a Cluster should
/// divide the size of a cache line for best performance, as the cacheline is // divide the size of a cache line for best performance, as the cacheline is
/// prefetched when possible. // prefetched when possible.
class TranspositionTable { class TranspositionTable {

View file

@ -49,31 +49,30 @@ struct SetRange {
#define SetDefaultRange SetRange(default_range) #define SetDefaultRange SetRange(default_range)
/// Tune class implements the 'magic' code that makes the setup of a fishtest // Tune class implements the 'magic' code that makes the setup of a fishtest tuning
/// tuning session as easy as it can be. Mainly you have just to remove const // session as easy as it can be. Mainly you have just to remove const qualifiers
/// qualifiers from the variables you want to tune and flag them for tuning, so // from the variables you want to tune and flag them for tuning, so if you have:
/// if you have: //
/// // const Value myValue[][2] = { { V(100), V(20) }, { V(7), V(78) } };
/// const Value myValue[][2] = { { V(100), V(20) }, { V(7), V(78) } }; //
/// // If you have a my_post_update() function to run after values have been updated,
/// If you have a my_post_update() function to run after values have been updated, // and a my_range() function to set custom Option's min-max values, then you just
/// and a my_range() function to set custom Option's min-max values, then you just // remove the 'const' qualifiers and write somewhere below in the file:
/// remove the 'const' qualifiers and write somewhere below in the file: //
/// // TUNE(SetRange(my_range), myValue, my_post_update);
/// TUNE(SetRange(my_range), myValue, my_post_update); //
/// // You can also set the range directly, and restore the default at the end
/// You can also set the range directly, and restore the default at the end //
/// // TUNE(SetRange(-100, 100), myValue, SetDefaultRange);
/// TUNE(SetRange(-100, 100), myValue, SetDefaultRange); //
/// // In case update function is slow and you have many parameters, you can add:
/// In case update function is slow and you have many parameters, you can add: //
/// // UPDATE_ON_LAST();
/// UPDATE_ON_LAST(); //
/// // And the values update, including post update function call, will be done only
/// And the values update, including post update function call, will be done only // once, after the engine receives the last UCI option, that is the one defined
/// once, after the engine receives the last UCI option, that is the one defined // and created as the last one, so the GUI should send the options in the same
/// and created as the last one, so the GUI should send the options in the same // order in which have been defined.
/// order in which have been defined.
class Tune { class Tune {
@ -151,7 +150,7 @@ public:
static bool update_on_last; static bool update_on_last;
}; };
// Some macro magic :-) we define a dummy int variable that compiler initializes calling Tune::add() // Some macro magic :-) we define a dummy int variable that the compiler initializes calling Tune::add()
#define STRINGIFY(x) #x #define STRINGIFY(x) #x
#define UNIQUE2(x, y) x ## y #define UNIQUE2(x, y) x ## y
#define UNIQUE(x, y) UNIQUE2(x, y) // Two indirection levels to expand __LINE__ #define UNIQUE(x, y) UNIQUE2(x, y) // Two indirection levels to expand __LINE__

View file

@ -19,22 +19,22 @@
#ifndef TYPES_H_INCLUDED #ifndef TYPES_H_INCLUDED
#define TYPES_H_INCLUDED #define TYPES_H_INCLUDED
/// When compiling with provided Makefile (e.g. for Linux and OSX), configuration // When compiling with provided Makefile (e.g. for Linux and OSX), configuration
/// is done automatically. To get started type 'make help'. // is done automatically. To get started type 'make help'.
/// //
/// When Makefile is not used (e.g. with Microsoft Visual Studio) some switches // When Makefile is not used (e.g. with Microsoft Visual Studio) some switches
/// need to be set manually: // need to be set manually:
/// //
/// -DNDEBUG | Disable debugging mode. Always use this for release. // -DNDEBUG | Disable debugging mode. Always use this for release.
/// //
/// -DNO_PREFETCH | Disable use of prefetch asm-instruction. You may need this to // -DNO_PREFETCH | Disable use of prefetch asm-instruction. You may need this to
/// | run on some very old machines. // | run on some very old machines.
/// //
/// -DUSE_POPCNT | Add runtime support for use of popcnt asm-instruction. Works // -DUSE_POPCNT | Add runtime support for use of popcnt asm-instruction. Works
/// | only in 64-bit mode and requires hardware with popcnt support. // | only in 64-bit mode and requires hardware with popcnt support.
/// //
/// -DUSE_PEXT | Add runtime support for use of pext asm-instruction. Works // -DUSE_PEXT | Add runtime support for use of pext asm-instruction. Works
/// | only in 64-bit mode and requires hardware with pext support. // | only in 64-bit mode and requires hardware with pext support.
#include <cassert> #include <cassert>
#include <cstdint> #include <cstdint>
@ -46,14 +46,14 @@
#pragma warning(disable: 4800) // Forcing value to bool 'true' or 'false' #pragma warning(disable: 4800) // Forcing value to bool 'true' or 'false'
#endif #endif
/// Predefined macros hell: // Predefined macros hell:
/// //
/// __GNUC__ Compiler is GCC, Clang or ICX // __GNUC__ Compiler is GCC, Clang or ICX
/// __clang__ Compiler is Clang or ICX // __clang__ Compiler is Clang or ICX
/// __INTEL_LLVM_COMPILER Compiler is ICX // __INTEL_LLVM_COMPILER Compiler is ICX
/// _MSC_VER Compiler is MSVC // _MSC_VER Compiler is MSVC
/// _WIN32 Building on Windows (any) // _WIN32 Building on Windows (any)
/// _WIN64 Building on Windows 64 bit // _WIN64 Building on Windows 64 bit
#if defined(__GNUC__ ) && (__GNUC__ < 9 || (__GNUC__ == 9 && __GNUC_MINOR__ <= 2)) && defined(_WIN32) && !defined(__clang__) #if defined(__GNUC__ ) && (__GNUC__ < 9 || (__GNUC__ == 9 && __GNUC_MINOR__ <= 2)) && defined(_WIN32) && !defined(__clang__)
#define ALIGNAS_ON_STACK_VARIABLES_BROKEN #define ALIGNAS_ON_STACK_VARIABLES_BROKEN
@ -107,17 +107,17 @@ using Bitboard = uint64_t;
constexpr int MAX_MOVES = 256; constexpr int MAX_MOVES = 256;
constexpr int MAX_PLY = 246; constexpr int MAX_PLY = 246;
/// A move needs 16 bits to be stored // A move needs 16 bits to be stored
/// //
/// bit 0- 5: destination square (from 0 to 63) // bit 0- 5: destination square (from 0 to 63)
/// bit 6-11: origin square (from 0 to 63) // bit 6-11: origin square (from 0 to 63)
/// bit 12-13: promotion piece type - 2 (from KNIGHT-2 to QUEEN-2) // bit 12-13: promotion piece type - 2 (from KNIGHT-2 to QUEEN-2)
/// bit 14-15: special move flag: promotion (1), en passant (2), castling (3) // bit 14-15: special move flag: promotion (1), en passant (2), castling (3)
/// NOTE: en passant bit is set only when a pawn can be captured // NOTE: en passant bit is set only when a pawn can be captured
/// //
/// Special cases are MOVE_NONE and MOVE_NULL. We can sneak these in because in // Special cases are MOVE_NONE and MOVE_NULL. We can sneak these in because in
/// any normal move destination square is always different from origin square // any normal move destination square is always different from origin square
/// while MOVE_NONE and MOVE_NULL have the same origin and destination square. // while MOVE_NONE and MOVE_NULL have the same origin and destination square.
enum Move : int { enum Move : int {
MOVE_NONE, MOVE_NONE,
@ -291,7 +291,7 @@ ENABLE_INCR_OPERATORS_ON(Rank)
#undef ENABLE_INCR_OPERATORS_ON #undef ENABLE_INCR_OPERATORS_ON
#undef ENABLE_BASE_OPERATORS_ON #undef ENABLE_BASE_OPERATORS_ON
/// Additional operators to add a Direction to a Square // Additional operators to add a Direction to a Square
constexpr Square operator+(Square s, Direction d) { return Square(int(s) + int(d)); } constexpr Square operator+(Square s, Direction d) { return Square(int(s) + int(d)); }
constexpr Square operator-(Square s, Direction d) { return Square(int(s) - int(d)); } constexpr Square operator-(Square s, Direction d) { return Square(int(s) - int(d)); }
inline Square& operator+=(Square& s, Direction d) { return s = s + d; } inline Square& operator+=(Square& s, Direction d) { return s = s + d; }
@ -405,7 +405,7 @@ constexpr Move make(Square from, Square to, PieceType pt = KNIGHT) {
return Move(T + ((pt - KNIGHT) << 12) + (from << 6) + to); return Move(T + ((pt - KNIGHT) << 12) + (from << 6) + to);
} }
/// Based on a congruential pseudo-random number generator // Based on a congruential pseudo-random number generator
constexpr Key make_key(uint64_t seed) { constexpr Key make_key(uint64_t seed) {
return seed * 6364136223846793005ULL + 1442695040888963407ULL; return seed * 6364136223846793005ULL + 1442695040888963407ULL;
} }

View file

@ -233,11 +233,11 @@ namespace {
} // namespace } // namespace
/// UCI::loop() waits for a command from the stdin, parses it, and then calls the appropriate // UCI::loop() waits for a command from the stdin, parses it, and then calls the appropriate
/// function. It also intercepts an end-of-file (EOF) indication from the stdin to ensure a // function. It also intercepts an end-of-file (EOF) indication from the stdin to ensure a
/// graceful exit if the GUI dies unexpectedly. When called with some command-line arguments, // graceful exit if the GUI dies unexpectedly. When called with some command-line arguments,
/// like running 'bench', the function returns immediately after the command is executed. // like running 'bench', the function returns immediately after the command is executed.
/// In addition to the UCI ones, some additional debug commands are also supported. // In addition to the UCI ones, some additional debug commands are also supported.
void UCI::loop(int argc, char* argv[]) { void UCI::loop(int argc, char* argv[]) {
@ -310,18 +310,18 @@ void UCI::loop(int argc, char* argv[]) {
} }
/// Turns a Value to an integer centipawn number, // Turns a Value to an integer centipawn number,
/// without treatment of mate and similar special scores. // without treatment of mate and similar special scores.
int UCI::to_cp(Value v) { int UCI::to_cp(Value v) {
return 100 * v / UCI::NormalizeToPawnValue; return 100 * v / UCI::NormalizeToPawnValue;
} }
/// UCI::value() converts a Value to a string by adhering to the UCI protocol specification: // UCI::value() converts a Value to a string by adhering to the UCI protocol specification:
/// //
/// cp <x> The score from the engine's point of view in centipawns. // cp <x> The score from the engine's point of view in centipawns.
/// mate <y> Mate in 'y' moves (not plies). If the engine is getting mated, // mate <y> Mate in 'y' moves (not plies). If the engine is getting mated,
/// uses negative values for 'y'. // uses negative values for 'y'.
std::string UCI::value(Value v) { std::string UCI::value(Value v) {
@ -343,8 +343,8 @@ std::string UCI::value(Value v) {
} }
/// UCI::wdl() reports the win-draw-loss (WDL) statistics given an evaluation // UCI::wdl() reports the win-draw-loss (WDL) statistics given an evaluation
/// and a game ply based on the data gathered for fishtest LTC games. // and a game ply based on the data gathered for fishtest LTC games.
std::string UCI::wdl(Value v, int ply) { std::string UCI::wdl(Value v, int ply) {
@ -359,17 +359,17 @@ std::string UCI::wdl(Value v, int ply) {
} }
/// UCI::square() converts a Square to a string in algebraic notation (g1, a7, etc.) // UCI::square() converts a Square to a string in algebraic notation (g1, a7, etc.)
std::string UCI::square(Square s) { std::string UCI::square(Square s) {
return std::string{ char('a' + file_of(s)), char('1' + rank_of(s)) }; return std::string{ char('a' + file_of(s)), char('1' + rank_of(s)) };
} }
/// UCI::move() converts a Move to a string in coordinate notation (g1f3, a7a8q). // UCI::move() converts a Move to a string in coordinate notation (g1f3, a7a8q).
/// The only special case is castling where the e1g1 notation is printed in // The only special case is castling where the e1g1 notation is printed in
/// standard chess mode and in e1h1 notation it is printed in Chess960 mode. // standard chess mode and in e1h1 notation it is printed in Chess960 mode.
/// Internally, all castling moves are always encoded as 'king captures rook'. // Internally, all castling moves are always encoded as 'king captures rook'.
std::string UCI::move(Move m, bool chess960) { std::string UCI::move(Move m, bool chess960) {
@ -394,8 +394,8 @@ std::string UCI::move(Move m, bool chess960) {
} }
/// UCI::to_move() converts a string representing a move in coordinate notation // UCI::to_move() converts a string representing a move in coordinate notation
/// (g1f3, a7a8q) to the corresponding legal Move, if any. // (g1f3, a7a8q) to the corresponding legal Move, if any.
Move UCI::to_move(const Position& pos, std::string& str) { Move UCI::to_move(const Position& pos, std::string& str) {

View file

@ -41,15 +41,15 @@ const int NormalizeToPawnValue = 328;
class Option; class Option;
/// Define a custom comparator, because the UCI options should be case-insensitive // Define a custom comparator, because the UCI options should be case-insensitive
struct CaseInsensitiveLess { struct CaseInsensitiveLess {
bool operator() (const std::string&, const std::string&) const; bool operator() (const std::string&, const std::string&) const;
}; };
/// The options container is defined as a std::map // The options container is defined as a std::map
using OptionsMap = std::map<std::string, Option, CaseInsensitiveLess>; using OptionsMap = std::map<std::string, Option, CaseInsensitiveLess>;
/// The Option class implements each option as specified by the UCI protocol // The Option class implements each option as specified by the UCI protocol
class Option { class Option {
using OnChange = void (*)(const Option&); using OnChange = void (*)(const Option&);

View file

@ -44,7 +44,7 @@ UCI::OptionsMap Options; // Global object
namespace UCI { namespace UCI {
/// 'On change' actions, triggered by an option's value change // 'On change' actions, triggered by an option's value change
static void on_clear_hash(const Option&) { Search::clear(); } static void on_clear_hash(const Option&) { Search::clear(); }
static void on_hash_size(const Option& o) { TT.resize(size_t(o)); } static void on_hash_size(const Option& o) { TT.resize(size_t(o)); }
static void on_logger(const Option& o) { start_logger(o); } static void on_logger(const Option& o) { start_logger(o); }
@ -52,7 +52,7 @@ static void on_threads(const Option& o) { Threads.set(size_t(o)); }
static void on_tb_path(const Option& o) { Tablebases::init(o); } static void on_tb_path(const Option& o) { Tablebases::init(o); }
static void on_eval_file(const Option&) { Eval::NNUE::init(); } static void on_eval_file(const Option&) { Eval::NNUE::init(); }
/// Our case insensitive less() function as required by UCI protocol // Our case insensitive less() function as required by UCI protocol
bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const { bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const {
return std::lexicographical_compare(s1.begin(), s1.end(), s2.begin(), s2.end(), return std::lexicographical_compare(s1.begin(), s1.end(), s2.begin(), s2.end(),
@ -60,7 +60,7 @@ bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const
} }
/// UCI::init() initializes the UCI options to their hard-coded default values // UCI::init() initializes the UCI options to their hard-coded default values
void init(OptionsMap& o) { void init(OptionsMap& o) {
@ -89,8 +89,8 @@ void init(OptionsMap& o) {
} }
/// operator<<() is used to print all the options default values in chronological // operator<<() is used to print all the options default values in chronological
/// insertion order (the idx field) and in the format defined by the UCI protocol. // insertion order (the idx field) and in the format defined by the UCI protocol.
std::ostream& operator<<(std::ostream& os, const OptionsMap& om) { std::ostream& operator<<(std::ostream& os, const OptionsMap& om) {
@ -116,7 +116,7 @@ std::ostream& operator<<(std::ostream& os, const OptionsMap& om) {
} }
/// Option class constructors and conversion operators // Option class constructors and conversion operators
Option::Option(const char* v, OnChange f) : type("string"), min(0), max(0), on_change(f) Option::Option(const char* v, OnChange f) : type("string"), min(0), max(0), on_change(f)
{ defaultValue = currentValue = v; } { defaultValue = currentValue = v; }
@ -150,7 +150,7 @@ bool Option::operator==(const char* s) const {
} }
/// operator<<() inits options and assigns idx in the correct printing order // operator<<() inits options and assigns idx in the correct printing order
void Option::operator<<(const Option& o) { void Option::operator<<(const Option& o) {
@ -161,9 +161,9 @@ void Option::operator<<(const Option& o) {
} }
/// operator=() updates currentValue and triggers on_change() action. It's up to // operator=() updates currentValue and triggers on_change() action. It's up to
/// the GUI to check for option's limits, but we could receive the new value // the GUI to check for option's limits, but we could receive the new value
/// from the user by console window, so let's check the bounds anyway. // from the user by console window, so let's check the bounds anyway.
Option& Option::operator=(const string& v) { Option& Option::operator=(const string& v) {