mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 16:53:09 +00:00
Bug fix in do_null_move() and NNUE simplification.
This fixes #3108 and removes some NNUE code that is currently not used. At the moment, do_null_move() copies the accumulator from the previous state into the new state, which is correct. It then clears the "computed_score" flag because the side to move has changed, and with the other side to move NNUE will return a completely different evaluation (normally with changed sign but also with different NNUE-internal tempo bonus). The problem is that do_null_move() clears the wrong flag. It clears the computed_score flag of the old state, not of the new state. It turns out that this almost never affects the search. For example, fixing it does not change the current bench (but it does change the previous bench). This is because the search code usually avoids calling evaluate() after a null move. This PR corrects do_null_move() by removing the computed_score flag altogether. The flag is not needed because nnue_evaluate() is never called twice on a position. This PR also removes some unnecessary {}s and inserts a few blank lines in the modified NNUE files in line with SF coding style. Resulf ot STC non-regression test: LLR: 2.95 (-2.94,2.94) {-1.25,0.25} Total: 26328 W: 3118 L: 3012 D: 20198 Ptnml(0-2): 126, 2208, 8397, 2300, 133 https://tests.stockfishchess.org/tests/view/5f553ccc2d02727c56b36db1 closes https://github.com/official-stockfish/Stockfish/pull/3109 bench: 4109324
This commit is contained in:
parent
d539da19d2
commit
fc27d158c0
4 changed files with 29 additions and 71 deletions
|
@ -115,31 +115,16 @@ namespace Eval::NNUE {
|
|||
return stream && stream.peek() == std::ios::traits_type::eof();
|
||||
}
|
||||
|
||||
// Proceed with the difference calculation if possible
|
||||
static void UpdateAccumulatorIfPossible(const Position& pos) {
|
||||
|
||||
feature_transformer->UpdateAccumulatorIfPossible(pos);
|
||||
}
|
||||
|
||||
// Calculate the evaluation value
|
||||
static Value ComputeScore(const Position& pos, bool refresh) {
|
||||
|
||||
auto& accumulator = pos.state()->accumulator;
|
||||
if (!refresh && accumulator.computed_score) {
|
||||
return accumulator.score;
|
||||
}
|
||||
// Evaluation function. Perform differential calculation.
|
||||
Value evaluate(const Position& pos) {
|
||||
|
||||
alignas(kCacheLineSize) TransformedFeatureType
|
||||
transformed_features[FeatureTransformer::kBufferSize];
|
||||
feature_transformer->Transform(pos, transformed_features, refresh);
|
||||
feature_transformer->Transform(pos, transformed_features);
|
||||
alignas(kCacheLineSize) char buffer[Network::kBufferSize];
|
||||
const auto output = network->Propagate(transformed_features, buffer);
|
||||
|
||||
auto score = static_cast<Value>(output[0] / FV_SCALE);
|
||||
|
||||
accumulator.score = score;
|
||||
accumulator.computed_score = true;
|
||||
return accumulator.score;
|
||||
return static_cast<Value>(output[0] / FV_SCALE);
|
||||
}
|
||||
|
||||
// Load eval, from a file stream or a memory stream
|
||||
|
@ -150,19 +135,4 @@ namespace Eval::NNUE {
|
|||
return ReadParameters(stream);
|
||||
}
|
||||
|
||||
// Evaluation function. Perform differential calculation.
|
||||
Value evaluate(const Position& pos) {
|
||||
return ComputeScore(pos, false);
|
||||
}
|
||||
|
||||
// Evaluation function. Perform full calculation.
|
||||
Value compute_eval(const Position& pos) {
|
||||
return ComputeScore(pos, true);
|
||||
}
|
||||
|
||||
// Proceed with the difference calculation if possible
|
||||
void update_eval(const Position& pos) {
|
||||
UpdateAccumulatorIfPossible(pos);
|
||||
}
|
||||
|
||||
} // namespace Eval::NNUE
|
||||
|
|
|
@ -29,9 +29,7 @@ namespace Eval::NNUE {
|
|||
struct alignas(kCacheLineSize) Accumulator {
|
||||
std::int16_t
|
||||
accumulation[2][kRefreshTriggers.size()][kTransformedFeatureDimensions];
|
||||
Value score;
|
||||
bool computed_accumulation;
|
||||
bool computed_score;
|
||||
};
|
||||
|
||||
} // namespace Eval::NNUE
|
||||
|
|
|
@ -50,11 +50,13 @@ namespace Eval::NNUE {
|
|||
|
||||
// Hash value embedded in the evaluation file
|
||||
static constexpr std::uint32_t GetHashValue() {
|
||||
|
||||
return RawFeatures::kHashValue ^ kOutputDimensions;
|
||||
}
|
||||
|
||||
// Read network parameters
|
||||
bool ReadParameters(std::istream& stream) {
|
||||
|
||||
for (std::size_t i = 0; i < kHalfDimensions; ++i)
|
||||
biases_[i] = read_little_endian<BiasType>(stream);
|
||||
for (std::size_t i = 0; i < kHalfDimensions * kInputDimensions; ++i)
|
||||
|
@ -64,23 +66,26 @@ namespace Eval::NNUE {
|
|||
|
||||
// Proceed with the difference calculation if possible
|
||||
bool UpdateAccumulatorIfPossible(const Position& pos) const {
|
||||
|
||||
const auto now = pos.state();
|
||||
if (now->accumulator.computed_accumulation) {
|
||||
if (now->accumulator.computed_accumulation)
|
||||
return true;
|
||||
}
|
||||
|
||||
const auto prev = now->previous;
|
||||
if (prev && prev->accumulator.computed_accumulation) {
|
||||
UpdateAccumulator(pos);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Convert input features
|
||||
void Transform(const Position& pos, OutputType* output, bool refresh) const {
|
||||
if (refresh || !UpdateAccumulatorIfPossible(pos)) {
|
||||
void Transform(const Position& pos, OutputType* output) const {
|
||||
|
||||
if (!UpdateAccumulatorIfPossible(pos))
|
||||
RefreshAccumulator(pos);
|
||||
}
|
||||
|
||||
const auto& accumulation = pos.state()->accumulator.accumulation;
|
||||
|
||||
#if defined(USE_AVX2)
|
||||
|
@ -177,6 +182,7 @@ namespace Eval::NNUE {
|
|||
private:
|
||||
// Calculate cumulative value without using difference calculation
|
||||
void RefreshAccumulator(const Position& pos) const {
|
||||
|
||||
auto& accumulator = pos.state()->accumulator;
|
||||
IndexType i = 0;
|
||||
Features::IndexList active_indices[2];
|
||||
|
@ -216,9 +222,8 @@ namespace Eval::NNUE {
|
|||
&accumulator.accumulation[perspective][i][0]);
|
||||
auto column = reinterpret_cast<const __m64*>(&weights_[offset]);
|
||||
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_add_pi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_NEON)
|
||||
auto accumulation = reinterpret_cast<int16x8_t*>(
|
||||
|
@ -240,11 +245,11 @@ namespace Eval::NNUE {
|
|||
#endif
|
||||
|
||||
accumulator.computed_accumulation = true;
|
||||
accumulator.computed_score = false;
|
||||
}
|
||||
|
||||
// Calculate cumulative value using difference calculation
|
||||
void UpdateAccumulator(const Position& pos) const {
|
||||
|
||||
const auto prev_accumulator = pos.state()->previous->accumulator;
|
||||
auto& accumulator = pos.state()->accumulator;
|
||||
IndexType i = 0;
|
||||
|
@ -288,33 +293,27 @@ namespace Eval::NNUE {
|
|||
|
||||
#if defined(USE_AVX2)
|
||||
auto column = reinterpret_cast<const __m256i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm256_sub_epi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_SSE2)
|
||||
auto column = reinterpret_cast<const __m128i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_sub_epi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_MMX)
|
||||
auto column = reinterpret_cast<const __m64*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_sub_pi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_NEON)
|
||||
auto column = reinterpret_cast<const int16x8_t*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = vsubq_s16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#else
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j) {
|
||||
accumulator.accumulation[perspective][i][j] -=
|
||||
weights_[offset + j];
|
||||
}
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j)
|
||||
accumulator.accumulation[perspective][i][j] -= weights_[offset + j];
|
||||
#endif
|
||||
|
||||
}
|
||||
|
@ -325,33 +324,27 @@ namespace Eval::NNUE {
|
|||
|
||||
#if defined(USE_AVX2)
|
||||
auto column = reinterpret_cast<const __m256i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm256_add_epi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_SSE2)
|
||||
auto column = reinterpret_cast<const __m128i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_add_epi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_MMX)
|
||||
auto column = reinterpret_cast<const __m64*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_add_pi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_NEON)
|
||||
auto column = reinterpret_cast<const int16x8_t*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = vaddq_s16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#else
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j) {
|
||||
accumulator.accumulation[perspective][i][j] +=
|
||||
weights_[offset + j];
|
||||
}
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j)
|
||||
accumulator.accumulation[perspective][i][j] += weights_[offset + j];
|
||||
#endif
|
||||
|
||||
}
|
||||
|
@ -362,7 +355,6 @@ namespace Eval::NNUE {
|
|||
#endif
|
||||
|
||||
accumulator.computed_accumulation = true;
|
||||
accumulator.computed_score = false;
|
||||
}
|
||||
|
||||
using BiasType = std::int16_t;
|
||||
|
|
|
@ -704,7 +704,6 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
|
|||
|
||||
// Used by NNUE
|
||||
st->accumulator.computed_accumulation = false;
|
||||
st->accumulator.computed_score = false;
|
||||
auto& dp = st->dirtyPiece;
|
||||
dp.dirty_num = 1;
|
||||
|
||||
|
@ -1000,7 +999,6 @@ void Position::do_null_move(StateInfo& newSt) {
|
|||
if (Eval::useNNUE)
|
||||
{
|
||||
std::memcpy(&newSt, st, sizeof(StateInfo));
|
||||
st->accumulator.computed_score = false;
|
||||
}
|
||||
else
|
||||
std::memcpy(&newSt, st, offsetof(StateInfo, accumulator));
|
||||
|
|
Loading…
Add table
Reference in a new issue