Idea of this patch is the following: in case we already have four moves that
exceeded alpha in the current node, the probability of finding fifth should
be reasonably low. Note that four is completely arbitrary - there could and
probably should be some tweaks, both in tweaking best move count threshold
for more reductions and tweaking how they work - for example making more
reductions with best move count linearly.
passed STC:
https://tests.stockfishchess.org/tests/view/615f614783dd501a05b0aee2
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 141816 W: 36056 L: 35686 D: 70074
Ptnml(0-2): 499, 15131, 39273, 15511, 494
passed LTC:
https://tests.stockfishchess.org/tests/view/615fdff683dd501a05b0af35
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 68536 W: 17221 L: 16891 D: 34424
Ptnml(0-2): 38, 6573, 20725, 6885, 47
closes https://github.com/official-stockfish/Stockfish/pull/3736
Bench: 6131513
This patch updates the stat_bonus() function (used in the history tables to
help move ordering), keeping the same quadratic for small depths but changing
the values for depth >= 9:
The old bonus formula was increasing from zero at depth 1 to 4100 at depth 14,
then used the strange, small value of 73 for all depths >= 15.
The new bonus formula increases from 0 at depth 1 to 2000 at depth 8, then
keeps 2000 for all depths >= 8.
passed STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 169624 W: 42875 L: 42454 D: 84295
Ptnml(0-2): 585, 19340, 44557, 19729, 601
https://tests.stockfishchess.org/tests/view/615bd69e9d256038a969b97c
passed LTC:
LLR: 3.07 (-2.94,2.94) <0.50,3.50>
Total: 37336 W: 9456 L: 9191 D: 18689
Ptnml(0-2): 20, 3810, 10747, 4067, 24
https://tests.stockfishchess.org/tests/view/615c75d99d256038a969b9b2
closes https://github.com/official-stockfish/Stockfish/pull/3731
Bench: 6261865
When playing games in MultiPV mode we must take care to only track the
best move changing for the first PV line. Otherwise, SF will spend most
of its time for the initial moves after the book exit.
This has been observed and reported on Discord, but can also be seen in
games played in Stefan Pohl's MultiPV experiment.
Tested with MultiPV=4.
STC:
https://tests.stockfishchess.org/tests/view/615c24b59d256038a969b990
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 1744 W: 694 L: 447 D: 603
Ptnml(0-2): 32, 125, 358, 278, 79
LTC:
https://tests.stockfishchess.org/tests/view/615c31769d256038a969b993
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 2048 W: 723 L: 525 D: 800
Ptnml(0-2): 10, 158, 511, 314, 31
closes https://github.com/official-stockfish/Stockfish/pull/3729
Bench: 5714575
Respin of multi-thread idea that was simplified away recently: basically doing
more reductions with thread count since Lazy SMP naturally widens search. With
drawish book this idea got simplified away but with less drawish book it again
gains elo, maybe trying to reinstall other ideas that were simplified away
previously can be beneficial.
passed STC
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 39736 W: 10205 L: 9986 D: 19545
Ptnml(0-2): 45, 4254, 11064, 4447, 58
https://tests.stockfishchess.org/tests/view/615750702d02f48db3961b00
passed LTC
LLR: 2.97 (-2.94,2.94) <0.50,3.50>
Total: 60352 W: 15530 L: 15218 D: 29604
Ptnml(0-2): 24, 5900, 18016, 6212, 24
https://tests.stockfishchess.org/tests/view/6157d8935488e26ea5eace7f
closes https://github.com/official-stockfish/Stockfish/pull/3724
Bench 5714575
Idea is to extend some quiet ttMoves if a lot of things indicate that
the transposition table move is going to be a good move:
1) move being a killer - so being the best move in nearby node;
2) reply continuation history is really good.
This is basically saying that move is good "in general" in this position,
that it is a good reply to the opponent move and that it was the best in
this position somewhere in search - so extending it makes a lot of sense.
In general in past year we had a lot of extensions of different types,
maybe there is something more in it :)
passed STC
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 42944 W: 10932 L: 10695 D: 21317
Ptnml(0-2): 141, 4869, 11210, 5116, 136
https://tests.stockfishchess.org/tests/view/614cca8e7bdc23e77ceb89f0
passed LTC
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 156848 W: 39473 L: 38893 D: 78482
Ptnml(0-2): 125, 16327, 44913, 16961, 98
https://tests.stockfishchess.org/tests/view/614cf93d7bdc23e77ceb8a13
closes https://github.com/official-stockfish/Stockfish/pull/3719
Bench: 5714575
In master, during singular move analysis, when both the transposition value
and a reduced search for the other moves seem to indicate a fail high, we
heuristically prune the whole subtree and return an fail high score.
This patch is a little bit more cautious in this case, and instead of the
risky cutoff, we now search the ttMove with a reduced depth (by two plies).
STC:
https://tests.stockfishchess.org/tests/view/614dafe07bdc23e77ceb8a89
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 46728 W: 11909 L: 11666 D: 23153
Ptnml(0-2): 181, 5288, 12168, 5561, 166
LTC:
https://tests.stockfishchess.org/tests/view/614dc84abe4c07e0ecac3c95
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 74520 W: 18809 L: 18450 D: 37261
Ptnml(0-2): 45, 7735, 21346, 8084, 50
closes https://github.com/official-stockfish/Stockfish/pull/3718
Bench: 5499262
This patch relax a little bit the condition for doubly singular moves
(ie moves that are so forced that we think that they deserve a local
double extension of the search). We lower the margin and allow up to
six such double extensions in the path between the root and the critical
node.
Original idea by Siad Daboul (@TopoIogist) in PR #3709
Tested with the previous commit:
passed STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 33048 W: 8458 L: 8236 D: 16354
Ptnml(0-2): 120, 3701, 8660, 3923, 120
https://tests.stockfishchess.org/tests/view/614b24347bdc23e77ceb88fe
passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 54176 W: 13712 L: 13406 D: 27058
Ptnml(0-2): 36, 5653, 15399, 5969, 31
https://tests.stockfishchess.org/tests/view/614b3b727bdc23e77ceb8911
closes https://github.com/official-stockfish/Stockfish/pull/3714
Bench: 5792377
This patch detects some search explosions (due to double extensions in
search.cpp) which can happen in some pathological positions, and takes
measures to ensure progress in search even for these pathological situations.
While a small number of double extensions can be useful during search
(for example to resolve a tactical sequence), a sustained regime of
double extensions leads to search explosion and a non-finishing search.
See the discussion in https://github.com/official-stockfish/Stockfish/pull/3544
and the issue https://github.com/official-stockfish/Stockfish/issues/3532 .
The implemented algorithm is the following:
a) at each node during search, store the current depth in the stack.
Double extensions are by definition levels of the stack where the
depth at ply N is strictly higher than depth at ply N-1.
b) during search, calculate for each thread a running average of the
number of double extensions in the last 4096 visited nodes.
c) if one thread has more than 2% of double extensions for a sustained
period of time (6 millions consecutive nodes, or about 4 seconds on
my iMac), we decide that this thread is in an explosion state and
we calm down this thread by preventing it to do any double extension
for the next 6 millions nodes.
To calculate the running averages, we also introduced a auxiliary class
generalizing the computations of ttHitAverage variable we already had in
code. The implementation uses an exponential moving average of period 4096
and resolution 1/1024, and all computations are done with integers for
efficiency.
-----------
Example where the patch solves a search explosion:
```
./stockfish
ucinewgame
position fen 8/Pk6/8/1p6/8/P1K5/8/6B1 w - - 37 130
go infinite
```
This algorithm does not affect search in normal, non-pathological positions.
We verified, for instance, that the usual bench is unchanged up to depth 20
at least, and that the node numbers are unchanged for a search of the starting
position at depth 32.
-------------
See https://github.com/official-stockfish/Stockfish/pull/3714
Bench: 5575265
This patch introduces extension for captures and promotions. Every capture or
promotion that is not the first move in the list gets extended at PvNodes and
cutNodes. Special thanks to @locutus2 - all my previous attepmts that failed
on this idea were done only for PvNodes - idea to include also cutNodes was
based on his latest passed patch.
STC
https://tests.stockfishchess.org/tests/view/6134abf325b9b35584838574
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 188920 W: 47754 L: 47304 D: 93862
Ptnml(0-2): 595, 21754, 49344, 22140, 627
LTC
https://tests.stockfishchess.org/tests/view/613521de25b9b355848385d7
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 8768 W: 2283 L: 2098 D: 4387
Ptnml(0-2): 7, 866, 2452, 1053, 6
closes https://github.com/official-stockfish/Stockfish/pull/3692
bench: 5564555
The new network caused some issues initially due to the very narrow neuron set between the first two FC layers. Necessary changes were hacked together to make it work. This patch is a mature approach to make the affine transform code faster, more readable, and easier to maintain should the layer sizes change again.
The following changes were made:
* ClippedReLU always produces a multiple of 32 outputs. This is about as good of a solution for AffineTransform's SIMD requirements as it can get without a bigger rewrite.
* All self-contained simd helpers are moved to a separate file (simd.h). Inline asm is utilized to work around GCC's issues with code generation and register assignment. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101693, https://godbolt.org/z/da76fY1n7
* AffineTransform has 2 specializations. While it's more lines of code due to the boilerplate, the logic in both is significantly reduced, as these two are impossible to nicely combine into one.
1) The first specialization is for cases when there's >=128 inputs. It uses a different approach to perform the affine transform and can make full use of AVX512 without any edge cases. Furthermore, it has higher theoretical throughput because less loads are needed in the hot path, requiring only a fixed amount of instructions for horizontal additions at the end, which are amortized by the large number of inputs.
2) The second specialization is made to handle smaller layers where performance is still necessary but edge cases need to be handled. AVX512 implementation for this was ommited by mistake, a remnant from the temporary implementation for the new... This could be easily reintroduced if needed. A slightly more detailed description of both implementations is in the code.
Overall it should be a minor speedup, as shown on fishtest:
passed STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 51520 W: 4074 L: 3888 D: 43558
Ptnml(0-2): 111, 3136, 19097, 3288, 128
and various tests shown in the pull request
closes https://github.com/official-stockfish/Stockfish/pull/3663
No functional change
Introduces a new NNUE network architecture and associated network parameters
The summary of the changes:
* Position for each perspective mirrored such that the king is on e..h files. Cuts the feature transformer size in half, while preserving enough knowledge to be good. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.b40q4rb1w7on.
* The number of neurons after the feature transformer increased two-fold, to 1024x2. This is possibly mostly due to the now very optimized feature transformer update code.
* The number of neurons after the second layer is reduced from 16 to 8, to reduce the speed impact. This, perhaps surprisingly, doesn't harm the strength much. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.6qkocr97fezq
The AffineTransform code did not work out-of-the box with the smaller number of neurons after the second layer, so some temporary changes have been made to add a special case for InputDimensions == 8. Also additional 0 padding is added to the output for some archs that cannot process inputs by <=8 (SSE2, NEON). VNNI uses an implementation that can keep all outputs in the registers while reducing the number of loads by 3 for each 16 inputs, thanks to the reduced number of output neurons. However GCC is particularily bad at optimization here (and perhaps why the current way the affine transform is done even passed sprt) (see https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit# for details) and more work will be done on this in the following days. I expect the current VNNI implementation to be improved and extended to other architectures.
The network was trained with a slightly modified version of the pytorch trainer (https://github.com/glinscott/nnue-pytorch); the changes are in https://github.com/glinscott/nnue-pytorch/pull/143
The training utilized 2 datasets.
dataset A - https://drive.google.com/file/d/1VlhnHL8f-20AXhGkILujnNXHwy9T-MQw/view?usp=sharing
dataset B - as described in ba01f4b954
The training process was as following:
train on dataset A for 350 epochs, take the best net in terms of elo at 20k nodes per move (it's fine to take anything from later stages of training).
convert the .ckpt to .pt
--resume-from-model from the .pt file, train on dataset B for <600 epochs, take the best net. Lambda=0.8, applied before the loss function.
The first training command:
python3 train.py \
../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \
../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \
--gpus "$3," \
--threads 1 \
--num-workers 1 \
--batch-size 16384 \
--progress_bar_refresh_rate 20 \
--smart-fen-skipping \
--random-fen-skipping 3 \
--features=HalfKAv2_hm^ \
--lambda=1.0 \
--max_epochs=600 \
--default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
The second training command:
python3 serialize.py \
--features=HalfKAv2_hm^ \
../nnue-pytorch-training/experiment_131/run_6/default/version_0/checkpoints/epoch-499.ckpt \
../nnue-pytorch-training/experiment_$1/base/base.pt
python3 train.py \
../nnue-pytorch-training/data/michael_commit_b94a65.binpack \
../nnue-pytorch-training/data/michael_commit_b94a65.binpack \
--gpus "$3," \
--threads 1 \
--num-workers 1 \
--batch-size 16384 \
--progress_bar_refresh_rate 20 \
--smart-fen-skipping \
--random-fen-skipping 3 \
--features=HalfKAv2_hm^ \
--lambda=0.8 \
--max_epochs=600 \
--resume-from-model ../nnue-pytorch-training/experiment_$1/base/base.pt \
--default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
STC: https://tests.stockfishchess.org/tests/view/611120b32a8a49ac5be798c4
LLR: 2.97 (-2.94,2.94) <-0.50,2.50>
Total: 22480 W: 2434 L: 2251 D: 17795
Ptnml(0-2): 101, 1736, 7410, 1865, 128
LTC: https://tests.stockfishchess.org/tests/view/611152b32a8a49ac5be798ea
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 9776 W: 442 L: 333 D: 9001
Ptnml(0-2): 5, 295, 4180, 402, 6
closes https://github.com/official-stockfish/Stockfish/pull/3646
bench: 5189338