1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00
BadFish/src/nnue/evaluate_nnue.cpp
Disservin 2d0237db3f add clang-format
This introduces clang-format to enforce a consistent code style for Stockfish.

Having a documented and consistent style across the code will make contributing easier
for new developers, and will make larger changes to the codebase easier to make.

To facilitate formatting, this PR includes a Makefile target (`make format`) to format the code,
this requires clang-format (version 17 currently) to be installed locally.

Installing clang-format is straightforward on most OS and distros
(e.g. with https://apt.llvm.org/, brew install clang-format, etc), as this is part of quite commonly
used suite of tools and compilers (llvm / clang).

Additionally, a CI action is present that will verify if the code requires formatting,
and comment on the PR as needed. Initially, correct formatting is not required, it will be
done by maintainers as part of the merge or in later commits, but obviously this is encouraged.

fixes https://github.com/official-stockfish/Stockfish/issues/3608
closes https://github.com/official-stockfish/Stockfish/pull/4790

Co-Authored-By: Joost VandeVondele <Joost.VandeVondele@gmail.com>
2023-10-22 16:06:27 +02:00

429 lines
13 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Code for calculating NNUE evaluation function
#include "evaluate_nnue.h"
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <string_view>
#include "../evaluate.h"
#include "../misc.h"
#include "../position.h"
#include "../types.h"
#include "../uci.h"
#include "nnue_accumulator.h"
#include "nnue_common.h"
namespace Stockfish::Eval::NNUE {
// Input feature converter
LargePagePtr<FeatureTransformer> featureTransformer;
// Evaluation function
AlignedPtr<Network> network[LayerStacks];
// Evaluation function file name
std::string fileName;
std::string netDescription;
namespace Detail {
// Initialize the evaluation function parameters
template<typename T>
void initialize(AlignedPtr<T>& pointer) {
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
template<typename T>
void initialize(LargePagePtr<T>& pointer) {
static_assert(alignof(T) <= 4096,
"aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
// Read evaluation function parameters
template<typename T>
bool read_parameters(std::istream& stream, T& reference) {
std::uint32_t header;
header = read_little_endian<std::uint32_t>(stream);
if (!stream || header != T::get_hash_value())
return false;
return reference.read_parameters(stream);
}
// Write evaluation function parameters
template<typename T>
bool write_parameters(std::ostream& stream, const T& reference) {
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
return reference.write_parameters(stream);
}
} // namespace Detail
// Initialize the evaluation function parameters
static void initialize() {
Detail::initialize(featureTransformer);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(network[i]);
}
// Read network header
static bool read_header(std::istream& stream, std::uint32_t* hashValue, std::string* desc) {
std::uint32_t version, size;
version = read_little_endian<std::uint32_t>(stream);
*hashValue = read_little_endian<std::uint32_t>(stream);
size = read_little_endian<std::uint32_t>(stream);
if (!stream || version != Version)
return false;
desc->resize(size);
stream.read(&(*desc)[0], size);
return !stream.fail();
}
// Write network header
static bool write_header(std::ostream& stream, std::uint32_t hashValue, const std::string& desc) {
write_little_endian<std::uint32_t>(stream, Version);
write_little_endian<std::uint32_t>(stream, hashValue);
write_little_endian<std::uint32_t>(stream, (std::uint32_t) desc.size());
stream.write(&desc[0], desc.size());
return !stream.fail();
}
// Read network parameters
static bool read_parameters(std::istream& stream) {
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription))
return false;
if (hashValue != HashValue)
return false;
if (!Detail::read_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::read_parameters(stream, *(network[i])))
return false;
return stream && stream.peek() == std::ios::traits_type::eof();
}
// Write network parameters
static bool write_parameters(std::ostream& stream) {
if (!write_header(stream, HashValue, netDescription))
return false;
if (!Detail::write_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::write_parameters(stream, *(network[i])))
return false;
return bool(stream);
}
void hint_common_parent_position(const Position& pos) {
featureTransformer->hint_common_access(pos);
}
// Evaluation function. Perform differential calculation.
Value evaluate(const Position& pos, bool adjusted, int* complexity) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
constexpr int delta = 24;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
if (complexity)
*complexity = abs(psqt - positional) / OutputScale;
// Give more value to positional evaluation when adjusted flag is set
if (adjusted)
return static_cast<Value>(((1024 - delta) * psqt + (1024 + delta) * positional)
/ (1024 * OutputScale));
else
return static_cast<Value>((psqt + positional) / OutputScale);
}
struct NnueEvalTrace {
static_assert(LayerStacks == PSQTBuckets);
Value psqt[LayerStacks];
Value positional[LayerStacks];
std::size_t correctBucket;
};
static NnueEvalTrace trace_evaluate(const Position& pos) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
NnueEvalTrace t{};
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
{
const auto materialist = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
}
return t;
}
constexpr std::string_view PieceToChar(" PNBRQK pnbrqk");
// format_cp_compact() converts a Value into (centi)pawns and writes it in a buffer.
// The buffer must have capacity for at least 5 chars.
static void format_cp_compact(Value v, char* buffer) {
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
int cp = std::abs(UCI::to_cp(v));
if (cp >= 10000)
{
buffer[1] = '0' + cp / 10000;
cp %= 10000;
buffer[2] = '0' + cp / 1000;
cp %= 1000;
buffer[3] = '0' + cp / 100;
buffer[4] = ' ';
}
else if (cp >= 1000)
{
buffer[1] = '0' + cp / 1000;
cp %= 1000;
buffer[2] = '0' + cp / 100;
cp %= 100;
buffer[3] = '.';
buffer[4] = '0' + cp / 10;
}
else
{
buffer[1] = '0' + cp / 100;
cp %= 100;
buffer[2] = '.';
buffer[3] = '0' + cp / 10;
cp %= 10;
buffer[4] = '0' + cp / 1;
}
}
// format_cp_aligned_dot() converts a Value into pawns, always keeping two decimals
static void format_cp_aligned_dot(Value v, std::stringstream& stream) {
const double pawns = std::abs(0.01 * UCI::to_cp(v));
stream << (v < 0 ? '-'
: v > 0 ? '+'
: ' ')
<< std::setiosflags(std::ios::fixed) << std::setw(6) << std::setprecision(2) << pawns;
}
// trace() returns a string with the value of each piece on a board,
// and a table for (PSQT, Layers) values bucket by bucket.
std::string trace(Position& pos) {
std::stringstream ss;
char board[3 * 8 + 1][8 * 8 + 2];
std::memset(board, ' ', sizeof(board));
for (int row = 0; row < 3 * 8 + 1; ++row)
board[row][8 * 8 + 1] = '\0';
// A lambda to output one box of the board
auto writeSquare = [&board](File file, Rank rank, Piece pc, Value value) {
const int x = int(file) * 8;
const int y = (7 - int(rank)) * 3;
for (int i = 1; i < 8; ++i)
board[y][x + i] = board[y + 3][x + i] = '-';
for (int i = 1; i < 3; ++i)
board[y + i][x] = board[y + i][x + 8] = '|';
board[y][x] = board[y][x + 8] = board[y + 3][x + 8] = board[y + 3][x] = '+';
if (pc != NO_PIECE)
board[y + 1][x + 4] = PieceToChar[pc];
if (value != VALUE_NONE)
format_cp_compact(value, &board[y + 2][x + 2]);
};
// We estimate the value of each piece by doing a differential evaluation from
// the current base eval, simulating the removal of the piece from its square.
Value base = evaluate(pos);
base = pos.side_to_move() == WHITE ? base : -base;
for (File f = FILE_A; f <= FILE_H; ++f)
for (Rank r = RANK_1; r <= RANK_8; ++r)
{
Square sq = make_square(f, r);
Piece pc = pos.piece_on(sq);
Value v = VALUE_NONE;
if (pc != NO_PIECE && type_of(pc) != KING)
{
auto st = pos.state();
pos.remove_piece(sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
Value eval = evaluate(pos);
eval = pos.side_to_move() == WHITE ? eval : -eval;
v = base - eval;
pos.put_piece(pc, sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
}
writeSquare(f, r, pc, v);
}
ss << " NNUE derived piece values:\n";
for (int row = 0; row < 3 * 8 + 1; ++row)
ss << board[row] << '\n';
ss << '\n';
auto t = trace_evaluate(pos);
ss << " NNUE network contributions "
<< (pos.side_to_move() == WHITE ? "(White to move)" : "(Black to move)") << std::endl
<< "+------------+------------+------------+------------+\n"
<< "| Bucket | Material | Positional | Total |\n"
<< "| | (PSQT) | (Layers) | |\n"
<< "+------------+------------+------------+------------+\n";
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket)
{
ss << "| " << bucket << " ";
ss << " | ";
format_cp_aligned_dot(t.psqt[bucket], ss);
ss << " "
<< " | ";
format_cp_aligned_dot(t.positional[bucket], ss);
ss << " "
<< " | ";
format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], ss);
ss << " "
<< " |";
if (bucket == t.correctBucket)
ss << " <-- this bucket is used";
ss << '\n';
}
ss << "+------------+------------+------------+------------+\n";
return ss.str();
}
// Load eval, from a file stream or a memory stream
bool load_eval(std::string name, std::istream& stream) {
initialize();
fileName = name;
return read_parameters(stream);
}
// Save eval, to a file stream or a memory stream
bool save_eval(std::ostream& stream) {
if (fileName.empty())
return false;
return write_parameters(stream);
}
// Save eval, to a file given by its name
bool save_eval(const std::optional<std::string>& filename) {
std::string actualFilename;
std::string msg;
if (filename.has_value())
actualFilename = filename.value();
else
{
if (currentEvalFileName != EvalFileDefaultName)
{
msg =
"Failed to export a net. A non-embedded net can only be saved if the filename is specified";
sync_cout << msg << sync_endl;
return false;
}
actualFilename = EvalFileDefaultName;
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save_eval(stream);
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
sync_cout << msg << sync_endl;
return saved;
}
} // namespace Stockfish::Eval::NNUE