1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 08:13:08 +00:00

add clang-format

This introduces clang-format to enforce a consistent code style for Stockfish.

Having a documented and consistent style across the code will make contributing easier
for new developers, and will make larger changes to the codebase easier to make.

To facilitate formatting, this PR includes a Makefile target (`make format`) to format the code,
this requires clang-format (version 17 currently) to be installed locally.

Installing clang-format is straightforward on most OS and distros
(e.g. with https://apt.llvm.org/, brew install clang-format, etc), as this is part of quite commonly
used suite of tools and compilers (llvm / clang).

Additionally, a CI action is present that will verify if the code requires formatting,
and comment on the PR as needed. Initially, correct formatting is not required, it will be
done by maintainers as part of the merge or in later commits, but obviously this is encouraged.

fixes https://github.com/official-stockfish/Stockfish/issues/3608
closes https://github.com/official-stockfish/Stockfish/pull/4790

Co-Authored-By: Joost VandeVondele <Joost.VandeVondele@gmail.com>
This commit is contained in:
Disservin 2023-10-21 11:40:56 +02:00 committed by Joost VandeVondele
parent 8366ec48ae
commit 2d0237db3f
49 changed files with 6403 additions and 6197 deletions

44
.clang-format Normal file
View file

@ -0,0 +1,44 @@
AccessModifierOffset: -1
AlignAfterOpenBracket: Align
AlignConsecutiveAssignments: Consecutive
AlignConsecutiveDeclarations: Consecutive
AlignEscapedNewlines: DontAlign
AlignOperands: AlignAfterOperator
AlignTrailingComments: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortCaseLabelsOnASingleLine: false
AllowShortEnumsOnASingleLine: false
AllowShortIfStatementsOnASingleLine: false
AlwaysBreakTemplateDeclarations: Yes
BasedOnStyle: WebKit
BitFieldColonSpacing: After
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeBraces: Custom
BraceWrapping:
AfterFunction: false
AfterClass: false
AfterControlStatement: true
BeforeElse: true
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakStringLiterals: false
ColumnLimit: 100
ContinuationIndentWidth: 2
Cpp11BracedListStyle: true
IndentGotoLabels: false
IndentPPDirectives: BeforeHash
IndentWidth: 4
MaxEmptyLinesToKeep: 2
NamespaceIndentation: None
PackConstructorInitializers: Never
ReflowComments: false
SortIncludes: false
SortUsingDeclarations: false
SpaceAfterCStyleCast: true
SpaceAfterTemplateKeyword: false
SpaceBeforeCaseColon: true
SpaceBeforeCpp11BracedList: false
SpaceBeforeInheritanceColon: false
SpaceInEmptyBlock: false
SpacesBeforeTrailingComments: 2

View file

@ -0,0 +1,51 @@
# This workflow will run clang-format and comment on the PR.
# Because of security reasons, it is crucial that this workflow
# executes no shell script nor runs make.
# Read this before editing: https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
name: Stockfish
on:
pull_request_target:
branches:
- 'master'
paths:
- '**.cpp'
- '**.h'
jobs:
Stockfish:
name: clang-format check
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v3
with:
ref: ${{ github.event.pull_request.head.sha }}
- name: Run clang-format style check
uses: jidicula/clang-format-action@f62da5e3d3a2d88ff364771d9d938773a618ab5e
id: clang-format
continue-on-error: true
with:
clang-format-version: '17'
exclude-regex: 'incbin'
- name: Comment on PR
if: steps.clang-format.outcome == 'failure'
uses: thollander/actions-comment-pull-request@1d3973dc4b8e1399c0620d3f2b1aa5e795465308
with:
message: |
clang-format 17 needs to be run on this PR.
If you do not have clang-format installed, the maintainer will run it when merging.
For the exact version please see https://packages.ubuntu.com/mantic/clang-format-17.
_(execution **${{ github.run_id }}** / attempt **${{ github.run_attempt }}**)_
comment_tag: execution
- name: Comment on PR
if: steps.clang-format.outcome != 'failure'
uses: thollander/actions-comment-pull-request@1d3973dc4b8e1399c0620d3f2b1aa5e795465308
with:
message: |
_(execution **${{ github.run_id }}** / attempt **${{ github.run_attempt }}**)_
create_if_not_exists: false
comment_tag: execution
mode: delete

View file

@ -57,8 +57,9 @@ discussion._
## Code Style
We do not have a strict code style. But it is best to stick to the existing
style of the file you are editing.
Changes to Stockfish C++ code should respect our coding style defined by
[.clang-format](.clang-format). You can format your changes by running
`make format`. This requires clang-format version 17 to be installed on your system.
## Community and Communication

View file

@ -57,6 +57,14 @@ SRCS = benchmark.cpp bitboard.cpp evaluate.cpp main.cpp \
search.cpp thread.cpp timeman.cpp tt.cpp uci.cpp ucioption.cpp tune.cpp syzygy/tbprobe.cpp \
nnue/evaluate_nnue.cpp nnue/features/half_ka_v2_hm.cpp
HEADERS = benchmark.h bitboard.h evaluate.h misc.h movegen.h movepick.h \
nnue/evaluate_nnue.h nnue/features/half_ka_v2_hm.h nnue/layers/affine_transform.h \
nnue/layers/affine_transform_sparse_input.h nnue/layers/clipped_relu.h nnue/layers/simd.h \
nnue/layers/sqr_clipped_relu.h nnue/nnue_accumulator.h nnue/nnue_architecture.h \
nnue/nnue_common.h nnue/nnue_feature_transformer.h position.h \
search.h syzygy/tbprobe.h thread.h thread_win32_osx.h timeman.h \
tt.h tune.h types.h uci.h
OBJS = $(notdir $(SRCS:.cpp=.o))
VPATH = syzygy:nnue:nnue/features
@ -145,6 +153,12 @@ dotprod = no
arm_version = 0
STRIP = strip
ifneq ($(shell command -v clang-format-17),)
CLANG-FORMAT = clang-format-17
else
CLANG-FORMAT = clang-format
endif
### 2.2 Architecture specific
ifeq ($(findstring x86,$(ARCH)),x86)
@ -936,6 +950,9 @@ net: netvariables
fi; \
fi; \
format:
$(CLANG-FORMAT) -i $(SRCS) $(HEADERS) -style=file:../.clang-format
# default target
default:
help

View file

@ -27,6 +27,7 @@
namespace {
// clang-format off
const std::vector<std::string> Defaults = {
"setoption name UCI_Chess960 value false",
"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
@ -90,8 +91,9 @@ const std::vector<std::string> Defaults = {
"nqbnrkrb/pppppppp/8/8/8/8/PPPPPPPP/NQBNRKRB w KQkq - 0 1",
"setoption name UCI_Chess960 value false"
};
// clang-format on
} // namespace
} // namespace
namespace Stockfish {
@ -109,56 +111,56 @@ namespace Stockfish {
std::vector<std::string> setup_bench(const Position& current, std::istream& is) {
std::vector<std::string> fens, list;
std::string go, token;
std::vector<std::string> fens, list;
std::string go, token;
// Assign default values to missing arguments
std::string ttSize = (is >> token) ? token : "16";
std::string threads = (is >> token) ? token : "1";
std::string limit = (is >> token) ? token : "13";
std::string fenFile = (is >> token) ? token : "default";
std::string limitType = (is >> token) ? token : "depth";
// Assign default values to missing arguments
std::string ttSize = (is >> token) ? token : "16";
std::string threads = (is >> token) ? token : "1";
std::string limit = (is >> token) ? token : "13";
std::string fenFile = (is >> token) ? token : "default";
std::string limitType = (is >> token) ? token : "depth";
go = limitType == "eval" ? "eval" : "go " + limitType + " " + limit;
go = limitType == "eval" ? "eval" : "go " + limitType + " " + limit;
if (fenFile == "default")
fens = Defaults;
if (fenFile == "default")
fens = Defaults;
else if (fenFile == "current")
fens.push_back(current.fen());
else if (fenFile == "current")
fens.push_back(current.fen());
else
{
std::string fen;
std::ifstream file(fenFile);
else
{
std::string fen;
std::ifstream file(fenFile);
if (!file.is_open())
{
std::cerr << "Unable to open file " << fenFile << std::endl;
exit(EXIT_FAILURE);
}
if (!file.is_open())
{
std::cerr << "Unable to open file " << fenFile << std::endl;
exit(EXIT_FAILURE);
}
while (getline(file, fen))
if (!fen.empty())
fens.push_back(fen);
while (getline(file, fen))
if (!fen.empty())
fens.push_back(fen);
file.close();
}
file.close();
}
list.emplace_back("setoption name Threads value " + threads);
list.emplace_back("setoption name Hash value " + ttSize);
list.emplace_back("ucinewgame");
list.emplace_back("setoption name Threads value " + threads);
list.emplace_back("setoption name Hash value " + ttSize);
list.emplace_back("ucinewgame");
for (const std::string& fen : fens)
if (fen.find("setoption") != std::string::npos)
list.emplace_back(fen);
else
{
list.emplace_back("position fen " + fen);
list.emplace_back(go);
}
for (const std::string& fen : fens)
if (fen.find("setoption") != std::string::npos)
list.emplace_back(fen);
else
{
list.emplace_back("position fen " + fen);
list.emplace_back(go);
}
return list;
return list;
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -29,6 +29,6 @@ class Position;
std::vector<std::string> setup_bench(const Position&, std::istream&);
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef BENCHMARK_H_INCLUDED
#endif // #ifndef BENCHMARK_H_INCLUDED

View file

@ -39,10 +39,10 @@ Magic BishopMagics[SQUARE_NB];
namespace {
Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // To store bishop attacks
Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // To store bishop attacks
void init_magics(PieceType pt, Bitboard table[], Magic magics[]);
void init_magics(PieceType pt, Bitboard table[], Magic magics[]);
}
@ -60,18 +60,18 @@ inline Bitboard safe_destination(Square s, int step) {
std::string Bitboards::pretty(Bitboard b) {
std::string s = "+---+---+---+---+---+---+---+---+\n";
std::string s = "+---+---+---+---+---+---+---+---+\n";
for (Rank r = RANK_8; r >= RANK_1; --r)
{
for (File f = FILE_A; f <= FILE_H; ++f)
s += b & make_square(f, r) ? "| X " : "| ";
for (Rank r = RANK_8; r >= RANK_1; --r)
{
for (File f = FILE_A; f <= FILE_H; ++f)
s += b & make_square(f, r) ? "| X " : "| ";
s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
}
s += " a b c d e f g h\n";
s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
}
s += " a b c d e f g h\n";
return s;
return s;
}
@ -80,49 +80,50 @@ std::string Bitboards::pretty(Bitboard b) {
void Bitboards::init() {
for (unsigned i = 0; i < (1 << 16); ++i)
PopCnt16[i] = uint8_t(std::bitset<16>(i).count());
for (unsigned i = 0; i < (1 << 16); ++i)
PopCnt16[i] = uint8_t(std::bitset<16>(i).count());
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
init_magics(ROOK, RookTable, RookMagics);
init_magics(BISHOP, BishopTable, BishopMagics);
init_magics(ROOK, RookTable, RookMagics);
init_magics(BISHOP, BishopTable, BishopMagics);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
PawnAttacks[WHITE][s1] = pawn_attacks_bb<WHITE>(square_bb(s1));
PawnAttacks[BLACK][s1] = pawn_attacks_bb<BLACK>(square_bb(s1));
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
PawnAttacks[WHITE][s1] = pawn_attacks_bb<WHITE>(square_bb(s1));
PawnAttacks[BLACK][s1] = pawn_attacks_bb<BLACK>(square_bb(s1));
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9} )
PseudoAttacks[KING][s1] |= safe_destination(s1, step);
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9})
PseudoAttacks[KING][s1] |= safe_destination(s1, step);
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17} )
PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17})
PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ROOK][s1] = attacks_bb<ROOK>(s1, 0);
for (PieceType pt : { BISHOP, ROOK })
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (PseudoAttacks[pt][s1] & s2)
{
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = (attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
}
BetweenBB[s1][s2] |= s2;
}
}
for (PieceType pt : {BISHOP, ROOK})
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (PseudoAttacks[pt][s1] & s2)
{
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] =
(attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
}
BetweenBB[s1][s2] |= s2;
}
}
}
namespace {
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
Bitboard attacks = 0;
Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
Bitboard attacks = 0;
Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST};
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
@ -133,22 +134,22 @@ namespace {
}
return attacks;
}
}
// init_magics() computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so
// called "fancy" approach.
// init_magics() computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so
// called "fancy" approach.
void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {
void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {
// Optimal PRNG seeds to pick the correct magics in the shortest time
int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 },
{ 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } };
int seeds[][RANK_NB] = {{8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020},
{728, 10316, 55013, 32803, 12281, 15100, 16645, 255}};
Bitboard occupancy[4096], reference[4096], edges, b;
int epoch[4096] = {}, cnt = 0, size = 0;
int epoch[4096] = {}, cnt = 0, size = 0;
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
@ -161,8 +162,8 @@ namespace {
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
Magic& m = magics[s];
m.mask = sliding_attack(pt, s, 0) & ~edges;
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
m.mask = sliding_attack(pt, s, 0) & ~edges;
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
// Set the offset for the attacks table of the square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
@ -171,7 +172,8 @@ namespace {
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
b = size = 0;
do {
do
{
occupancy[size] = b;
reference[size] = sliding_attack(pt, s, b);
@ -189,9 +191,9 @@ namespace {
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
for (int i = 0; i < size; )
for (int i = 0; i < size;)
{
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6;)
m.magic = rng.sparse_rand<Bitboard>();
// A good magic must map every possible occupancy to an index that
@ -206,7 +208,7 @@ namespace {
if (epoch[idx] < cnt)
{
epoch[idx] = cnt;
epoch[idx] = cnt;
m.attacks[idx] = reference[i];
}
else if (m.attacks[idx] != reference[i])
@ -214,7 +216,7 @@ namespace {
}
}
}
}
}
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -32,10 +32,10 @@ namespace Stockfish {
namespace Bitboards {
void init();
void init();
std::string pretty(Bitboard b);
} // namespace Stockfish::Bitboards
} // namespace Stockfish::Bitboards
constexpr Bitboard FileABB = 0x0101010101010101ULL;
constexpr Bitboard FileBBB = FileABB << 1;
@ -66,85 +66,80 @@ extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
// Magic holds all magic bitboards relevant data for a single square
struct Magic {
Bitboard mask;
Bitboard magic;
Bitboard* attacks;
unsigned shift;
Bitboard mask;
Bitboard magic;
Bitboard* attacks;
unsigned shift;
// Compute the attack's index using the 'magic bitboards' approach
unsigned index(Bitboard occupied) const {
// Compute the attack's index using the 'magic bitboards' approach
unsigned index(Bitboard occupied) const {
if (HasPext)
return unsigned(pext(occupied, mask));
if (HasPext)
return unsigned(pext(occupied, mask));
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
}
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
}
};
extern Magic RookMagics[SQUARE_NB];
extern Magic BishopMagics[SQUARE_NB];
inline Bitboard square_bb(Square s) {
assert(is_ok(s));
return (1ULL << s);
assert(is_ok(s));
return (1ULL << s);
}
// Overloads of bitwise operators between a Bitboard and a Square for testing
// whether a given bit is set in a bitboard, and for setting and clearing bits.
inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); }
inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); }
inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); }
inline Bitboard operator&(Bitboard b, Square s) { return b & square_bb(s); }
inline Bitboard operator|(Bitboard b, Square s) { return b | square_bb(s); }
inline Bitboard operator^(Bitboard b, Square s) { return b ^ square_bb(s); }
inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); }
inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); }
inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
constexpr bool more_than_one(Bitboard b) {
return b & (b - 1);
}
constexpr bool more_than_one(Bitboard b) { return b & (b - 1); }
// rank_bb() and file_bb() return a bitboard representing all the squares on
// the given file or rank.
constexpr Bitboard rank_bb(Rank r) {
return Rank1BB << (8 * r);
}
constexpr Bitboard rank_bb(Rank r) { return Rank1BB << (8 * r); }
constexpr Bitboard rank_bb(Square s) {
return rank_bb(rank_of(s));
}
constexpr Bitboard rank_bb(Square s) { return rank_bb(rank_of(s)); }
constexpr Bitboard file_bb(File f) {
return FileABB << f;
}
constexpr Bitboard file_bb(File f) { return FileABB << f; }
constexpr Bitboard file_bb(Square s) {
return file_bb(file_of(s));
}
constexpr Bitboard file_bb(Square s) { return file_bb(file_of(s)); }
// shift() moves a bitboard one or two steps as specified by the direction D
template<Direction D>
constexpr Bitboard shift(Bitboard b) {
return D == NORTH ? b << 8 : D == SOUTH ? b >> 8
: D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16
: D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1
: D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
: 0;
return D == NORTH ? b << 8
: D == SOUTH ? b >> 8
: D == NORTH + NORTH ? b << 16
: D == SOUTH + SOUTH ? b >> 16
: D == EAST ? (b & ~FileHBB) << 1
: D == WEST ? (b & ~FileABB) >> 1
: D == NORTH_EAST ? (b & ~FileHBB) << 9
: D == NORTH_WEST ? (b & ~FileABB) << 7
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7
: D == SOUTH_WEST ? (b & ~FileABB) >> 9
: 0;
}
@ -153,14 +148,14 @@ constexpr Bitboard shift(Bitboard b) {
template<Color C>
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
}
inline Bitboard pawn_attacks_bb(Color c, Square s) {
assert(is_ok(s));
return PawnAttacks[c][s];
assert(is_ok(s));
return PawnAttacks[c][s];
}
// line_bb() returns a bitboard representing an entire line (from board edge
@ -170,9 +165,9 @@ inline Bitboard pawn_attacks_bb(Color c, Square s) {
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
return LineBB[s1][s2];
}
@ -186,26 +181,34 @@ inline Bitboard line_bb(Square s1, Square s2) {
inline Bitboard between_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
assert(is_ok(s1) && is_ok(s2));
return BetweenBB[s1][s2];
return BetweenBB[s1][s2];
}
// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
// straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) {
return line_bb(s1, s2) & s3;
}
inline bool aligned(Square s1, Square s2, Square s3) { return line_bb(s1, s2) & s3; }
// distance() functions return the distance between x and y, defined as the
// number of steps for a king in x to reach y.
template<typename T1 = Square> inline int distance(Square x, Square y);
template<> inline int distance<File>(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); }
template<> inline int distance<Rank>(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); }
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
template<typename T1 = Square>
inline int distance(Square x, Square y);
template<>
inline int distance<File>(Square x, Square y) {
return std::abs(file_of(x) - file_of(y));
}
template<>
inline int distance<Rank>(Square x, Square y) {
return std::abs(rank_of(x) - rank_of(y));
}
template<>
inline int distance<Square>(Square x, Square y) {
return SquareDistance[x][y];
}
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
@ -215,9 +218,9 @@ inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
template<PieceType Pt>
inline Bitboard attacks_bb(Square s) {
assert((Pt != PAWN) && (is_ok(s)));
assert((Pt != PAWN) && (is_ok(s)));
return PseudoAttacks[Pt][s];
return PseudoAttacks[Pt][s];
}
@ -228,28 +231,36 @@ inline Bitboard attacks_bb(Square s) {
template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
assert((Pt != PAWN) && (is_ok(s)));
assert((Pt != PAWN) && (is_ok(s)));
switch (Pt)
{
case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)];
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default : return PseudoAttacks[Pt][s];
}
switch (Pt)
{
case BISHOP :
return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
case ROOK :
return RookMagics[s].attacks[RookMagics[s].index(occupied)];
case QUEEN :
return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default :
return PseudoAttacks[Pt][s];
}
}
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
assert((pt != PAWN) && (is_ok(s)));
assert((pt != PAWN) && (is_ok(s)));
switch (pt)
{
case BISHOP: return attacks_bb<BISHOP>(s, occupied);
case ROOK : return attacks_bb< ROOK>(s, occupied);
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default : return PseudoAttacks[pt][s];
}
switch (pt)
{
case BISHOP :
return attacks_bb<BISHOP>(s, occupied);
case ROOK :
return attacks_bb<ROOK>(s, occupied);
case QUEEN :
return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default :
return PseudoAttacks[pt][s];
}
}
@ -259,16 +270,19 @@ inline int popcount(Bitboard b) {
#ifndef USE_POPCNT
union { Bitboard bb; uint16_t u[4]; } v = { b };
return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
union {
Bitboard bb;
uint16_t u[4];
} v = {b};
return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
#elif defined(_MSC_VER)
return int(_mm_popcnt_u64(b));
return int(_mm_popcnt_u64(b));
#else // Assumed gcc or compatible compiler
#else // Assumed gcc or compatible compiler
return __builtin_popcountll(b);
return __builtin_popcountll(b);
#endif
}
@ -279,66 +293,72 @@ inline int popcount(Bitboard b) {
#if defined(__GNUC__) // GCC, Clang, ICX
inline Square lsb(Bitboard b) {
assert(b);
return Square(__builtin_ctzll(b));
assert(b);
return Square(__builtin_ctzll(b));
}
inline Square msb(Bitboard b) {
assert(b);
return Square(63 ^ __builtin_clzll(b));
assert(b);
return Square(63 ^ __builtin_clzll(b));
}
#elif defined(_MSC_VER) // MSVC
#ifdef _WIN64 // MSVC, WIN64
#ifdef _WIN64 // MSVC, WIN64
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanForward64(&idx, b);
return (Square) idx;
assert(b);
unsigned long idx;
_BitScanForward64(&idx, b);
return (Square) idx;
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanReverse64(&idx, b);
return (Square) idx;
assert(b);
unsigned long idx;
_BitScanReverse64(&idx, b);
return (Square) idx;
}
#else // MSVC, WIN32
#else // MSVC, WIN32
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
assert(b);
unsigned long idx;
if (b & 0xffffffff) {
_BitScanForward(&idx, int32_t(b));
return Square(idx);
} else {
_BitScanForward(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
if (b & 0xffffffff)
{
_BitScanForward(&idx, int32_t(b));
return Square(idx);
}
else
{
_BitScanForward(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
assert(b);
unsigned long idx;
if (b >> 32) {
_BitScanReverse(&idx, int32_t(b >> 32));
return Square(idx + 32);
} else {
_BitScanReverse(&idx, int32_t(b));
return Square(idx);
}
if (b >> 32)
{
_BitScanReverse(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
else
{
_BitScanReverse(&idx, int32_t(b));
return Square(idx);
}
}
#endif
#endif
#else // Compiler is neither GCC nor MSVC compatible
#error "Compiler not supported."
#error "Compiler not supported."
#endif
@ -346,19 +366,19 @@ inline Square msb(Bitboard b) {
// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b);
return b & -b;
assert(b);
return b & -b;
}
// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard& b) {
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
}
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef BITBOARD_H_INCLUDED
#endif // #ifndef BITBOARD_H_INCLUDED

View file

@ -43,11 +43,11 @@
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
// Note that this does not work in Microsoft Visual Studio.
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
INCBIN(EmbeddedNNUE, EvalFileDefaultName);
INCBIN(EmbeddedNNUE, EvalFileDefaultName);
#else
const unsigned char gEmbeddedNNUEData[1] = {0x0};
const unsigned char *const gEmbeddedNNUEEnd = &gEmbeddedNNUEData[1];
const unsigned int gEmbeddedNNUESize = 1;
const unsigned char gEmbeddedNNUEData[1] = {0x0};
const unsigned char* const gEmbeddedNNUEEnd = &gEmbeddedNNUEData[1];
const unsigned int gEmbeddedNNUESize = 1;
#endif
@ -55,27 +55,28 @@ namespace Stockfish {
namespace Eval {
std::string currentEvalFileName = "None";
std::string currentEvalFileName = "None";
// NNUE::init() tries to load a NNUE network at startup time, or when the engine
// receives a UCI command "setoption name EvalFile value nn-[a-z0-9]{12}.nnue"
// The name of the NNUE network is always retrieved from the EvalFile option.
// We search the given network in three locations: internally (the default
// network may be embedded in the binary), in the active working directory and
// in the engine directory. Distro packagers may define the DEFAULT_NNUE_DIRECTORY
// variable to have the engine search in a special directory in their distro.
// NNUE::init() tries to load a NNUE network at startup time, or when the engine
// receives a UCI command "setoption name EvalFile value nn-[a-z0-9]{12}.nnue"
// The name of the NNUE network is always retrieved from the EvalFile option.
// We search the given network in three locations: internally (the default
// network may be embedded in the binary), in the active working directory and
// in the engine directory. Distro packagers may define the DEFAULT_NNUE_DIRECTORY
// variable to have the engine search in a special directory in their distro.
void NNUE::init() {
void NNUE::init() {
std::string eval_file = std::string(Options["EvalFile"]);
if (eval_file.empty())
eval_file = EvalFileDefaultName;
#if defined(DEFAULT_NNUE_DIRECTORY)
std::vector<std::string> dirs = { "<internal>" , "" , CommandLine::binaryDirectory , stringify(DEFAULT_NNUE_DIRECTORY) };
#else
std::vector<std::string> dirs = { "<internal>" , "" , CommandLine::binaryDirectory };
#endif
#if defined(DEFAULT_NNUE_DIRECTORY)
std::vector<std::string> dirs = {"<internal>", "", CommandLine::binaryDirectory,
stringify(DEFAULT_NNUE_DIRECTORY)};
#else
std::vector<std::string> dirs = {"<internal>", "", CommandLine::binaryDirectory};
#endif
for (const std::string& directory : dirs)
if (currentEvalFileName != eval_file)
@ -90,23 +91,28 @@ namespace Eval {
if (directory == "<internal>" && eval_file == EvalFileDefaultName)
{
// C++ way to prepare a buffer for a memory stream
class MemoryBuffer : public std::basic_streambuf<char> {
public: MemoryBuffer(char* p, size_t n) { setg(p, p, p + n); setp(p, p + n); }
class MemoryBuffer: public std::basic_streambuf<char> {
public:
MemoryBuffer(char* p, size_t n) {
setg(p, p, p + n);
setp(p, p + n);
}
};
MemoryBuffer buffer(const_cast<char*>(reinterpret_cast<const char*>(gEmbeddedNNUEData)),
size_t(gEmbeddedNNUESize));
(void) gEmbeddedNNUEEnd; // Silence warning on unused variable
MemoryBuffer buffer(
const_cast<char*>(reinterpret_cast<const char*>(gEmbeddedNNUEData)),
size_t(gEmbeddedNNUESize));
(void) gEmbeddedNNUEEnd; // Silence warning on unused variable
std::istream stream(&buffer);
if (NNUE::load_eval(eval_file, stream))
currentEvalFileName = eval_file;
}
}
}
}
// NNUE::verify() verifies that the last net used was loaded successfully
void NNUE::verify() {
// NNUE::verify() verifies that the last net used was loaded successfully
void NNUE::verify() {
std::string eval_file = std::string(Options["EvalFile"]);
if (eval_file.empty())
@ -115,10 +121,14 @@ namespace Eval {
if (currentEvalFileName != eval_file)
{
std::string msg1 = "Network evaluation parameters compatible with the engine must be available.";
std::string msg1 =
"Network evaluation parameters compatible with the engine must be available.";
std::string msg2 = "The network file " + eval_file + " was not loaded successfully.";
std::string msg3 = "The UCI option EvalFile might need to specify the full path, including the directory name, to the network file.";
std::string msg4 = "The default net can be downloaded from: https://tests.stockfishchess.org/api/nn/" + std::string(EvalFileDefaultName);
std::string msg3 =
"The UCI option EvalFile might need to specify the full path, including the directory name, to the network file.";
std::string msg4 =
"The default net can be downloaded from: https://tests.stockfishchess.org/api/nn/"
+ std::string(EvalFileDefaultName);
std::string msg5 = "The engine will be terminated now.";
sync_cout << "info string ERROR: " << msg1 << sync_endl;
@ -131,7 +141,7 @@ namespace Eval {
}
sync_cout << "info string NNUE evaluation using " << eval_file << sync_endl;
}
}
}
@ -140,8 +150,8 @@ namespace Eval {
// an approximation of the material advantage on the board in terms of pawns.
Value Eval::simple_eval(const Position& pos, Color c) {
return PawnValue * (pos.count<PAWN>(c) - pos.count<PAWN>(~c))
+ (pos.non_pawn_material(c) - pos.non_pawn_material(~c));
return PawnValue * (pos.count<PAWN>(c) - pos.count<PAWN>(~c))
+ (pos.non_pawn_material(c) - pos.non_pawn_material(~c));
}
@ -150,43 +160,41 @@ Value Eval::simple_eval(const Position& pos, Color c) {
Value Eval::evaluate(const Position& pos) {
assert(!pos.checkers());
assert(!pos.checkers());
Value v;
Color stm = pos.side_to_move();
int shuffling = pos.rule50_count();
int simpleEval = simple_eval(pos, stm) + (int(pos.key() & 7) - 3);
Value v;
Color stm = pos.side_to_move();
int shuffling = pos.rule50_count();
int simpleEval = simple_eval(pos, stm) + (int(pos.key() & 7) - 3);
bool lazy = abs(simpleEval) >= RookValue + KnightValue
+ 16 * shuffling * shuffling
+ abs(pos.this_thread()->bestValue)
+ abs(pos.this_thread()->rootSimpleEval);
bool lazy = abs(simpleEval) >= RookValue + KnightValue + 16 * shuffling * shuffling
+ abs(pos.this_thread()->bestValue)
+ abs(pos.this_thread()->rootSimpleEval);
if (lazy)
v = Value(simpleEval);
else
{
int nnueComplexity;
Value nnue = NNUE::evaluate(pos, true, &nnueComplexity);
if (lazy)
v = Value(simpleEval);
else
{
int nnueComplexity;
Value nnue = NNUE::evaluate(pos, true, &nnueComplexity);
Value optimism = pos.this_thread()->optimism[stm];
Value optimism = pos.this_thread()->optimism[stm];
// Blend optimism and eval with nnue complexity and material imbalance
optimism += optimism * (nnueComplexity + abs(simpleEval - nnue)) / 512;
nnue -= nnue * (nnueComplexity + abs(simpleEval - nnue)) / 32768;
// Blend optimism and eval with nnue complexity and material imbalance
optimism += optimism * (nnueComplexity + abs(simpleEval - nnue)) / 512;
nnue -= nnue * (nnueComplexity + abs(simpleEval - nnue)) / 32768;
int npm = pos.non_pawn_material() / 64;
v = ( nnue * (915 + npm + 9 * pos.count<PAWN>())
+ optimism * (154 + npm )) / 1024;
}
int npm = pos.non_pawn_material() / 64;
v = (nnue * (915 + npm + 9 * pos.count<PAWN>()) + optimism * (154 + npm)) / 1024;
}
// Damp down the evaluation linearly when shuffling
v = v * (200 - shuffling) / 214;
// Damp down the evaluation linearly when shuffling
v = v * (200 - shuffling) / 214;
// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
return v;
return v;
}
// trace() is like evaluate(), but instead of returning a value, it returns
@ -196,33 +204,33 @@ Value Eval::evaluate(const Position& pos) {
std::string Eval::trace(Position& pos) {
if (pos.checkers())
return "Final evaluation: none (in check)";
if (pos.checkers())
return "Final evaluation: none (in check)";
// Reset any global variable used in eval
pos.this_thread()->bestValue = VALUE_ZERO;
pos.this_thread()->rootSimpleEval = VALUE_ZERO;
pos.this_thread()->optimism[WHITE] = VALUE_ZERO;
pos.this_thread()->optimism[BLACK] = VALUE_ZERO;
// Reset any global variable used in eval
pos.this_thread()->bestValue = VALUE_ZERO;
pos.this_thread()->rootSimpleEval = VALUE_ZERO;
pos.this_thread()->optimism[WHITE] = VALUE_ZERO;
pos.this_thread()->optimism[BLACK] = VALUE_ZERO;
std::stringstream ss;
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2);
ss << '\n' << NNUE::trace(pos) << '\n';
std::stringstream ss;
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2);
ss << '\n' << NNUE::trace(pos) << '\n';
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
Value v;
v = NNUE::evaluate(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "NNUE evaluation " << 0.01 * UCI::to_cp(v) << " (white side)\n";
Value v;
v = NNUE::evaluate(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "NNUE evaluation " << 0.01 * UCI::to_cp(v) << " (white side)\n";
v = evaluate(pos);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "Final evaluation " << 0.01 * UCI::to_cp(v) << " (white side)";
ss << " [with scaled NNUE, ...]";
ss << "\n";
v = evaluate(pos);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "Final evaluation " << 0.01 * UCI::to_cp(v) << " (white side)";
ss << " [with scaled NNUE, ...]";
ss << "\n";
return ss.str();
return ss.str();
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -29,27 +29,27 @@ class Position;
namespace Eval {
std::string trace(Position& pos);
std::string trace(Position& pos);
Value simple_eval(const Position& pos, Color c);
Value evaluate(const Position& pos);
Value simple_eval(const Position& pos, Color c);
Value evaluate(const Position& pos);
extern std::string currentEvalFileName;
extern std::string currentEvalFileName;
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-0000000000a0.nnue"
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-0000000000a0.nnue"
namespace NNUE {
namespace NNUE {
void init();
void verify();
void init();
void verify();
} // namespace NNUE
} // namespace NNUE
} // namespace Eval
} // namespace Eval
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef EVALUATE_H_INCLUDED
#endif // #ifndef EVALUATE_H_INCLUDED

View file

@ -33,19 +33,19 @@ using namespace Stockfish;
int main(int argc, char* argv[]) {
std::cout << engine_info() << std::endl;
std::cout << engine_info() << std::endl;
CommandLine::init(argc, argv);
UCI::init(Options);
Tune::init();
Bitboards::init();
Position::init();
Threads.set(size_t(Options["Threads"]));
Search::clear(); // After threads are up
Eval::NNUE::init();
CommandLine::init(argc, argv);
UCI::init(Options);
Tune::init();
Bitboards::init();
Position::init();
Threads.set(size_t(Options["Threads"]));
Search::clear(); // After threads are up
Eval::NNUE::init();
UCI::loop(argc, argv);
UCI::loop(argc, argv);
Threads.set(0);
return 0;
Threads.set(0);
return 0;
}

File diff suppressed because it is too large Load diff

View file

@ -33,12 +33,13 @@ namespace Stockfish {
std::string engine_info(bool to_uci = false);
std::string compiler_info();
void prefetch(void* addr);
void start_logger(const std::string& fname);
void* std_aligned_alloc(size_t alignment, size_t size);
void std_aligned_free(void* ptr);
void* aligned_large_pages_alloc(size_t size); // memory aligned by page size, min alignment: 4096 bytes
void aligned_large_pages_free(void* mem); // nop if mem == nullptr
void prefetch(void* addr);
void start_logger(const std::string& fname);
void* std_aligned_alloc(size_t alignment, size_t size);
void std_aligned_free(void* ptr);
void* aligned_large_pages_alloc(
size_t size); // memory aligned by page size, min alignment: 4096 bytes
void aligned_large_pages_free(void* mem); // nop if mem == nullptr
void dbg_hit_on(bool cond, int slot = 0);
void dbg_mean_of(int64_t value, int slot = 0);
@ -46,15 +47,19 @@ void dbg_stdev_of(int64_t value, int slot = 0);
void dbg_correl_of(int64_t value1, int64_t value2, int slot = 0);
void dbg_print();
using TimePoint = std::chrono::milliseconds::rep; // A value in milliseconds
using TimePoint = std::chrono::milliseconds::rep; // A value in milliseconds
static_assert(sizeof(TimePoint) == sizeof(int64_t), "TimePoint should be 64 bits");
inline TimePoint now() {
return std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::steady_clock::now().time_since_epoch()).count();
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
enum SyncCout { IO_LOCK, IO_UNLOCK };
enum SyncCout {
IO_LOCK,
IO_UNLOCK
};
std::ostream& operator<<(std::ostream&, SyncCout);
#define sync_cout std::cout << IO_LOCK
@ -64,34 +69,37 @@ std::ostream& operator<<(std::ostream&, SyncCout);
// align_ptr_up() : get the first aligned element of an array.
// ptr must point to an array of size at least `sizeof(T) * N + alignment` bytes,
// where N is the number of elements in the array.
template <uintptr_t Alignment, typename T>
T* align_ptr_up(T* ptr)
{
static_assert(alignof(T) < Alignment);
template<uintptr_t Alignment, typename T>
T* align_ptr_up(T* ptr) {
static_assert(alignof(T) < Alignment);
const uintptr_t ptrint = reinterpret_cast<uintptr_t>(reinterpret_cast<char*>(ptr));
return reinterpret_cast<T*>(reinterpret_cast<char*>((ptrint + (Alignment - 1)) / Alignment * Alignment));
const uintptr_t ptrint = reinterpret_cast<uintptr_t>(reinterpret_cast<char*>(ptr));
return reinterpret_cast<T*>(
reinterpret_cast<char*>((ptrint + (Alignment - 1)) / Alignment * Alignment));
}
// IsLittleEndian : true if and only if the binary is compiled on a little-endian machine
static inline const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
static inline const union {
uint32_t i;
char c[4];
} Le = {0x01020304};
static inline const bool IsLittleEndian = (Le.c[0] == 4);
template <typename T, std::size_t MaxSize>
template<typename T, std::size_t MaxSize>
class ValueList {
public:
std::size_t size() const { return size_; }
void push_back(const T& value) { values_[size_++] = value; }
const T* begin() const { return values_; }
const T* end() const { return values_ + size_; }
const T& operator[](int index) const { return values_[index]; }
public:
std::size_t size() const { return size_; }
void push_back(const T& value) { values_[size_++] = value; }
const T* begin() const { return values_; }
const T* end() const { return values_ + size_; }
const T& operator[](int index) const { return values_[index]; }
private:
T values_[MaxSize];
std::size_t size_ = 0;
private:
T values_[MaxSize];
std::size_t size_ = 0;
};
@ -112,23 +120,31 @@ private:
class PRNG {
uint64_t s;
uint64_t s;
uint64_t rand64() {
uint64_t rand64() {
s ^= s >> 12, s ^= s << 25, s ^= s >> 27;
return s * 2685821657736338717LL;
}
s ^= s >> 12, s ^= s << 25, s ^= s >> 27;
return s * 2685821657736338717LL;
}
public:
PRNG(uint64_t seed) : s(seed) { assert(seed); }
public:
PRNG(uint64_t seed) :
s(seed) {
assert(seed);
}
template<typename T> T rand() { return T(rand64()); }
template<typename T>
T rand() {
return T(rand64());
}
// Special generator used to fast init magic numbers.
// Output values only have 1/8th of their bits set on average.
template<typename T> T sparse_rand()
{ return T(rand64() & rand64() & rand64()); }
// Special generator used to fast init magic numbers.
// Output values only have 1/8th of their bits set on average.
template<typename T>
T sparse_rand() {
return T(rand64() & rand64() & rand64());
}
};
inline uint64_t mul_hi64(uint64_t a, uint64_t b) {
@ -152,16 +168,16 @@ inline uint64_t mul_hi64(uint64_t a, uint64_t b) {
// Peter Österlund.
namespace WinProcGroup {
void bindThisThread(size_t idx);
void bindThisThread(size_t idx);
}
namespace CommandLine {
void init(int argc, char* argv[]);
void init(int argc, char* argv[]);
extern std::string binaryDirectory; // path of the executable directory
extern std::string workingDirectory; // path of the working directory
extern std::string binaryDirectory; // path of the executable directory
extern std::string workingDirectory; // path of the working directory
}
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef MISC_H_INCLUDED
#endif // #ifndef MISC_H_INCLUDED

View file

@ -28,8 +28,8 @@ namespace Stockfish {
namespace {
template<GenType Type, Direction D, bool Enemy>
ExtMove* make_promotions(ExtMove* moveList, [[maybe_unused]] Square to) {
template<GenType Type, Direction D, bool Enemy>
ExtMove* make_promotions(ExtMove* moveList, [[maybe_unused]] Square to) {
if constexpr (Type == CAPTURES || Type == EVASIONS || Type == NON_EVASIONS)
{
@ -50,33 +50,32 @@ namespace {
}
return moveList;
}
}
template<Color Us, GenType Type>
ExtMove* generate_pawn_moves(const Position& pos, ExtMove* moveList, Bitboard target) {
template<Color Us, GenType Type>
ExtMove* generate_pawn_moves(const Position& pos, ExtMove* moveList, Bitboard target) {
constexpr Color Them = ~Us;
constexpr Bitboard TRank7BB = (Us == WHITE ? Rank7BB : Rank2BB);
constexpr Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB);
constexpr Bitboard TRank7BB = (Us == WHITE ? Rank7BB : Rank2BB);
constexpr Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB);
constexpr Direction Up = pawn_push(Us);
constexpr Direction UpRight = (Us == WHITE ? NORTH_EAST : SOUTH_WEST);
constexpr Direction UpLeft = (Us == WHITE ? NORTH_WEST : SOUTH_EAST);
const Bitboard emptySquares = ~pos.pieces();
const Bitboard enemies = Type == EVASIONS ? pos.checkers()
: pos.pieces(Them);
const Bitboard enemies = Type == EVASIONS ? pos.checkers() : pos.pieces(Them);
Bitboard pawnsOn7 = pos.pieces(Us, PAWN) & TRank7BB;
Bitboard pawnsOn7 = pos.pieces(Us, PAWN) & TRank7BB;
Bitboard pawnsNotOn7 = pos.pieces(Us, PAWN) & ~TRank7BB;
// Single and double pawn pushes, no promotions
if constexpr (Type != CAPTURES)
{
Bitboard b1 = shift<Up>(pawnsNotOn7) & emptySquares;
Bitboard b1 = shift<Up>(pawnsNotOn7) & emptySquares;
Bitboard b2 = shift<Up>(b1 & TRank3BB) & emptySquares;
if constexpr (Type == EVASIONS) // Consider only blocking squares
if constexpr (Type == EVASIONS) // Consider only blocking squares
{
b1 &= target;
b2 &= target;
@ -87,21 +86,21 @@ namespace {
// To make a quiet check, you either make a direct check by pushing a pawn
// or push a blocker pawn that is not on the same file as the enemy king.
// Discovered check promotion has been already generated amongst the captures.
Square ksq = pos.square<KING>(Them);
Square ksq = pos.square<KING>(Them);
Bitboard dcCandidatePawns = pos.blockers_for_king(Them) & ~file_bb(ksq);
b1 &= pawn_attacks_bb(Them, ksq) | shift< Up>(dcCandidatePawns);
b2 &= pawn_attacks_bb(Them, ksq) | shift<Up+Up>(dcCandidatePawns);
b1 &= pawn_attacks_bb(Them, ksq) | shift<Up>(dcCandidatePawns);
b2 &= pawn_attacks_bb(Them, ksq) | shift<Up + Up>(dcCandidatePawns);
}
while (b1)
{
Square to = pop_lsb(b1);
Square to = pop_lsb(b1);
*moveList++ = make_move(to - Up, to);
}
while (b2)
{
Square to = pop_lsb(b2);
Square to = pop_lsb(b2);
*moveList++ = make_move(to - Up - Up, to);
}
}
@ -110,8 +109,8 @@ namespace {
if (pawnsOn7)
{
Bitboard b1 = shift<UpRight>(pawnsOn7) & enemies;
Bitboard b2 = shift<UpLeft >(pawnsOn7) & enemies;
Bitboard b3 = shift<Up >(pawnsOn7) & emptySquares;
Bitboard b2 = shift<UpLeft>(pawnsOn7) & enemies;
Bitboard b3 = shift<Up>(pawnsOn7) & emptySquares;
if constexpr (Type == EVASIONS)
b3 &= target;
@ -123,24 +122,24 @@ namespace {
moveList = make_promotions<Type, UpLeft, true>(moveList, pop_lsb(b2));
while (b3)
moveList = make_promotions<Type, Up, false>(moveList, pop_lsb(b3));
moveList = make_promotions<Type, Up, false>(moveList, pop_lsb(b3));
}
// Standard and en passant captures
if constexpr (Type == CAPTURES || Type == EVASIONS || Type == NON_EVASIONS)
{
Bitboard b1 = shift<UpRight>(pawnsNotOn7) & enemies;
Bitboard b2 = shift<UpLeft >(pawnsNotOn7) & enemies;
Bitboard b2 = shift<UpLeft>(pawnsNotOn7) & enemies;
while (b1)
{
Square to = pop_lsb(b1);
Square to = pop_lsb(b1);
*moveList++ = make_move(to - UpRight, to);
}
while (b2)
{
Square to = pop_lsb(b2);
Square to = pop_lsb(b2);
*moveList++ = make_move(to - UpLeft, to);
}
@ -162,11 +161,11 @@ namespace {
}
return moveList;
}
}
template<Color Us, PieceType Pt, bool Checks>
ExtMove* generate_moves(const Position& pos, ExtMove* moveList, Bitboard target) {
template<Color Us, PieceType Pt, bool Checks>
ExtMove* generate_moves(const Position& pos, ExtMove* moveList, Bitboard target) {
static_assert(Pt != KING && Pt != PAWN, "Unsupported piece type in generate_moves()");
@ -174,8 +173,8 @@ namespace {
while (bb)
{
Square from = pop_lsb(bb);
Bitboard b = attacks_bb<Pt>(from, pos.pieces()) & target;
Square from = pop_lsb(bb);
Bitboard b = attacks_bb<Pt>(from, pos.pieces()) & target;
// To check, you either move freely a blocker or make a direct check.
if (Checks && (Pt == QUEEN || !(pos.blockers_for_king(~Us) & from)))
@ -186,31 +185,31 @@ namespace {
}
return moveList;
}
}
template<Color Us, GenType Type>
ExtMove* generate_all(const Position& pos, ExtMove* moveList) {
template<Color Us, GenType Type>
ExtMove* generate_all(const Position& pos, ExtMove* moveList) {
static_assert(Type != LEGAL, "Unsupported type in generate_all()");
constexpr bool Checks = Type == QUIET_CHECKS; // Reduce template instantiations
const Square ksq = pos.square<KING>(Us);
Bitboard target;
constexpr bool Checks = Type == QUIET_CHECKS; // Reduce template instantiations
const Square ksq = pos.square<KING>(Us);
Bitboard target;
// Skip generating non-king moves when in double check
if (Type != EVASIONS || !more_than_one(pos.checkers()))
{
target = Type == EVASIONS ? between_bb(ksq, lsb(pos.checkers()))
: Type == NON_EVASIONS ? ~pos.pieces( Us)
: Type == CAPTURES ? pos.pieces(~Us)
: ~pos.pieces( ); // QUIETS || QUIET_CHECKS
target = Type == EVASIONS ? between_bb(ksq, lsb(pos.checkers()))
: Type == NON_EVASIONS ? ~pos.pieces(Us)
: Type == CAPTURES ? pos.pieces(~Us)
: ~pos.pieces(); // QUIETS || QUIET_CHECKS
moveList = generate_pawn_moves<Us, Type>(pos, moveList, target);
moveList = generate_moves<Us, KNIGHT, Checks>(pos, moveList, target);
moveList = generate_moves<Us, BISHOP, Checks>(pos, moveList, target);
moveList = generate_moves<Us, ROOK, Checks>(pos, moveList, target);
moveList = generate_moves<Us, QUEEN, Checks>(pos, moveList, target);
moveList = generate_moves<Us, ROOK, Checks>(pos, moveList, target);
moveList = generate_moves<Us, QUEEN, Checks>(pos, moveList, target);
}
if (!Checks || pos.blockers_for_king(~Us) & ksq)
@ -223,15 +222,15 @@ namespace {
*moveList++ = make_move(ksq, pop_lsb(b));
if ((Type == QUIETS || Type == NON_EVASIONS) && pos.can_castle(Us & ANY_CASTLING))
for (CastlingRights cr : { Us & KING_SIDE, Us & QUEEN_SIDE } )
for (CastlingRights cr : {Us & KING_SIDE, Us & QUEEN_SIDE})
if (!pos.castling_impeded(cr) && pos.can_castle(cr))
*moveList++ = make<CASTLING>(ksq, pos.castling_rook_square(cr));
}
return moveList;
}
}
} // namespace
} // namespace
// <CAPTURES> Generates all pseudo-legal captures plus queen promotions
@ -246,13 +245,13 @@ namespace {
template<GenType Type>
ExtMove* generate(const Position& pos, ExtMove* moveList) {
static_assert(Type != LEGAL, "Unsupported type in generate()");
assert((Type == EVASIONS) == bool(pos.checkers()));
static_assert(Type != LEGAL, "Unsupported type in generate()");
assert((Type == EVASIONS) == bool(pos.checkers()));
Color us = pos.side_to_move();
Color us = pos.side_to_move();
return us == WHITE ? generate_all<WHITE, Type>(pos, moveList)
: generate_all<BLACK, Type>(pos, moveList);
return us == WHITE ? generate_all<WHITE, Type>(pos, moveList)
: generate_all<BLACK, Type>(pos, moveList);
}
// Explicit template instantiations
@ -268,21 +267,21 @@ template ExtMove* generate<NON_EVASIONS>(const Position&, ExtMove*);
template<>
ExtMove* generate<LEGAL>(const Position& pos, ExtMove* moveList) {
Color us = pos.side_to_move();
Bitboard pinned = pos.blockers_for_king(us) & pos.pieces(us);
Square ksq = pos.square<KING>(us);
ExtMove* cur = moveList;
Color us = pos.side_to_move();
Bitboard pinned = pos.blockers_for_king(us) & pos.pieces(us);
Square ksq = pos.square<KING>(us);
ExtMove* cur = moveList;
moveList = pos.checkers() ? generate<EVASIONS >(pos, moveList)
: generate<NON_EVASIONS>(pos, moveList);
while (cur != moveList)
if ( ((pinned & from_sq(*cur)) || from_sq(*cur) == ksq || type_of(*cur) == EN_PASSANT)
&& !pos.legal(*cur))
*cur = (--moveList)->move;
else
++cur;
moveList =
pos.checkers() ? generate<EVASIONS>(pos, moveList) : generate<NON_EVASIONS>(pos, moveList);
while (cur != moveList)
if (((pinned & from_sq(*cur)) || from_sq(*cur) == ksq || type_of(*cur) == EN_PASSANT)
&& !pos.legal(*cur))
*cur = (--moveList)->move;
else
++cur;
return moveList;
return moveList;
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -19,7 +19,7 @@
#ifndef MOVEGEN_H_INCLUDED
#define MOVEGEN_H_INCLUDED
#include <algorithm> // IWYU pragma: keep
#include <algorithm> // IWYU pragma: keep
#include <cstddef>
#include "types.h"
@ -29,29 +29,27 @@ namespace Stockfish {
class Position;
enum GenType {
CAPTURES,
QUIETS,
QUIET_CHECKS,
EVASIONS,
NON_EVASIONS,
LEGAL
CAPTURES,
QUIETS,
QUIET_CHECKS,
EVASIONS,
NON_EVASIONS,
LEGAL
};
struct ExtMove {
Move move;
int value;
Move move;
int value;
operator Move() const { return move; }
void operator=(Move m) { move = m; }
operator Move() const { return move; }
void operator=(Move m) { move = m; }
// Inhibit unwanted implicit conversions to Move
// with an ambiguity that yields to a compile error.
operator float() const = delete;
// Inhibit unwanted implicit conversions to Move
// with an ambiguity that yields to a compile error.
operator float() const = delete;
};
inline bool operator<(const ExtMove& f, const ExtMove& s) {
return f.value < s.value;
}
inline bool operator<(const ExtMove& f, const ExtMove& s) { return f.value < s.value; }
template<GenType>
ExtMove* generate(const Position& pos, ExtMove* moveList);
@ -62,18 +60,17 @@ ExtMove* generate(const Position& pos, ExtMove* moveList);
template<GenType T>
struct MoveList {
explicit MoveList(const Position& pos) : last(generate<T>(pos, moveList)) {}
const ExtMove* begin() const { return moveList; }
const ExtMove* end() const { return last; }
size_t size() const { return last - moveList; }
bool contains(Move move) const {
return std::find(begin(), end(), move) != end();
}
explicit MoveList(const Position& pos) :
last(generate<T>(pos, moveList)) {}
const ExtMove* begin() const { return moveList; }
const ExtMove* end() const { return last; }
size_t size() const { return last - moveList; }
bool contains(Move move) const { return std::find(begin(), end(), move) != end(); }
private:
ExtMove moveList[MAX_MOVES], *last;
private:
ExtMove moveList[MAX_MOVES], *last;
};
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef MOVEGEN_H_INCLUDED
#endif // #ifndef MOVEGEN_H_INCLUDED

View file

@ -30,29 +30,50 @@ namespace Stockfish {
namespace {
enum Stages {
MAIN_TT, CAPTURE_INIT, GOOD_CAPTURE, REFUTATION, QUIET_INIT, QUIET, BAD_CAPTURE,
EVASION_TT, EVASION_INIT, EVASION,
PROBCUT_TT, PROBCUT_INIT, PROBCUT,
QSEARCH_TT, QCAPTURE_INIT, QCAPTURE, QCHECK_INIT, QCHECK
};
enum Stages {
// generate main search moves
MAIN_TT,
CAPTURE_INIT,
GOOD_CAPTURE,
REFUTATION,
QUIET_INIT,
QUIET,
BAD_CAPTURE,
// partial_insertion_sort() sorts moves in descending order up to and including
// a given limit. The order of moves smaller than the limit is left unspecified.
void partial_insertion_sort(ExtMove* begin, ExtMove* end, int limit) {
// generate evasion moves
EVASION_TT,
EVASION_INIT,
EVASION,
// generate probcut moves
PROBCUT_TT,
PROBCUT_INIT,
PROBCUT,
// generate qsearch moves
QSEARCH_TT,
QCAPTURE_INIT,
QCAPTURE,
QCHECK_INIT,
QCHECK
};
// partial_insertion_sort() sorts moves in descending order up to and including
// a given limit. The order of moves smaller than the limit is left unspecified.
void partial_insertion_sort(ExtMove* begin, ExtMove* end, int limit) {
for (ExtMove *sortedEnd = begin, *p = begin + 1; p < end; ++p)
if (p->value >= limit)
{
ExtMove tmp = *p, *q;
*p = *++sortedEnd;
*p = *++sortedEnd;
for (q = sortedEnd; q != begin && *(q - 1) < tmp; --q)
*q = *(q - 1);
*q = tmp;
}
}
}
} // namespace
} // namespace
// Constructors of the MovePicker class. As arguments, we pass information
@ -62,44 +83,57 @@ namespace {
// move ordering is at the current node.
// MovePicker constructor for the main search
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh,
const CapturePieceToHistory* cph,
const PieceToHistory** ch,
Move cm,
const Move* killers)
: pos(p), mainHistory(mh), captureHistory(cph), continuationHistory(ch),
ttMove(ttm), refutations{{killers[0], 0}, {killers[1], 0}, {cm, 0}}, depth(d)
{
assert(d > 0);
MovePicker::MovePicker(const Position& p,
Move ttm,
Depth d,
const ButterflyHistory* mh,
const CapturePieceToHistory* cph,
const PieceToHistory** ch,
Move cm,
const Move* killers) :
pos(p),
mainHistory(mh),
captureHistory(cph),
continuationHistory(ch),
ttMove(ttm),
refutations{{killers[0], 0}, {killers[1], 0}, {cm, 0}},
depth(d) {
assert(d > 0);
stage = (pos.checkers() ? EVASION_TT : MAIN_TT) +
!(ttm && pos.pseudo_legal(ttm));
stage = (pos.checkers() ? EVASION_TT : MAIN_TT) + !(ttm && pos.pseudo_legal(ttm));
}
// MovePicker constructor for quiescence search
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh,
const CapturePieceToHistory* cph,
const PieceToHistory** ch,
Square rs)
: pos(p), mainHistory(mh), captureHistory(cph), continuationHistory(ch), ttMove(ttm), recaptureSquare(rs), depth(d)
{
assert(d <= 0);
MovePicker::MovePicker(const Position& p,
Move ttm,
Depth d,
const ButterflyHistory* mh,
const CapturePieceToHistory* cph,
const PieceToHistory** ch,
Square rs) :
pos(p),
mainHistory(mh),
captureHistory(cph),
continuationHistory(ch),
ttMove(ttm),
recaptureSquare(rs),
depth(d) {
assert(d <= 0);
stage = (pos.checkers() ? EVASION_TT : QSEARCH_TT) +
!( ttm
&& pos.pseudo_legal(ttm));
stage = (pos.checkers() ? EVASION_TT : QSEARCH_TT) + !(ttm && pos.pseudo_legal(ttm));
}
// MovePicker constructor for ProbCut: we generate captures with SEE greater
// than or equal to the given threshold.
MovePicker::MovePicker(const Position& p, Move ttm, Value th, const CapturePieceToHistory* cph)
: pos(p), captureHistory(cph), ttMove(ttm), threshold(th)
{
assert(!pos.checkers());
MovePicker::MovePicker(const Position& p, Move ttm, Value th, const CapturePieceToHistory* cph) :
pos(p),
captureHistory(cph),
ttMove(ttm),
threshold(th) {
assert(!pos.checkers());
stage = PROBCUT_TT + !(ttm && pos.capture_stage(ttm)
&& pos.pseudo_legal(ttm)
&& pos.see_ge(ttm, threshold));
stage = PROBCUT_TT
+ !(ttm && pos.capture_stage(ttm) && pos.pseudo_legal(ttm) && pos.see_ge(ttm, threshold));
}
// MovePicker::score() assigns a numerical value to each move in a list, used
@ -108,76 +142,78 @@ MovePicker::MovePicker(const Position& p, Move ttm, Value th, const CapturePiece
template<GenType Type>
void MovePicker::score() {
static_assert(Type == CAPTURES || Type == QUIETS || Type == EVASIONS, "Wrong type");
static_assert(Type == CAPTURES || Type == QUIETS || Type == EVASIONS, "Wrong type");
[[maybe_unused]] Bitboard threatenedByPawn, threatenedByMinor, threatenedByRook, threatenedPieces;
if constexpr (Type == QUIETS)
{
Color us = pos.side_to_move();
[[maybe_unused]] Bitboard threatenedByPawn, threatenedByMinor, threatenedByRook,
threatenedPieces;
if constexpr (Type == QUIETS)
{
Color us = pos.side_to_move();
threatenedByPawn = pos.attacks_by<PAWN>(~us);
threatenedByMinor = pos.attacks_by<KNIGHT>(~us) | pos.attacks_by<BISHOP>(~us) | threatenedByPawn;
threatenedByRook = pos.attacks_by<ROOK>(~us) | threatenedByMinor;
threatenedByPawn = pos.attacks_by<PAWN>(~us);
threatenedByMinor =
pos.attacks_by<KNIGHT>(~us) | pos.attacks_by<BISHOP>(~us) | threatenedByPawn;
threatenedByRook = pos.attacks_by<ROOK>(~us) | threatenedByMinor;
// Pieces threatened by pieces of lesser material value
threatenedPieces = (pos.pieces(us, QUEEN) & threatenedByRook)
| (pos.pieces(us, ROOK) & threatenedByMinor)
| (pos.pieces(us, KNIGHT, BISHOP) & threatenedByPawn);
}
// Pieces threatened by pieces of lesser material value
threatenedPieces = (pos.pieces(us, QUEEN) & threatenedByRook)
| (pos.pieces(us, ROOK) & threatenedByMinor)
| (pos.pieces(us, KNIGHT, BISHOP) & threatenedByPawn);
}
for (auto& m : *this)
if constexpr (Type == CAPTURES)
m.value = (7 * int(PieceValue[pos.piece_on(to_sq(m))])
+ (*captureHistory)[pos.moved_piece(m)][to_sq(m)][type_of(pos.piece_on(to_sq(m)))]) / 16;
for (auto& m : *this)
if constexpr (Type == CAPTURES)
m.value =
(7 * int(PieceValue[pos.piece_on(to_sq(m))])
+ (*captureHistory)[pos.moved_piece(m)][to_sq(m)][type_of(pos.piece_on(to_sq(m)))])
/ 16;
else if constexpr (Type == QUIETS)
{
Piece pc = pos.moved_piece(m);
PieceType pt = type_of(pos.moved_piece(m));
Square from = from_sq(m);
Square to = to_sq(m);
else if constexpr (Type == QUIETS)
{
Piece pc = pos.moved_piece(m);
PieceType pt = type_of(pos.moved_piece(m));
Square from = from_sq(m);
Square to = to_sq(m);
// histories
m.value = 2 * (*mainHistory)[pos.side_to_move()][from_to(m)];
m.value += 2 * (*continuationHistory[0])[pc][to];
m.value += (*continuationHistory[1])[pc][to];
m.value += (*continuationHistory[2])[pc][to] / 4;
m.value += (*continuationHistory[3])[pc][to];
m.value += (*continuationHistory[5])[pc][to];
// histories
m.value = 2 * (*mainHistory)[pos.side_to_move()][from_to(m)];
m.value += 2 * (*continuationHistory[0])[pc][to];
m.value += (*continuationHistory[1])[pc][to];
m.value += (*continuationHistory[2])[pc][to] / 4;
m.value += (*continuationHistory[3])[pc][to];
m.value += (*continuationHistory[5])[pc][to];
// bonus for checks
m.value += bool(pos.check_squares(pt) & to) * 16384;
// bonus for checks
m.value += bool(pos.check_squares(pt) & to) * 16384;
// bonus for escaping from capture
m.value += threatenedPieces & from ?
(pt == QUEEN && !(to & threatenedByRook) ? 50000
: pt == ROOK && !(to & threatenedByMinor) ? 25000
: !(to & threatenedByPawn) ? 15000
: 0 )
: 0 ;
// bonus for escaping from capture
m.value += threatenedPieces & from ? (pt == QUEEN && !(to & threatenedByRook) ? 50000
: pt == ROOK && !(to & threatenedByMinor) ? 25000
: !(to & threatenedByPawn) ? 15000
: 0)
: 0;
// malus for putting piece en prise
m.value -= !(threatenedPieces & from) ?
(pt == QUEEN ? bool(to & threatenedByRook) * 50000
+ bool(to & threatenedByMinor) * 10000
+ bool(to & threatenedByPawn) * 20000
: pt == ROOK ? bool(to & threatenedByMinor) * 25000
+ bool(to & threatenedByPawn) * 10000
: pt != PAWN ? bool(to & threatenedByPawn) * 15000
: 0 )
: 0 ;
}
// malus for putting piece en prise
m.value -= !(threatenedPieces & from)
? (pt == QUEEN ? bool(to & threatenedByRook) * 50000
+ bool(to & threatenedByMinor) * 10000
+ bool(to & threatenedByPawn) * 20000
: pt == ROOK ? bool(to & threatenedByMinor) * 25000
+ bool(to & threatenedByPawn) * 10000
: pt != PAWN ? bool(to & threatenedByPawn) * 15000
: 0)
: 0;
}
else // Type == EVASIONS
{
if (pos.capture_stage(m))
m.value = PieceValue[pos.piece_on(to_sq(m))]
- Value(type_of(pos.moved_piece(m)))
+ (1 << 28);
else
m.value = (*mainHistory)[pos.side_to_move()][from_to(m)]
+ (*continuationHistory[0])[pos.moved_piece(m)][to_sq(m)];
}
else // Type == EVASIONS
{
if (pos.capture_stage(m))
m.value = PieceValue[pos.piece_on(to_sq(m))] - Value(type_of(pos.moved_piece(m)))
+ (1 << 28);
else
m.value = (*mainHistory)[pos.side_to_move()][from_to(m)]
+ (*continuationHistory[0])[pos.moved_piece(m)][to_sq(m)];
}
}
// MovePicker::select() returns the next move satisfying a predicate function.
@ -185,17 +221,17 @@ void MovePicker::score() {
template<MovePicker::PickType T, typename Pred>
Move MovePicker::select(Pred filter) {
while (cur < endMoves)
{
if constexpr (T == Best)
std::swap(*cur, *std::max_element(cur, endMoves));
while (cur < endMoves)
{
if constexpr (T == Best)
std::swap(*cur, *std::max_element(cur, endMoves));
if (*cur != ttMove && filter())
return *cur++;
if (*cur != ttMove && filter())
return *cur++;
cur++;
}
return MOVE_NONE;
cur++;
}
return MOVE_NONE;
}
// MovePicker::next_move() is the most important method of the MovePicker class. It
@ -204,122 +240,126 @@ Move MovePicker::select(Pred filter) {
Move MovePicker::next_move(bool skipQuiets) {
top:
switch (stage) {
switch (stage)
{
case MAIN_TT:
case EVASION_TT:
case QSEARCH_TT:
case PROBCUT_TT:
++stage;
return ttMove;
case MAIN_TT :
case EVASION_TT :
case QSEARCH_TT :
case PROBCUT_TT :
++stage;
return ttMove;
case CAPTURE_INIT:
case PROBCUT_INIT:
case QCAPTURE_INIT:
cur = endBadCaptures = moves;
endMoves = generate<CAPTURES>(pos, cur);
case CAPTURE_INIT :
case PROBCUT_INIT :
case QCAPTURE_INIT :
cur = endBadCaptures = moves;
endMoves = generate<CAPTURES>(pos, cur);
score<CAPTURES>();
partial_insertion_sort(cur, endMoves, std::numeric_limits<int>::min());
++stage;
goto top;
score<CAPTURES>();
partial_insertion_sort(cur, endMoves, std::numeric_limits<int>::min());
++stage;
goto top;
case GOOD_CAPTURE:
if (select<Next>([&](){
return pos.see_ge(*cur, Value(-cur->value)) ?
// Move losing capture to endBadCaptures to be tried later
true : (*endBadCaptures++ = *cur, false); }))
return *(cur - 1);
case GOOD_CAPTURE :
if (select<Next>([&]() {
return pos.see_ge(*cur, Value(-cur->value))
?
// Move losing capture to endBadCaptures to be tried later
true
: (*endBadCaptures++ = *cur, false);
}))
return *(cur - 1);
// Prepare the pointers to loop over the refutations array
cur = std::begin(refutations);
endMoves = std::end(refutations);
// Prepare the pointers to loop over the refutations array
cur = std::begin(refutations);
endMoves = std::end(refutations);
// If the countermove is the same as a killer, skip it
if ( refutations[0].move == refutations[2].move
|| refutations[1].move == refutations[2].move)
--endMoves;
// If the countermove is the same as a killer, skip it
if (refutations[0].move == refutations[2].move
|| refutations[1].move == refutations[2].move)
--endMoves;
++stage;
[[fallthrough]];
++stage;
[[fallthrough]];
case REFUTATION:
if (select<Next>([&](){ return *cur != MOVE_NONE
&& !pos.capture_stage(*cur)
&& pos.pseudo_legal(*cur); }))
return *(cur - 1);
++stage;
[[fallthrough]];
case REFUTATION :
if (select<Next>([&]() {
return *cur != MOVE_NONE && !pos.capture_stage(*cur) && pos.pseudo_legal(*cur);
}))
return *(cur - 1);
++stage;
[[fallthrough]];
case QUIET_INIT:
if (!skipQuiets)
{
cur = endBadCaptures;
endMoves = generate<QUIETS>(pos, cur);
case QUIET_INIT :
if (!skipQuiets)
{
cur = endBadCaptures;
endMoves = generate<QUIETS>(pos, cur);
score<QUIETS>();
partial_insertion_sort(cur, endMoves, -3000 * depth);
}
score<QUIETS>();
partial_insertion_sort(cur, endMoves, -3000 * depth);
}
++stage;
[[fallthrough]];
++stage;
[[fallthrough]];
case QUIET:
if ( !skipQuiets
&& select<Next>([&](){return *cur != refutations[0].move
&& *cur != refutations[1].move
&& *cur != refutations[2].move;}))
return *(cur - 1);
case QUIET :
if (!skipQuiets && select<Next>([&]() {
return *cur != refutations[0].move && *cur != refutations[1].move
&& *cur != refutations[2].move;
}))
return *(cur - 1);
// Prepare the pointers to loop over the bad captures
cur = moves;
endMoves = endBadCaptures;
// Prepare the pointers to loop over the bad captures
cur = moves;
endMoves = endBadCaptures;
++stage;
[[fallthrough]];
++stage;
[[fallthrough]];
case BAD_CAPTURE:
return select<Next>([](){ return true; });
case BAD_CAPTURE :
return select<Next>([]() { return true; });
case EVASION_INIT:
cur = moves;
endMoves = generate<EVASIONS>(pos, cur);
case EVASION_INIT :
cur = moves;
endMoves = generate<EVASIONS>(pos, cur);
score<EVASIONS>();
++stage;
[[fallthrough]];
score<EVASIONS>();
++stage;
[[fallthrough]];
case EVASION:
return select<Best>([](){ return true; });
case EVASION :
return select<Best>([]() { return true; });
case PROBCUT:
return select<Next>([&](){ return pos.see_ge(*cur, threshold); });
case PROBCUT :
return select<Next>([&]() { return pos.see_ge(*cur, threshold); });
case QCAPTURE:
if (select<Next>([&](){ return depth > DEPTH_QS_RECAPTURES
|| to_sq(*cur) == recaptureSquare; }))
return *(cur - 1);
case QCAPTURE :
if (select<Next>(
[&]() { return depth > DEPTH_QS_RECAPTURES || to_sq(*cur) == recaptureSquare; }))
return *(cur - 1);
// If we did not find any move and we do not try checks, we have finished
if (depth != DEPTH_QS_CHECKS)
return MOVE_NONE;
// If we did not find any move and we do not try checks, we have finished
if (depth != DEPTH_QS_CHECKS)
return MOVE_NONE;
++stage;
[[fallthrough]];
++stage;
[[fallthrough]];
case QCHECK_INIT:
cur = moves;
endMoves = generate<QUIET_CHECKS>(pos, cur);
case QCHECK_INIT :
cur = moves;
endMoves = generate<QUIET_CHECKS>(pos, cur);
++stage;
[[fallthrough]];
++stage;
[[fallthrough]];
case QCHECK:
return select<Next>([](){ return true; });
}
case QCHECK :
return select<Next>([]() { return true; });
}
assert(false);
return MOVE_NONE; // Silence warning
assert(false);
return MOVE_NONE; // Silence warning
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -24,7 +24,7 @@
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <type_traits> // IWYU pragma: keep
#include <type_traits> // IWYU pragma: keep
#include "movegen.h"
#include "types.h"
@ -39,22 +39,22 @@ class Position;
template<typename T, int D>
class StatsEntry {
T entry;
T entry;
public:
void operator=(const T& v) { entry = v; }
T* operator&() { return &entry; }
T* operator->() { return &entry; }
operator const T&() const { return entry; }
public:
void operator=(const T& v) { entry = v; }
T* operator&() { return &entry; }
T* operator->() { return &entry; }
operator const T&() const { return entry; }
void operator<<(int bonus) {
assert(abs(bonus) <= D); // Ensure range is [-D, D]
static_assert(D <= std::numeric_limits<T>::max(), "D overflows T");
void operator<<(int bonus) {
assert(abs(bonus) <= D); // Ensure range is [-D, D]
static_assert(D <= std::numeric_limits<T>::max(), "D overflows T");
entry += (bonus * D - entry * abs(bonus)) / (D * 5 / 4);
entry += (bonus * D - entry * abs(bonus)) / (D * 5 / 4);
assert(abs(entry) <= D);
}
assert(abs(entry) <= D);
}
};
// Stats is a generic N-dimensional array used to store various statistics.
@ -62,28 +62,32 @@ public:
// template parameter D limits the range of updates in [-D, D] when we update
// values with the << operator, while the last parameters (Size and Sizes)
// encode the dimensions of the array.
template <typename T, int D, int Size, int... Sizes>
struct Stats : public std::array<Stats<T, D, Sizes...>, Size>
{
using stats = Stats<T, D, Size, Sizes...>;
template<typename T, int D, int Size, int... Sizes>
struct Stats: public std::array<Stats<T, D, Sizes...>, Size> {
using stats = Stats<T, D, Size, Sizes...>;
void fill(const T& v) {
void fill(const T& v) {
// For standard-layout 'this' points to the first struct member
assert(std::is_standard_layout_v<stats>);
// For standard-layout 'this' points to the first struct member
assert(std::is_standard_layout_v<stats>);
using entry = StatsEntry<T, D>;
entry* p = reinterpret_cast<entry*>(this);
std::fill(p, p + sizeof(*this) / sizeof(entry), v);
}
using entry = StatsEntry<T, D>;
entry* p = reinterpret_cast<entry*>(this);
std::fill(p, p + sizeof(*this) / sizeof(entry), v);
}
};
template <typename T, int D, int Size>
struct Stats<T, D, Size> : public std::array<StatsEntry<T, D>, Size> {};
template<typename T, int D, int Size>
struct Stats<T, D, Size>: public std::array<StatsEntry<T, D>, Size> {};
// In stats table, D=0 means that the template parameter is not used
enum StatsParams { NOT_USED = 0 };
enum StatsType { NoCaptures, Captures };
enum StatsParams {
NOT_USED = 0
};
enum StatsType {
NoCaptures,
Captures
};
// ButterflyHistory records how often quiet moves have been successful or
// unsuccessful during the current search, and is used for reduction and move
@ -117,42 +121,53 @@ using ContinuationHistory = Stats<PieceToHistory, NOT_USED, PIECE_NB, SQUARE_NB>
// likely to get a cut-off first.
class MovePicker {
enum PickType { Next, Best };
enum PickType {
Next,
Best
};
public:
MovePicker(const MovePicker&) = delete;
MovePicker& operator=(const MovePicker&) = delete;
MovePicker(const Position&, Move, Depth, const ButterflyHistory*,
const CapturePieceToHistory*,
const PieceToHistory**,
Move,
const Move*);
MovePicker(const Position&, Move, Depth, const ButterflyHistory*,
const CapturePieceToHistory*,
const PieceToHistory**,
Square);
MovePicker(const Position&, Move, Value, const CapturePieceToHistory*);
Move next_move(bool skipQuiets = false);
public:
MovePicker(const MovePicker&) = delete;
MovePicker& operator=(const MovePicker&) = delete;
MovePicker(const Position&,
Move,
Depth,
const ButterflyHistory*,
const CapturePieceToHistory*,
const PieceToHistory**,
Move,
const Move*);
MovePicker(const Position&,
Move,
Depth,
const ButterflyHistory*,
const CapturePieceToHistory*,
const PieceToHistory**,
Square);
MovePicker(const Position&, Move, Value, const CapturePieceToHistory*);
Move next_move(bool skipQuiets = false);
private:
template<PickType T, typename Pred> Move select(Pred);
template<GenType> void score();
ExtMove* begin() { return cur; }
ExtMove* end() { return endMoves; }
private:
template<PickType T, typename Pred>
Move select(Pred);
template<GenType>
void score();
ExtMove* begin() { return cur; }
ExtMove* end() { return endMoves; }
const Position& pos;
const ButterflyHistory* mainHistory;
const CapturePieceToHistory* captureHistory;
const PieceToHistory** continuationHistory;
Move ttMove;
ExtMove refutations[3], *cur, *endMoves, *endBadCaptures;
int stage;
Square recaptureSquare;
Value threshold;
Depth depth;
ExtMove moves[MAX_MOVES];
const Position& pos;
const ButterflyHistory* mainHistory;
const CapturePieceToHistory* captureHistory;
const PieceToHistory** continuationHistory;
Move ttMove;
ExtMove refutations[3], *cur, *endMoves, *endBadCaptures;
int stage;
Square recaptureSquare;
Value threshold;
Depth depth;
ExtMove moves[MAX_MOVES];
};
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef MOVEPICK_H_INCLUDED
#endif // #ifndef MOVEPICK_H_INCLUDED

View file

@ -39,136 +39,144 @@
namespace Stockfish::Eval::NNUE {
// Input feature converter
LargePagePtr<FeatureTransformer> featureTransformer;
// Input feature converter
LargePagePtr<FeatureTransformer> featureTransformer;
// Evaluation function
AlignedPtr<Network> network[LayerStacks];
// Evaluation function
AlignedPtr<Network> network[LayerStacks];
// Evaluation function file name
std::string fileName;
std::string netDescription;
// Evaluation function file name
std::string fileName;
std::string netDescription;
namespace Detail {
namespace Detail {
// Initialize the evaluation function parameters
template <typename T>
void initialize(AlignedPtr<T>& pointer) {
// Initialize the evaluation function parameters
template<typename T>
void initialize(AlignedPtr<T>& pointer) {
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
}
template <typename T>
void initialize(LargePagePtr<T>& pointer) {
template<typename T>
void initialize(LargePagePtr<T>& pointer) {
static_assert(alignof(T) <= 4096, "aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
static_assert(alignof(T) <= 4096,
"aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
}
// Read evaluation function parameters
template <typename T>
bool read_parameters(std::istream& stream, T& reference) {
// Read evaluation function parameters
template<typename T>
bool read_parameters(std::istream& stream, T& reference) {
std::uint32_t header;
header = read_little_endian<std::uint32_t>(stream);
if (!stream || header != T::get_hash_value()) return false;
if (!stream || header != T::get_hash_value())
return false;
return reference.read_parameters(stream);
}
}
// Write evaluation function parameters
template <typename T>
bool write_parameters(std::ostream& stream, const T& reference) {
// Write evaluation function parameters
template<typename T>
bool write_parameters(std::ostream& stream, const T& reference) {
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
return reference.write_parameters(stream);
}
}
} // namespace Detail
} // namespace Detail
// Initialize the evaluation function parameters
static void initialize() {
// Initialize the evaluation function parameters
static void initialize() {
Detail::initialize(featureTransformer);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(network[i]);
}
Detail::initialize(network[i]);
}
// Read network header
static bool read_header(std::istream& stream, std::uint32_t* hashValue, std::string* desc)
{
// Read network header
static bool read_header(std::istream& stream, std::uint32_t* hashValue, std::string* desc) {
std::uint32_t version, size;
version = read_little_endian<std::uint32_t>(stream);
*hashValue = read_little_endian<std::uint32_t>(stream);
size = read_little_endian<std::uint32_t>(stream);
if (!stream || version != Version) return false;
version = read_little_endian<std::uint32_t>(stream);
*hashValue = read_little_endian<std::uint32_t>(stream);
size = read_little_endian<std::uint32_t>(stream);
if (!stream || version != Version)
return false;
desc->resize(size);
stream.read(&(*desc)[0], size);
return !stream.fail();
}
}
// Write network header
static bool write_header(std::ostream& stream, std::uint32_t hashValue, const std::string& desc)
{
// Write network header
static bool write_header(std::ostream& stream, std::uint32_t hashValue, const std::string& desc) {
write_little_endian<std::uint32_t>(stream, Version);
write_little_endian<std::uint32_t>(stream, hashValue);
write_little_endian<std::uint32_t>(stream, (std::uint32_t)desc.size());
write_little_endian<std::uint32_t>(stream, (std::uint32_t) desc.size());
stream.write(&desc[0], desc.size());
return !stream.fail();
}
}
// Read network parameters
static bool read_parameters(std::istream& stream) {
// Read network parameters
static bool read_parameters(std::istream& stream) {
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription)) return false;
if (hashValue != HashValue) return false;
if (!Detail::read_parameters(stream, *featureTransformer)) return false;
if (!read_header(stream, &hashValue, &netDescription))
return false;
if (hashValue != HashValue)
return false;
if (!Detail::read_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::read_parameters(stream, *(network[i]))) return false;
if (!Detail::read_parameters(stream, *(network[i])))
return false;
return stream && stream.peek() == std::ios::traits_type::eof();
}
}
// Write network parameters
static bool write_parameters(std::ostream& stream) {
// Write network parameters
static bool write_parameters(std::ostream& stream) {
if (!write_header(stream, HashValue, netDescription)) return false;
if (!Detail::write_parameters(stream, *featureTransformer)) return false;
if (!write_header(stream, HashValue, netDescription))
return false;
if (!Detail::write_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::write_parameters(stream, *(network[i]))) return false;
if (!Detail::write_parameters(stream, *(network[i])))
return false;
return bool(stream);
}
}
void hint_common_parent_position(const Position& pos) {
void hint_common_parent_position(const Position& pos) {
featureTransformer->hint_common_access(pos);
}
}
// Evaluation function. Perform differential calculation.
Value evaluate(const Position& pos, bool adjusted, int* complexity) {
// Evaluation function. Perform differential calculation.
Value evaluate(const Position& pos, bool adjusted, int* complexity) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
constexpr int delta = 24;
constexpr int delta = 24;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned[
FeatureTransformer::BufferSize + alignment / sizeof(TransformedFeatureType)];
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment)
TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
alignas(alignment) TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
if (complexity)
@ -176,158 +184,164 @@ namespace Stockfish::Eval::NNUE {
// Give more value to positional evaluation when adjusted flag is set
if (adjusted)
return static_cast<Value>(((1024 - delta) * psqt + (1024 + delta) * positional) / (1024 * OutputScale));
return static_cast<Value>(((1024 - delta) * psqt + (1024 + delta) * positional)
/ (1024 * OutputScale));
else
return static_cast<Value>((psqt + positional) / OutputScale);
}
}
struct NnueEvalTrace {
struct NnueEvalTrace {
static_assert(LayerStacks == PSQTBuckets);
Value psqt[LayerStacks];
Value positional[LayerStacks];
Value psqt[LayerStacks];
Value positional[LayerStacks];
std::size_t correctBucket;
};
};
static NnueEvalTrace trace_evaluate(const Position& pos) {
static NnueEvalTrace trace_evaluate(const Position& pos) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned[
FeatureTransformer::BufferSize + alignment / sizeof(TransformedFeatureType)];
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment)
TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
alignas(alignment) TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
NnueEvalTrace t{};
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket) {
const auto materialist = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
{
const auto materialist = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
t.psqt[bucket] = static_cast<Value>( materialist / OutputScale );
t.positional[bucket] = static_cast<Value>( positional / OutputScale );
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
}
return t;
}
}
constexpr std::string_view PieceToChar(" PNBRQK pnbrqk");
constexpr std::string_view PieceToChar(" PNBRQK pnbrqk");
// format_cp_compact() converts a Value into (centi)pawns and writes it in a buffer.
// The buffer must have capacity for at least 5 chars.
static void format_cp_compact(Value v, char* buffer) {
// format_cp_compact() converts a Value into (centi)pawns and writes it in a buffer.
// The buffer must have capacity for at least 5 chars.
static void format_cp_compact(Value v, char* buffer) {
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
int cp = std::abs(UCI::to_cp(v));
if (cp >= 10000)
{
buffer[1] = '0' + cp / 10000; cp %= 10000;
buffer[2] = '0' + cp / 1000; cp %= 1000;
buffer[1] = '0' + cp / 10000;
cp %= 10000;
buffer[2] = '0' + cp / 1000;
cp %= 1000;
buffer[3] = '0' + cp / 100;
buffer[4] = ' ';
}
else if (cp >= 1000)
{
buffer[1] = '0' + cp / 1000; cp %= 1000;
buffer[2] = '0' + cp / 100; cp %= 100;
buffer[1] = '0' + cp / 1000;
cp %= 1000;
buffer[2] = '0' + cp / 100;
cp %= 100;
buffer[3] = '.';
buffer[4] = '0' + cp / 10;
}
else
{
buffer[1] = '0' + cp / 100; cp %= 100;
buffer[1] = '0' + cp / 100;
cp %= 100;
buffer[2] = '.';
buffer[3] = '0' + cp / 10; cp %= 10;
buffer[3] = '0' + cp / 10;
cp %= 10;
buffer[4] = '0' + cp / 1;
}
}
}
// format_cp_aligned_dot() converts a Value into pawns, always keeping two decimals
static void format_cp_aligned_dot(Value v, std::stringstream &stream) {
// format_cp_aligned_dot() converts a Value into pawns, always keeping two decimals
static void format_cp_aligned_dot(Value v, std::stringstream& stream) {
const double pawns = std::abs(0.01 * UCI::to_cp(v));
stream << (v < 0 ? '-' : v > 0 ? '+' : ' ')
<< std::setiosflags(std::ios::fixed)
<< std::setw(6)
<< std::setprecision(2)
<< pawns;
}
stream << (v < 0 ? '-'
: v > 0 ? '+'
: ' ')
<< std::setiosflags(std::ios::fixed) << std::setw(6) << std::setprecision(2) << pawns;
}
// trace() returns a string with the value of each piece on a board,
// and a table for (PSQT, Layers) values bucket by bucket.
std::string trace(Position& pos) {
// trace() returns a string with the value of each piece on a board,
// and a table for (PSQT, Layers) values bucket by bucket.
std::string trace(Position& pos) {
std::stringstream ss;
char board[3*8+1][8*8+2];
char board[3 * 8 + 1][8 * 8 + 2];
std::memset(board, ' ', sizeof(board));
for (int row = 0; row < 3*8+1; ++row)
board[row][8*8+1] = '\0';
for (int row = 0; row < 3 * 8 + 1; ++row)
board[row][8 * 8 + 1] = '\0';
// A lambda to output one box of the board
auto writeSquare = [&board](File file, Rank rank, Piece pc, Value value) {
const int x = int(file) * 8;
const int y = (7 - int(rank)) * 3;
for (int i = 1; i < 8; ++i)
board[y][x+i] = board[y+3][x+i] = '-';
for (int i = 1; i < 3; ++i)
board[y+i][x] = board[y+i][x+8] = '|';
board[y][x] = board[y][x+8] = board[y+3][x+8] = board[y+3][x] = '+';
if (pc != NO_PIECE)
board[y+1][x+4] = PieceToChar[pc];
if (value != VALUE_NONE)
format_cp_compact(value, &board[y+2][x+2]);
const int x = int(file) * 8;
const int y = (7 - int(rank)) * 3;
for (int i = 1; i < 8; ++i)
board[y][x + i] = board[y + 3][x + i] = '-';
for (int i = 1; i < 3; ++i)
board[y + i][x] = board[y + i][x + 8] = '|';
board[y][x] = board[y][x + 8] = board[y + 3][x + 8] = board[y + 3][x] = '+';
if (pc != NO_PIECE)
board[y + 1][x + 4] = PieceToChar[pc];
if (value != VALUE_NONE)
format_cp_compact(value, &board[y + 2][x + 2]);
};
// We estimate the value of each piece by doing a differential evaluation from
// the current base eval, simulating the removal of the piece from its square.
Value base = evaluate(pos);
base = pos.side_to_move() == WHITE ? base : -base;
base = pos.side_to_move() == WHITE ? base : -base;
for (File f = FILE_A; f <= FILE_H; ++f)
for (Rank r = RANK_1; r <= RANK_8; ++r)
{
Square sq = make_square(f, r);
Piece pc = pos.piece_on(sq);
Value v = VALUE_NONE;
if (pc != NO_PIECE && type_of(pc) != KING)
for (Rank r = RANK_1; r <= RANK_8; ++r)
{
auto st = pos.state();
Square sq = make_square(f, r);
Piece pc = pos.piece_on(sq);
Value v = VALUE_NONE;
pos.remove_piece(sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
if (pc != NO_PIECE && type_of(pc) != KING)
{
auto st = pos.state();
Value eval = evaluate(pos);
eval = pos.side_to_move() == WHITE ? eval : -eval;
v = base - eval;
pos.remove_piece(sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
pos.put_piece(pc, sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
Value eval = evaluate(pos);
eval = pos.side_to_move() == WHITE ? eval : -eval;
v = base - eval;
pos.put_piece(pc, sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
}
writeSquare(f, r, pc, v);
}
writeSquare(f, r, pc, v);
}
ss << " NNUE derived piece values:\n";
for (int row = 0; row < 3*8+1; ++row)
for (int row = 0; row < 3 * 8 + 1; ++row)
ss << board[row] << '\n';
ss << '\n';
@ -342,41 +356,47 @@ namespace Stockfish::Eval::NNUE {
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket)
{
ss << "| " << bucket << " ";
ss << " | "; format_cp_aligned_dot(t.psqt[bucket], ss); ss << " "
<< " | "; format_cp_aligned_dot(t.positional[bucket], ss); ss << " "
<< " | "; format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], ss); ss << " "
<< " |";
if (bucket == t.correctBucket)
ss << " <-- this bucket is used";
ss << '\n';
ss << "| " << bucket << " ";
ss << " | ";
format_cp_aligned_dot(t.psqt[bucket], ss);
ss << " "
<< " | ";
format_cp_aligned_dot(t.positional[bucket], ss);
ss << " "
<< " | ";
format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], ss);
ss << " "
<< " |";
if (bucket == t.correctBucket)
ss << " <-- this bucket is used";
ss << '\n';
}
ss << "+------------+------------+------------+------------+\n";
return ss.str();
}
}
// Load eval, from a file stream or a memory stream
bool load_eval(std::string name, std::istream& stream) {
// Load eval, from a file stream or a memory stream
bool load_eval(std::string name, std::istream& stream) {
initialize();
fileName = name;
return read_parameters(stream);
}
}
// Save eval, to a file stream or a memory stream
bool save_eval(std::ostream& stream) {
// Save eval, to a file stream or a memory stream
bool save_eval(std::ostream& stream) {
if (fileName.empty())
return false;
return false;
return write_parameters(stream);
}
}
// Save eval, to a file given by its name
bool save_eval(const std::optional<std::string>& filename) {
// Save eval, to a file given by its name
bool save_eval(const std::optional<std::string>& filename) {
std::string actualFilename;
std::string msg;
@ -387,23 +407,23 @@ namespace Stockfish::Eval::NNUE {
{
if (currentEvalFileName != EvalFileDefaultName)
{
msg = "Failed to export a net. A non-embedded net can only be saved if the filename is specified";
msg =
"Failed to export a net. A non-embedded net can only be saved if the filename is specified";
sync_cout << msg << sync_endl;
return false;
sync_cout << msg << sync_endl;
return false;
}
actualFilename = EvalFileDefaultName;
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save_eval(stream);
bool saved = save_eval(stream);
msg = saved ? "Network saved successfully to " + actualFilename
: "Failed to export a net";
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
sync_cout << msg << sync_endl;
return saved;
}
}
} // namespace Stockfish::Eval::NNUE
} // namespace Stockfish::Eval::NNUE

View file

@ -32,48 +32,48 @@
#include "nnue_feature_transformer.h"
namespace Stockfish {
class Position;
enum Value : int;
class Position;
enum Value : int;
}
namespace Stockfish::Eval::NNUE {
// Hash value of evaluation function structure
constexpr std::uint32_t HashValue =
FeatureTransformer::get_hash_value() ^ Network::get_hash_value();
// Hash value of evaluation function structure
constexpr std::uint32_t HashValue =
FeatureTransformer::get_hash_value() ^ Network::get_hash_value();
// Deleter for automating release of memory area
template <typename T>
struct AlignedDeleter {
// Deleter for automating release of memory area
template<typename T>
struct AlignedDeleter {
void operator()(T* ptr) const {
ptr->~T();
std_aligned_free(ptr);
ptr->~T();
std_aligned_free(ptr);
}
};
};
template <typename T>
struct LargePageDeleter {
template<typename T>
struct LargePageDeleter {
void operator()(T* ptr) const {
ptr->~T();
aligned_large_pages_free(ptr);
ptr->~T();
aligned_large_pages_free(ptr);
}
};
};
template <typename T>
using AlignedPtr = std::unique_ptr<T, AlignedDeleter<T>>;
template<typename T>
using AlignedPtr = std::unique_ptr<T, AlignedDeleter<T>>;
template <typename T>
using LargePagePtr = std::unique_ptr<T, LargePageDeleter<T>>;
template<typename T>
using LargePagePtr = std::unique_ptr<T, LargePageDeleter<T>>;
std::string trace(Position& pos);
Value evaluate(const Position& pos, bool adjusted = false, int* complexity = nullptr);
void hint_common_parent_position(const Position& pos);
std::string trace(Position& pos);
Value evaluate(const Position& pos, bool adjusted = false, int* complexity = nullptr);
void hint_common_parent_position(const Position& pos);
bool load_eval(std::string name, std::istream& stream);
bool save_eval(std::ostream& stream);
bool save_eval(const std::optional<std::string>& filename);
bool load_eval(std::string name, std::istream& stream);
bool save_eval(std::ostream& stream);
bool save_eval(const std::optional<std::string>& filename);
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_EVALUATE_NNUE_H_INCLUDED
#endif // #ifndef NNUE_EVALUATE_NNUE_H_INCLUDED

View file

@ -27,61 +27,60 @@
namespace Stockfish::Eval::NNUE::Features {
// Index of a feature for a given king position and another piece on some square
template<Color Perspective>
inline IndexType HalfKAv2_hm::make_index(Square s, Piece pc, Square ksq) {
return IndexType((int(s) ^ OrientTBL[Perspective][ksq]) + PieceSquareIndex[Perspective][pc] + KingBuckets[Perspective][ksq]);
}
// Index of a feature for a given king position and another piece on some square
template<Color Perspective>
inline IndexType HalfKAv2_hm::make_index(Square s, Piece pc, Square ksq) {
return IndexType((int(s) ^ OrientTBL[Perspective][ksq]) + PieceSquareIndex[Perspective][pc]
+ KingBuckets[Perspective][ksq]);
}
// Get a list of indices for active features
template<Color Perspective>
void HalfKAv2_hm::append_active_indices(
const Position& pos,
IndexList& active
) {
Square ksq = pos.square<KING>(Perspective);
Bitboard bb = pos.pieces();
// Get a list of indices for active features
template<Color Perspective>
void HalfKAv2_hm::append_active_indices(const Position& pos, IndexList& active) {
Square ksq = pos.square<KING>(Perspective);
Bitboard bb = pos.pieces();
while (bb)
{
Square s = pop_lsb(bb);
active.push_back(make_index<Perspective>(s, pos.piece_on(s), ksq));
Square s = pop_lsb(bb);
active.push_back(make_index<Perspective>(s, pos.piece_on(s), ksq));
}
}
}
// Explicit template instantiations
template void HalfKAv2_hm::append_active_indices<WHITE>(const Position& pos, IndexList& active);
template void HalfKAv2_hm::append_active_indices<BLACK>(const Position& pos, IndexList& active);
// Explicit template instantiations
template void HalfKAv2_hm::append_active_indices<WHITE>(const Position& pos, IndexList& active);
template void HalfKAv2_hm::append_active_indices<BLACK>(const Position& pos, IndexList& active);
// append_changed_indices() : get a list of indices for recently changed features
template<Color Perspective>
void HalfKAv2_hm::append_changed_indices(
Square ksq,
const DirtyPiece& dp,
IndexList& removed,
IndexList& added
) {
for (int i = 0; i < dp.dirty_num; ++i) {
if (dp.from[i] != SQ_NONE)
removed.push_back(make_index<Perspective>(dp.from[i], dp.piece[i], ksq));
if (dp.to[i] != SQ_NONE)
added.push_back(make_index<Perspective>(dp.to[i], dp.piece[i], ksq));
// append_changed_indices() : get a list of indices for recently changed features
template<Color Perspective>
void HalfKAv2_hm::append_changed_indices(Square ksq,
const DirtyPiece& dp,
IndexList& removed,
IndexList& added) {
for (int i = 0; i < dp.dirty_num; ++i)
{
if (dp.from[i] != SQ_NONE)
removed.push_back(make_index<Perspective>(dp.from[i], dp.piece[i], ksq));
if (dp.to[i] != SQ_NONE)
added.push_back(make_index<Perspective>(dp.to[i], dp.piece[i], ksq));
}
}
}
// Explicit template instantiations
template void HalfKAv2_hm::append_changed_indices<WHITE>(Square ksq, const DirtyPiece& dp, IndexList& removed, IndexList& added);
template void HalfKAv2_hm::append_changed_indices<BLACK>(Square ksq, const DirtyPiece& dp, IndexList& removed, IndexList& added);
// Explicit template instantiations
template void HalfKAv2_hm::append_changed_indices<WHITE>(Square ksq,
const DirtyPiece& dp,
IndexList& removed,
IndexList& added);
template void HalfKAv2_hm::append_changed_indices<BLACK>(Square ksq,
const DirtyPiece& dp,
IndexList& removed,
IndexList& added);
int HalfKAv2_hm::update_cost(const StateInfo* st) {
return st->dirtyPiece.dirty_num;
}
int HalfKAv2_hm::update_cost(const StateInfo* st) { return st->dirtyPiece.dirty_num; }
int HalfKAv2_hm::refresh_cost(const Position& pos) {
return pos.count<ALL_PIECES>();
}
int HalfKAv2_hm::refresh_cost(const Position& pos) { return pos.count<ALL_PIECES>(); }
bool HalfKAv2_hm::requires_refresh(const StateInfo* st, Color perspective) {
bool HalfKAv2_hm::requires_refresh(const StateInfo* st, Color perspective) {
return st->dirtyPiece.piece[0] == make_piece(perspective, KING);
}
}
} // namespace Stockfish::Eval::NNUE::Features

View file

@ -28,41 +28,40 @@
#include "../nnue_common.h"
namespace Stockfish {
struct StateInfo;
class Position;
struct StateInfo;
class Position;
}
namespace Stockfish::Eval::NNUE::Features {
// Feature HalfKAv2_hm: Combination of the position of own king
// and the position of pieces. Position mirrored such that king always on e..h files.
class HalfKAv2_hm {
// Feature HalfKAv2_hm: Combination of the position of own king
// and the position of pieces. Position mirrored such that king always on e..h files.
class HalfKAv2_hm {
// unique number for each piece type on each square
enum {
PS_NONE = 0,
PS_W_PAWN = 0,
PS_B_PAWN = 1 * SQUARE_NB,
PS_W_KNIGHT = 2 * SQUARE_NB,
PS_B_KNIGHT = 3 * SQUARE_NB,
PS_W_BISHOP = 4 * SQUARE_NB,
PS_B_BISHOP = 5 * SQUARE_NB,
PS_W_ROOK = 6 * SQUARE_NB,
PS_B_ROOK = 7 * SQUARE_NB,
PS_W_QUEEN = 8 * SQUARE_NB,
PS_B_QUEEN = 9 * SQUARE_NB,
PS_KING = 10 * SQUARE_NB,
PS_NB = 11 * SQUARE_NB
PS_NONE = 0,
PS_W_PAWN = 0,
PS_B_PAWN = 1 * SQUARE_NB,
PS_W_KNIGHT = 2 * SQUARE_NB,
PS_B_KNIGHT = 3 * SQUARE_NB,
PS_W_BISHOP = 4 * SQUARE_NB,
PS_B_BISHOP = 5 * SQUARE_NB,
PS_W_ROOK = 6 * SQUARE_NB,
PS_B_ROOK = 7 * SQUARE_NB,
PS_W_QUEEN = 8 * SQUARE_NB,
PS_B_QUEEN = 9 * SQUARE_NB,
PS_KING = 10 * SQUARE_NB,
PS_NB = 11 * SQUARE_NB
};
static constexpr IndexType PieceSquareIndex[COLOR_NB][PIECE_NB] = {
// convention: W - us, B - them
// viewed from other side, W and B are reversed
{ PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE },
{ PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE }
};
{PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE},
{PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE}};
// Index of a feature for a given king position and another piece on some square
template<Color Perspective>
@ -77,9 +76,10 @@ namespace Stockfish::Eval::NNUE::Features {
// Number of feature dimensions
static constexpr IndexType Dimensions =
static_cast<IndexType>(SQUARE_NB) * static_cast<IndexType>(PS_NB) / 2;
static_cast<IndexType>(SQUARE_NB) * static_cast<IndexType>(PS_NB) / 2;
#define B(v) (v * PS_NB)
// clang-format off
static constexpr int KingBuckets[COLOR_NB][SQUARE_NB] = {
{ B(28), B(29), B(30), B(31), B(31), B(30), B(29), B(28),
B(24), B(25), B(26), B(27), B(27), B(26), B(25), B(24),
@ -98,8 +98,9 @@ namespace Stockfish::Eval::NNUE::Features {
B(24), B(25), B(26), B(27), B(27), B(26), B(25), B(24),
B(28), B(29), B(30), B(31), B(31), B(30), B(29), B(28) }
};
// clang-format on
#undef B
// clang-format off
// Orient a square according to perspective (rotates by 180 for black)
static constexpr int OrientTBL[COLOR_NB][SQUARE_NB] = {
{ SQ_H1, SQ_H1, SQ_H1, SQ_H1, SQ_A1, SQ_A1, SQ_A1, SQ_A1,
@ -119,25 +120,20 @@ namespace Stockfish::Eval::NNUE::Features {
SQ_H8, SQ_H8, SQ_H8, SQ_H8, SQ_A8, SQ_A8, SQ_A8, SQ_A8,
SQ_H8, SQ_H8, SQ_H8, SQ_H8, SQ_A8, SQ_A8, SQ_A8, SQ_A8 }
};
// clang-format on
// Maximum number of simultaneously active features.
static constexpr IndexType MaxActiveDimensions = 32;
using IndexList = ValueList<IndexType, MaxActiveDimensions>;
using IndexList = ValueList<IndexType, MaxActiveDimensions>;
// Get a list of indices for active features
template<Color Perspective>
static void append_active_indices(
const Position& pos,
IndexList& active);
static void append_active_indices(const Position& pos, IndexList& active);
// Get a list of indices for recently changed features
template<Color Perspective>
static void append_changed_indices(
Square ksq,
const DirtyPiece& dp,
IndexList& removed,
IndexList& added
);
static void
append_changed_indices(Square ksq, const DirtyPiece& dp, IndexList& removed, IndexList& added);
// Returns the cost of updating one perspective, the most costly one.
// Assumes no refresh needed.
@ -147,8 +143,8 @@ namespace Stockfish::Eval::NNUE::Features {
// Returns whether the change stored in this StateInfo means that
// a full accumulator refresh is required.
static bool requires_refresh(const StateInfo* st, Color perspective);
};
};
} // namespace Stockfish::Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURES_HALF_KA_V2_HM_H_INCLUDED
#endif // #ifndef NNUE_FEATURES_HALF_KA_V2_HM_H_INCLUDED

View file

@ -42,95 +42,102 @@ namespace Stockfish::Eval::NNUE::Layers {
// Fallback implementation for older/other architectures.
// Requires the input to be padded to at least 16 values.
#if !defined(USE_SSSE3)
template <IndexType InputDimensions, IndexType PaddedInputDimensions, IndexType OutputDimensions>
static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input)
{
# if defined(USE_SSE2) || defined(USE_NEON_DOTPROD) || defined(USE_NEON)
# if defined(USE_SSE2)
template<IndexType InputDimensions, IndexType PaddedInputDimensions, IndexType OutputDimensions>
static void affine_transform_non_ssse3(std::int32_t* output,
const std::int8_t* weights,
const std::int32_t* biases,
const std::uint8_t* input) {
#if defined(USE_SSE2) || defined(USE_NEON_DOTPROD) || defined(USE_NEON)
#if defined(USE_SSE2)
// At least a multiple of 16, with SSE2.
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast<const __m128i*>(input);
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast<const __m128i*>(input);
# elif defined(USE_NEON_DOTPROD)
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const auto inputVector = reinterpret_cast<const int8x16_t*>(input);
#elif defined(USE_NEON_DOTPROD)
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const auto inputVector = reinterpret_cast<const int8x16_t*>(input);
# elif defined(USE_NEON)
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
# endif
#elif defined(USE_NEON)
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
#endif
for (IndexType i = 0; i < OutputDimensions; ++i) {
const IndexType offset = i * PaddedInputDimensions;
for (IndexType i = 0; i < OutputDimensions; ++i)
{
const IndexType offset = i * PaddedInputDimensions;
# if defined(USE_SSE2)
__m128i sumLo = _mm_cvtsi32_si128(biases[i]);
__m128i sumHi = Zeros;
const auto row = reinterpret_cast<const __m128i*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&inputVector[j]);
__m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
__m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
__m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
__m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_epi32(sumLo, productLo);
sumHi = _mm_add_epi32(sumHi, productHi);
}
__m128i sum = _mm_add_epi32(sumLo, sumHi);
__m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sumHigh_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
#if defined(USE_SSE2)
__m128i sumLo = _mm_cvtsi32_si128(biases[i]);
__m128i sumHi = Zeros;
const auto row = reinterpret_cast<const __m128i*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&inputVector[j]);
__m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
__m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
__m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
__m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_epi32(sumLo, productLo);
sumHi = _mm_add_epi32(sumHi, productHi);
}
__m128i sum = _mm_add_epi32(sumLo, sumHi);
__m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sumHigh_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
# elif defined(USE_NEON_DOTPROD)
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x16_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
sum = vdotq_s32(sum, inputVector[j], row[j]);
}
output[i] = vaddvq_s32(sum);
#elif defined(USE_NEON_DOTPROD)
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x16_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
sum = vdotq_s32(sum, inputVector[j], row[j]);
}
output[i] = vaddvq_s32(sum);
# elif defined(USE_NEON)
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
#elif defined(USE_NEON)
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
# endif
#endif
}
# else
std::memcpy(output, biases, sizeof(std::int32_t) * OutputDimensions);
#else
std::memcpy(output, biases, sizeof(std::int32_t) * OutputDimensions);
// Traverse weights in transpose order to take advantage of input sparsity
for (IndexType i = 0; i < InputDimensions; ++i)
if (input[i]) {
const std::int8_t* w = &weights[i];
const int in = input[i];
for (IndexType j = 0; j < OutputDimensions; ++j)
output[j] += w[j * PaddedInputDimensions] * in;
}
# endif
}
// Traverse weights in transpose order to take advantage of input sparsity
for (IndexType i = 0; i < InputDimensions; ++i)
if (input[i])
{
const std::int8_t* w = &weights[i];
const int in = input[i];
for (IndexType j = 0; j < OutputDimensions; ++j)
output[j] += w[j * PaddedInputDimensions] * in;
}
#endif
}
#endif
template <IndexType InDims, IndexType OutDims>
class AffineTransform {
template<IndexType InDims, IndexType OutDims>
class AffineTransform {
public:
// Input/output type
using InputType = std::uint8_t;
using InputType = std::uint8_t;
using OutputType = std::int32_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
@ -142,175 +149,168 @@ namespace Stockfish::Eval::NNUE::Layers {
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}
static constexpr IndexType get_weight_index_scrambled(IndexType i)
{
return
(i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 +
i / PaddedInputDimensions * 4 +
i % 4;
static constexpr IndexType get_weight_index_scrambled(IndexType i) {
return (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4
+ i / PaddedInputDimensions * 4 + i % 4;
}
static constexpr IndexType get_weight_index(IndexType i)
{
#if defined (USE_SSSE3)
return get_weight_index_scrambled(i);
static constexpr IndexType get_weight_index(IndexType i) {
#if defined(USE_SSSE3)
return get_weight_index_scrambled(i);
#else
return i;
return i;
#endif
}
// Read network parameters
bool read_parameters(std::istream& stream) {
read_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
read_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
return !stream.fail();
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian<BiasType>(stream, biases, OutputDimensions);
write_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
return !stream.fail();
return !stream.fail();
}
// Forward propagation
void propagate(
const InputType* input, OutputType* output) const {
void propagate(const InputType* input, OutputType* output) const {
#if defined (USE_SSSE3)
#if defined(USE_SSSE3)
if constexpr (OutputDimensions > 1)
{
#if defined (USE_AVX512)
using vec_t = __m512i;
#define vec_setzero _mm512_setzero_si512
#define vec_set_32 _mm512_set1_epi32
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m512_add_dpbusd_epi32x2
#define vec_hadd Simd::m512_hadd
#elif defined (USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2
#define vec_hadd Simd::m256_hadd
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2
#define vec_hadd Simd::m128_hadd
#endif
static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType);
static_assert(OutputDimensions % OutputSimdWidth == 0);
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / 4;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
const vec_t* biasvec = reinterpret_cast<const vec_t*>(biases);
vec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasvec[k];
for (IndexType i = 0; i < NumChunks; i += 2)
if constexpr (OutputDimensions > 1)
{
const vec_t in0 = vec_set_32(input32[i + 0]);
const vec_t in1 = vec_set_32(input32[i + 1]);
const auto col0 = reinterpret_cast<const vec_t*>(&weights[(i + 0) * OutputDimensions * 4]);
const auto col1 = reinterpret_cast<const vec_t*>(&weights[(i + 1) * OutputDimensions * 4]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32x2(acc[k], in0, col0[k], in1, col1[k]);
#if defined(USE_AVX512)
using vec_t = __m512i;
#define vec_setzero _mm512_setzero_si512
#define vec_set_32 _mm512_set1_epi32
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m512_add_dpbusd_epi32x2
#define vec_hadd Simd::m512_hadd
#elif defined(USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2
#define vec_hadd Simd::m256_hadd
#elif defined(USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2
#define vec_hadd Simd::m128_hadd
#endif
static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType);
static_assert(OutputDimensions % OutputSimdWidth == 0);
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / 4;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
const vec_t* biasvec = reinterpret_cast<const vec_t*>(biases);
vec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasvec[k];
for (IndexType i = 0; i < NumChunks; i += 2)
{
const vec_t in0 = vec_set_32(input32[i + 0]);
const vec_t in1 = vec_set_32(input32[i + 1]);
const auto col0 =
reinterpret_cast<const vec_t*>(&weights[(i + 0) * OutputDimensions * 4]);
const auto col1 =
reinterpret_cast<const vec_t*>(&weights[(i + 1) * OutputDimensions * 4]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32x2(acc[k], in0, col0[k], in1, col1[k]);
}
vec_t* outptr = reinterpret_cast<vec_t*>(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
#undef vec_setzero
#undef vec_set_32
#undef vec_add_dpbusd_32
#undef vec_add_dpbusd_32x2
#undef vec_hadd
}
vec_t* outptr = reinterpret_cast<vec_t*>(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
# undef vec_setzero
# undef vec_set_32
# undef vec_add_dpbusd_32
# undef vec_add_dpbusd_32x2
# undef vec_hadd
}
else if constexpr (OutputDimensions == 1)
{
// We cannot use AVX512 for the last layer because there's only 32 inputs and the buffer is not padded to 64 elements.
#if defined (USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2
#define vec_hadd Simd::m256_hadd
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2
#define vec_hadd Simd::m128_hadd
#endif
const auto inputVector = reinterpret_cast<const vec_t*>(input);
static constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(InputType);
static_assert(PaddedInputDimensions % InputSimdWidth == 0);
constexpr IndexType NumChunks = PaddedInputDimensions / InputSimdWidth;
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast<const vec_t*>(&weights[0]);
for (int j = 0; j < int(NumChunks); ++j)
else if constexpr (OutputDimensions == 1)
{
const vec_t in = inputVector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
// We cannot use AVX512 for the last layer because there's only 32 inputs and the buffer is not padded to 64 elements.
#if defined(USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2
#define vec_hadd Simd::m256_hadd
#elif defined(USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2
#define vec_hadd Simd::m128_hadd
#endif
const auto inputVector = reinterpret_cast<const vec_t*>(input);
static constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(InputType);
static_assert(PaddedInputDimensions % InputSimdWidth == 0);
constexpr IndexType NumChunks = PaddedInputDimensions / InputSimdWidth;
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast<const vec_t*>(&weights[0]);
for (int j = 0; j < int(NumChunks); ++j)
{
const vec_t in = inputVector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
}
output[0] = vec_hadd(sum0, biases[0]);
#undef vec_setzero
#undef vec_set_32
#undef vec_add_dpbusd_32
#undef vec_add_dpbusd_32x2
#undef vec_hadd
}
output[0] = vec_hadd(sum0, biases[0]);
# undef vec_setzero
# undef vec_set_32
# undef vec_add_dpbusd_32
# undef vec_add_dpbusd_32x2
# undef vec_hadd
}
#else
// Use old implementation for the other architectures.
affine_transform_non_ssse3<
InputDimensions,
PaddedInputDimensions,
OutputDimensions>(output, weights, biases, input);
// Use old implementation for the other architectures.
affine_transform_non_ssse3<InputDimensions, PaddedInputDimensions, OutputDimensions>(
output, weights, biases, input);
#endif
}
private:
using BiasType = OutputType;
using BiasType = OutputType;
using WeightType = std::int8_t;
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED

View file

@ -38,104 +38,110 @@
namespace Stockfish::Eval::NNUE::Layers {
#if (USE_SSSE3 | (USE_NEON >= 8))
alignas(CacheLineSize) static inline const std::array<std::array<std::uint16_t, 8>, 256> lookup_indices = [](){
std::array<std::array<std::uint16_t, 8>, 256> v{};
for (unsigned i = 0; i < 256; ++i)
{
std::uint64_t j = i, k = 0;
while(j)
v[i][k++] = pop_lsb(j);
}
return v;
alignas(CacheLineSize) static inline const
std::array<std::array<std::uint16_t, 8>, 256> lookup_indices = []() {
std::array<std::array<std::uint16_t, 8>, 256> v{};
for (unsigned i = 0; i < 256; ++i)
{
std::uint64_t j = i, k = 0;
while (j)
v[i][k++] = pop_lsb(j);
}
return v;
}();
// Find indices of nonzero numbers in an int32_t array
template<const IndexType InputDimensions>
void find_nnz(const std::int32_t* input, std::uint16_t* out, IndexType& count_out) {
#if defined (USE_SSSE3)
#if defined (USE_AVX512)
using vec_t = __m512i;
#define vec_nnz(a) _mm512_cmpgt_epi32_mask(a, _mm512_setzero_si512())
#elif defined (USE_AVX2)
using vec_t = __m256i;
#if defined(USE_VNNI) && !defined(USE_AVXVNNI)
#define vec_nnz(a) _mm256_cmpgt_epi32_mask(a, _mm256_setzero_si256())
#else
#define vec_nnz(a) _mm256_movemask_ps(_mm256_castsi256_ps(_mm256_cmpgt_epi32(a, _mm256_setzero_si256())))
// Find indices of nonzero numbers in an int32_t array
template<const IndexType InputDimensions>
void find_nnz(const std::int32_t* input, std::uint16_t* out, IndexType& count_out) {
#if defined(USE_SSSE3)
#if defined(USE_AVX512)
using vec_t = __m512i;
#define vec_nnz(a) _mm512_cmpgt_epi32_mask(a, _mm512_setzero_si512())
#elif defined(USE_AVX2)
using vec_t = __m256i;
#if defined(USE_VNNI) && !defined(USE_AVXVNNI)
#define vec_nnz(a) _mm256_cmpgt_epi32_mask(a, _mm256_setzero_si256())
#else
#define vec_nnz(a) \
_mm256_movemask_ps( \
_mm256_castsi256_ps(_mm256_cmpgt_epi32(a, _mm256_setzero_si256())))
#endif
#elif defined(USE_SSSE3)
using vec_t = __m128i;
#define vec_nnz(a) \
_mm_movemask_ps(_mm_castsi128_ps(_mm_cmpgt_epi32(a, _mm_setzero_si128())))
#endif
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_nnz(a) _mm_movemask_ps(_mm_castsi128_ps(_mm_cmpgt_epi32(a, _mm_setzero_si128())))
#endif
using vec128_t = __m128i;
#define vec128_zero _mm_setzero_si128()
#define vec128_set_16(a) _mm_set1_epi16(a)
#define vec128_load(a) _mm_load_si128(a)
#define vec128_storeu(a, b) _mm_storeu_si128(a, b)
#define vec128_add(a, b) _mm_add_epi16(a, b)
#elif defined (USE_NEON)
using vec_t = uint32x4_t;
#define vec128_zero _mm_setzero_si128()
#define vec128_set_16(a) _mm_set1_epi16(a)
#define vec128_load(a) _mm_load_si128(a)
#define vec128_storeu(a, b) _mm_storeu_si128(a, b)
#define vec128_add(a, b) _mm_add_epi16(a, b)
#elif defined(USE_NEON)
using vec_t = uint32x4_t;
static const std::uint32_t Mask[4] = {1, 2, 4, 8};
#define vec_nnz(a) vaddvq_u32(vandq_u32(vtstq_u32(a, a), vld1q_u32(Mask)))
using vec128_t = uint16x8_t;
#define vec128_zero vdupq_n_u16(0)
#define vec128_set_16(a) vdupq_n_u16(a)
#define vec128_load(a) vld1q_u16(reinterpret_cast<const std::uint16_t*>(a))
#define vec128_storeu(a, b) vst1q_u16(reinterpret_cast<std::uint16_t*>(a), b)
#define vec128_add(a, b) vaddq_u16(a, b)
#endif
#define vec_nnz(a) vaddvq_u32(vandq_u32(vtstq_u32(a, a), vld1q_u32(Mask)))
using vec128_t = uint16x8_t;
#define vec128_zero vdupq_n_u16(0)
#define vec128_set_16(a) vdupq_n_u16(a)
#define vec128_load(a) vld1q_u16(reinterpret_cast<const std::uint16_t*>(a))
#define vec128_storeu(a, b) vst1q_u16(reinterpret_cast<std::uint16_t*>(a), b)
#define vec128_add(a, b) vaddq_u16(a, b)
#endif
constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(std::int32_t);
// Inputs are processed InputSimdWidth at a time and outputs are processed 8 at a time so we process in chunks of max(InputSimdWidth, 8)
constexpr IndexType ChunkSize = std::max<IndexType>(InputSimdWidth, 8);
constexpr IndexType NumChunks = InputDimensions / ChunkSize;
constexpr IndexType InputsPerChunk = ChunkSize / InputSimdWidth;
constexpr IndexType ChunkSize = std::max<IndexType>(InputSimdWidth, 8);
constexpr IndexType NumChunks = InputDimensions / ChunkSize;
constexpr IndexType InputsPerChunk = ChunkSize / InputSimdWidth;
constexpr IndexType OutputsPerChunk = ChunkSize / 8;
const auto inputVector = reinterpret_cast<const vec_t*>(input);
IndexType count = 0;
vec128_t base = vec128_zero;
const vec128_t increment = vec128_set_16(8);
const auto inputVector = reinterpret_cast<const vec_t*>(input);
IndexType count = 0;
vec128_t base = vec128_zero;
const vec128_t increment = vec128_set_16(8);
for (IndexType i = 0; i < NumChunks; ++i)
{
// bitmask of nonzero values in this chunk
unsigned nnz = 0;
for (IndexType j = 0; j < InputsPerChunk; ++j)
{
const vec_t inputChunk = inputVector[i * InputsPerChunk + j];
nnz |= unsigned(vec_nnz(inputChunk)) << (j * InputSimdWidth);
}
for (IndexType j = 0; j < OutputsPerChunk; ++j)
{
const auto lookup = (nnz >> (j * 8)) & 0xFF;
const auto offsets = vec128_load(reinterpret_cast<const vec128_t*>(&lookup_indices[lookup]));
vec128_storeu(reinterpret_cast<vec128_t*>(out + count), vec128_add(base, offsets));
count += popcount(lookup);
base = vec128_add(base, increment);
}
// bitmask of nonzero values in this chunk
unsigned nnz = 0;
for (IndexType j = 0; j < InputsPerChunk; ++j)
{
const vec_t inputChunk = inputVector[i * InputsPerChunk + j];
nnz |= unsigned(vec_nnz(inputChunk)) << (j * InputSimdWidth);
}
for (IndexType j = 0; j < OutputsPerChunk; ++j)
{
const auto lookup = (nnz >> (j * 8)) & 0xFF;
const auto offsets =
vec128_load(reinterpret_cast<const vec128_t*>(&lookup_indices[lookup]));
vec128_storeu(reinterpret_cast<vec128_t*>(out + count), vec128_add(base, offsets));
count += popcount(lookup);
base = vec128_add(base, increment);
}
}
count_out = count;
}
# undef vec_nnz
# undef vec128_zero
# undef vec128_set_16
# undef vec128_load
# undef vec128_storeu
# undef vec128_add
}
#undef vec_nnz
#undef vec128_zero
#undef vec128_set_16
#undef vec128_load
#undef vec128_storeu
#undef vec128_add
#endif
// Sparse input implementation
template <IndexType InDims, IndexType OutDims>
class AffineTransformSparseInput {
// Sparse input implementation
template<IndexType InDims, IndexType OutDims>
class AffineTransformSparseInput {
public:
// Input/output type
using InputType = std::uint8_t;
using InputType = std::uint8_t;
using OutputType = std::int32_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;
static_assert(OutputDimensions % 16 == 0, "Only implemented for OutputDimensions divisible by 16.");
static_assert(OutputDimensions % 16 == 0,
"Only implemented for OutputDimensions divisible by 16.");
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
@ -152,127 +158,121 @@ namespace Stockfish::Eval::NNUE::Layers {
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}
static constexpr IndexType get_weight_index_scrambled(IndexType i)
{
return
(i / ChunkSize) % (PaddedInputDimensions / ChunkSize) * OutputDimensions * ChunkSize +
i / PaddedInputDimensions * ChunkSize +
i % ChunkSize;
static constexpr IndexType get_weight_index_scrambled(IndexType i) {
return (i / ChunkSize) % (PaddedInputDimensions / ChunkSize) * OutputDimensions * ChunkSize
+ i / PaddedInputDimensions * ChunkSize + i % ChunkSize;
}
static constexpr IndexType get_weight_index(IndexType i)
{
static constexpr IndexType get_weight_index(IndexType i) {
#if (USE_SSSE3 | (USE_NEON >= 8))
return get_weight_index_scrambled(i);
return get_weight_index_scrambled(i);
#else
return i;
return i;
#endif
}
// Read network parameters
bool read_parameters(std::istream& stream) {
read_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
read_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
return !stream.fail();
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian<BiasType>(stream, biases, OutputDimensions);
write_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
return !stream.fail();
return !stream.fail();
}
// Forward propagation
void propagate(
const InputType* input, OutputType* output) const {
void propagate(const InputType* input, OutputType* output) const {
#if (USE_SSSE3 | (USE_NEON >= 8))
#if defined (USE_AVX512)
using invec_t = __m512i;
using outvec_t = __m512i;
#define vec_set_32 _mm512_set1_epi32
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32
#elif defined (USE_AVX2)
using invec_t = __m256i;
using outvec_t = __m256i;
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#elif defined (USE_SSSE3)
using invec_t = __m128i;
using outvec_t = __m128i;
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#elif defined (USE_NEON_DOTPROD)
using invec_t = int8x16_t;
using outvec_t = int32x4_t;
#define vec_set_32(a) vreinterpretq_s8_u32(vdupq_n_u32(a))
#define vec_add_dpbusd_32 Simd::dotprod_m128_add_dpbusd_epi32
#elif defined (USE_NEON)
using invec_t = int8x16_t;
using outvec_t = int32x4_t;
#define vec_set_32(a) vreinterpretq_s8_u32(vdupq_n_u32(a))
#define vec_add_dpbusd_32 Simd::neon_m128_add_dpbusd_epi32
#endif
static constexpr IndexType OutputSimdWidth = sizeof(outvec_t) / sizeof(OutputType);
#if defined(USE_AVX512)
using invec_t = __m512i;
using outvec_t = __m512i;
#define vec_set_32 _mm512_set1_epi32
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32
#elif defined(USE_AVX2)
using invec_t = __m256i;
using outvec_t = __m256i;
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#elif defined(USE_SSSE3)
using invec_t = __m128i;
using outvec_t = __m128i;
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#elif defined(USE_NEON_DOTPROD)
using invec_t = int8x16_t;
using outvec_t = int32x4_t;
#define vec_set_32(a) vreinterpretq_s8_u32(vdupq_n_u32(a))
#define vec_add_dpbusd_32 Simd::dotprod_m128_add_dpbusd_epi32
#elif defined(USE_NEON)
using invec_t = int8x16_t;
using outvec_t = int32x4_t;
#define vec_set_32(a) vreinterpretq_s8_u32(vdupq_n_u32(a))
#define vec_add_dpbusd_32 Simd::neon_m128_add_dpbusd_epi32
#endif
static constexpr IndexType OutputSimdWidth = sizeof(outvec_t) / sizeof(OutputType);
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / ChunkSize;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
std::uint16_t nnz[NumChunks];
IndexType count;
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / ChunkSize;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
std::uint16_t nnz[NumChunks];
IndexType count;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
// Find indices of nonzero 32bit blocks
find_nnz<NumChunks>(input32, nnz, count);
// Find indices of nonzero 32bit blocks
find_nnz<NumChunks>(input32, nnz, count);
const outvec_t* biasvec = reinterpret_cast<const outvec_t*>(biases);
outvec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasvec[k];
for (IndexType j = 0; j < count; ++j)
{
const auto i = nnz[j];
const invec_t in = vec_set_32(input32[i]);
const auto col = reinterpret_cast<const invec_t*>(&weights[i * OutputDimensions * ChunkSize]);
const outvec_t* biasvec = reinterpret_cast<const outvec_t*>(biases);
outvec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32(acc[k], in, col[k]);
}
acc[k] = biasvec[k];
outvec_t* outptr = reinterpret_cast<outvec_t*>(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
# undef vec_set_32
# undef vec_add_dpbusd_32
for (IndexType j = 0; j < count; ++j)
{
const auto i = nnz[j];
const invec_t in = vec_set_32(input32[i]);
const auto col =
reinterpret_cast<const invec_t*>(&weights[i * OutputDimensions * ChunkSize]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32(acc[k], in, col[k]);
}
outvec_t* outptr = reinterpret_cast<outvec_t*>(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
#undef vec_set_32
#undef vec_add_dpbusd_32
#else
// Use dense implementation for the other architectures.
affine_transform_non_ssse3<
InputDimensions,
PaddedInputDimensions,
OutputDimensions>(output, weights, biases, input);
// Use dense implementation for the other architectures.
affine_transform_non_ssse3<InputDimensions, PaddedInputDimensions, OutputDimensions>(
output, weights, biases, input);
#endif
}
private:
using BiasType = OutputType;
using BiasType = OutputType;
using WeightType = std::int8_t;
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED

View file

@ -29,136 +29,140 @@
namespace Stockfish::Eval::NNUE::Layers {
// Clipped ReLU
template <IndexType InDims>
class ClippedReLU {
// Clipped ReLU
template<IndexType InDims>
class ClippedReLU {
public:
// Input/output type
using InputType = std::int32_t;
using InputType = std::int32_t;
using OutputType = std::uint8_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = InputDimensions;
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, 32);
ceil_to_multiple<IndexType>(OutputDimensions, 32);
using OutputBuffer = OutputType[PaddedOutputDimensions];
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0x538D24C7u;
hashValue += prevHash;
return hashValue;
std::uint32_t hashValue = 0x538D24C7u;
hashValue += prevHash;
return hashValue;
}
// Read network parameters
bool read_parameters(std::istream&) {
return true;
}
bool read_parameters(std::istream&) { return true; }
// Write network parameters
bool write_parameters(std::ostream&) const {
return true;
}
bool write_parameters(std::ostream&) const { return true; }
// Forward propagation
void propagate(
const InputType* input, OutputType* output) const {
void propagate(const InputType* input, OutputType* output) const {
#if defined(USE_AVX2)
if constexpr (InputDimensions % SimdWidth == 0) {
#if defined(USE_AVX2)
if constexpr (InputDimensions % SimdWidth == 0)
{
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m256i Zero = _mm256_setzero_si256();
const __m256i Offsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < NumChunks; ++i)
{
const __m256i words0 =
_mm256_srai_epi16(_mm256_packs_epi32(_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])),
WeightScaleBits);
const __m256i words1 =
_mm256_srai_epi16(_mm256_packs_epi32(_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])),
WeightScaleBits);
_mm256_store_si256(
&out[i], _mm256_permutevar8x32_epi32(
_mm256_max_epi8(_mm256_packs_epi16(words0, words1), Zero), Offsets));
}
}
else
{
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const __m128i Zero = _mm_setzero_si128();
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i)
{
const __m128i words0 = _mm_srai_epi16(
_mm_packs_epi32(_mm_load_si128(&in[i * 4 + 0]), _mm_load_si128(&in[i * 4 + 1])),
WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(
_mm_packs_epi32(_mm_load_si128(&in[i * 4 + 2]), _mm_load_si128(&in[i * 4 + 3])),
WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i], _mm_max_epi8(packedbytes, Zero));
}
}
constexpr IndexType Start = InputDimensions % SimdWidth == 0
? InputDimensions / SimdWidth * SimdWidth
: InputDimensions / (SimdWidth / 2) * (SimdWidth / 2);
#elif defined(USE_SSE2)
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m256i Zero = _mm256_setzero_si256();
const __m256i Offsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])), WeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])), WeightScaleBits);
_mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), Zero), Offsets));
}
} else {
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
#ifdef USE_SSE41
const __m128i Zero = _mm_setzero_si128();
const auto in = reinterpret_cast<const __m128i*>(input);
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i], _mm_max_epi8(packedbytes, Zero));
for (IndexType i = 0; i < NumChunks; ++i)
{
const __m128i words0 = _mm_srai_epi16(
_mm_packs_epi32(_mm_load_si128(&in[i * 4 + 0]), _mm_load_si128(&in[i * 4 + 1])),
WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(
_mm_packs_epi32(_mm_load_si128(&in[i * 4 + 2]), _mm_load_si128(&in[i * 4 + 3])),
WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, Zero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
}
constexpr IndexType Start =
InputDimensions % SimdWidth == 0
? InputDimensions / SimdWidth * SimdWidth
: InputDimensions / (SimdWidth / 2) * (SimdWidth / 2);
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_SSE2)
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
#elif defined(USE_NEON)
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const int8x8_t Zero = {0};
const auto in = reinterpret_cast<const int32x4_t*>(input);
const auto out = reinterpret_cast<int8x8_t*>(output);
for (IndexType i = 0; i < NumChunks; ++i)
{
int16x8_t shifted;
const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], WeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], WeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), Zero);
}
constexpr IndexType Start = NumChunks * (SimdWidth / 2);
#else
constexpr IndexType Start = 0;
#endif
#ifdef USE_SSE41
const __m128i Zero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, Zero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_NEON)
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const int8x8_t Zero = {0};
const auto in = reinterpret_cast<const int32x4_t*>(input);
const auto out = reinterpret_cast<int8x8_t*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
int16x8_t shifted;
const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], WeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], WeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), Zero);
}
constexpr IndexType Start = NumChunks * (SimdWidth / 2);
#else
constexpr IndexType Start = 0;
#endif
for (IndexType i = Start; i < InputDimensions; ++i) {
output[i] = static_cast<OutputType>(
std::clamp(input[i] >> WeightScaleBits, 0, 127));
}
for (IndexType i = Start; i < InputDimensions; ++i)
{
output[i] = static_cast<OutputType>(std::clamp(input[i] >> WeightScaleBits, 0, 127));
}
}
};
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
#endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED

View file

@ -20,30 +20,30 @@
#define STOCKFISH_SIMD_H_INCLUDED
#if defined(USE_AVX2)
# include <immintrin.h>
#include <immintrin.h>
#elif defined(USE_SSE41)
# include <smmintrin.h>
#include <smmintrin.h>
#elif defined(USE_SSSE3)
# include <tmmintrin.h>
#include <tmmintrin.h>
#elif defined(USE_SSE2)
# include <emmintrin.h>
#include <emmintrin.h>
#elif defined(USE_NEON)
# include <arm_neon.h>
#include <arm_neon.h>
#endif
namespace Stockfish::Simd {
#if defined (USE_AVX512)
#if defined(USE_AVX512)
[[maybe_unused]] static int m512_hadd(__m512i sum, int bias) {
return _mm512_reduce_add_epi32(sum) + bias;
}
[[maybe_unused]] static int m512_hadd(__m512i sum, int bias) {
return _mm512_reduce_add_epi32(sum) + bias;
}
/*
/*
Parameters:
sum0 = [zmm0.i128[0], zmm0.i128[1], zmm0.i128[2], zmm0.i128[3]]
sum1 = [zmm1.i128[0], zmm1.i128[1], zmm1.i128[2], zmm1.i128[3]]
@ -58,186 +58,164 @@ namespace Stockfish::Simd {
reduce_add_epi32(zmm0.i128[3]), reduce_add_epi32(zmm1.i128[3]), reduce_add_epi32(zmm2.i128[3]), reduce_add_epi32(zmm3.i128[3])
]
*/
[[maybe_unused]] static __m512i m512_hadd128x16_interleave(
__m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3) {
[[maybe_unused]] static __m512i
m512_hadd128x16_interleave(__m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3) {
__m512i sum01a = _mm512_unpacklo_epi32(sum0, sum1);
__m512i sum01b = _mm512_unpackhi_epi32(sum0, sum1);
__m512i sum01a = _mm512_unpacklo_epi32(sum0, sum1);
__m512i sum01b = _mm512_unpackhi_epi32(sum0, sum1);
__m512i sum23a = _mm512_unpacklo_epi32(sum2, sum3);
__m512i sum23b = _mm512_unpackhi_epi32(sum2, sum3);
__m512i sum23a = _mm512_unpacklo_epi32(sum2, sum3);
__m512i sum23b = _mm512_unpackhi_epi32(sum2, sum3);
__m512i sum01 = _mm512_add_epi32(sum01a, sum01b);
__m512i sum23 = _mm512_add_epi32(sum23a, sum23b);
__m512i sum01 = _mm512_add_epi32(sum01a, sum01b);
__m512i sum23 = _mm512_add_epi32(sum23a, sum23b);
__m512i sum0123a = _mm512_unpacklo_epi64(sum01, sum23);
__m512i sum0123b = _mm512_unpackhi_epi64(sum01, sum23);
__m512i sum0123a = _mm512_unpacklo_epi64(sum01, sum23);
__m512i sum0123b = _mm512_unpackhi_epi64(sum01, sum23);
return _mm512_add_epi32(sum0123a, sum0123b);
}
return _mm512_add_epi32(sum0123a, sum0123b);
}
[[maybe_unused]] static void m512_add_dpbusd_epi32(
__m512i& acc,
__m512i a,
__m512i b) {
[[maybe_unused]] static void m512_add_dpbusd_epi32(__m512i& acc, __m512i a, __m512i b) {
# if defined (USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a, b);
# else
__m512i product0 = _mm512_maddubs_epi16(a, b);
product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1));
acc = _mm512_add_epi32(acc, product0);
# endif
}
#if defined(USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a, b);
#else
__m512i product0 = _mm512_maddubs_epi16(a, b);
product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1));
acc = _mm512_add_epi32(acc, product0);
#endif
}
[[maybe_unused]] static void m512_add_dpbusd_epi32x2(
__m512i& acc,
__m512i a0, __m512i b0,
__m512i a1, __m512i b1) {
[[maybe_unused]] static void
m512_add_dpbusd_epi32x2(__m512i& acc, __m512i a0, __m512i b0, __m512i a1, __m512i b1) {
# if defined (USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a0, b0);
acc = _mm512_dpbusd_epi32(acc, a1, b1);
# else
__m512i product0 = _mm512_maddubs_epi16(a0, b0);
__m512i product1 = _mm512_maddubs_epi16(a1, b1);
product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1));
product1 = _mm512_madd_epi16(product1, _mm512_set1_epi16(1));
acc = _mm512_add_epi32(acc, _mm512_add_epi32(product0, product1));
# endif
}
#if defined(USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a0, b0);
acc = _mm512_dpbusd_epi32(acc, a1, b1);
#else
__m512i product0 = _mm512_maddubs_epi16(a0, b0);
__m512i product1 = _mm512_maddubs_epi16(a1, b1);
product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1));
product1 = _mm512_madd_epi16(product1, _mm512_set1_epi16(1));
acc = _mm512_add_epi32(acc, _mm512_add_epi32(product0, product1));
#endif
}
#endif
#if defined (USE_AVX2)
#if defined(USE_AVX2)
[[maybe_unused]] static int m256_hadd(__m256i sum, int bias) {
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB));
return _mm_cvtsi128_si32(sum128) + bias;
}
[[maybe_unused]] static int m256_hadd(__m256i sum, int bias) {
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB));
return _mm_cvtsi128_si32(sum128) + bias;
}
[[maybe_unused]] static void m256_add_dpbusd_epi32(
__m256i& acc,
__m256i a,
__m256i b) {
[[maybe_unused]] static void m256_add_dpbusd_epi32(__m256i& acc, __m256i a, __m256i b) {
# if defined (USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a, b);
# else
__m256i product0 = _mm256_maddubs_epi16(a, b);
product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1));
acc = _mm256_add_epi32(acc, product0);
# endif
}
#if defined(USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a, b);
#else
__m256i product0 = _mm256_maddubs_epi16(a, b);
product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1));
acc = _mm256_add_epi32(acc, product0);
#endif
}
[[maybe_unused]] static void m256_add_dpbusd_epi32x2(
__m256i& acc,
__m256i a0, __m256i b0,
__m256i a1, __m256i b1) {
[[maybe_unused]] static void
m256_add_dpbusd_epi32x2(__m256i& acc, __m256i a0, __m256i b0, __m256i a1, __m256i b1) {
# if defined (USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a0, b0);
acc = _mm256_dpbusd_epi32(acc, a1, b1);
# else
__m256i product0 = _mm256_maddubs_epi16(a0, b0);
__m256i product1 = _mm256_maddubs_epi16(a1, b1);
product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1));
product1 = _mm256_madd_epi16(product1, _mm256_set1_epi16(1));
acc = _mm256_add_epi32(acc, _mm256_add_epi32(product0, product1));
# endif
}
#if defined(USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a0, b0);
acc = _mm256_dpbusd_epi32(acc, a1, b1);
#else
__m256i product0 = _mm256_maddubs_epi16(a0, b0);
__m256i product1 = _mm256_maddubs_epi16(a1, b1);
product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1));
product1 = _mm256_madd_epi16(product1, _mm256_set1_epi16(1));
acc = _mm256_add_epi32(acc, _mm256_add_epi32(product0, product1));
#endif
}
#endif
#if defined (USE_SSSE3)
#if defined(USE_SSSE3)
[[maybe_unused]] static int m128_hadd(__m128i sum, int bias) {
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB
return _mm_cvtsi128_si32(sum) + bias;
}
[[maybe_unused]] static int m128_hadd(__m128i sum, int bias) {
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB
return _mm_cvtsi128_si32(sum) + bias;
}
[[maybe_unused]] static void m128_add_dpbusd_epi32(
__m128i& acc,
__m128i a,
__m128i b) {
[[maybe_unused]] static void m128_add_dpbusd_epi32(__m128i& acc, __m128i a, __m128i b) {
__m128i product0 = _mm_maddubs_epi16(a, b);
product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1));
acc = _mm_add_epi32(acc, product0);
}
__m128i product0 = _mm_maddubs_epi16(a, b);
product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1));
acc = _mm_add_epi32(acc, product0);
}
[[maybe_unused]] static void m128_add_dpbusd_epi32x2(
__m128i& acc,
__m128i a0, __m128i b0,
__m128i a1, __m128i b1) {
[[maybe_unused]] static void
m128_add_dpbusd_epi32x2(__m128i& acc, __m128i a0, __m128i b0, __m128i a1, __m128i b1) {
__m128i product0 = _mm_maddubs_epi16(a0, b0);
__m128i product1 = _mm_maddubs_epi16(a1, b1);
product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1));
product1 = _mm_madd_epi16(product1, _mm_set1_epi16(1));
acc = _mm_add_epi32(acc, _mm_add_epi32(product0, product1));
}
__m128i product0 = _mm_maddubs_epi16(a0, b0);
__m128i product1 = _mm_maddubs_epi16(a1, b1);
product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1));
product1 = _mm_madd_epi16(product1, _mm_set1_epi16(1));
acc = _mm_add_epi32(acc, _mm_add_epi32(product0, product1));
}
#endif
#if defined (USE_NEON_DOTPROD)
#if defined(USE_NEON_DOTPROD)
[[maybe_unused]] static void dotprod_m128_add_dpbusd_epi32x2(
int32x4_t& acc,
int8x16_t a0, int8x16_t b0,
int8x16_t a1, int8x16_t b1) {
[[maybe_unused]] static void dotprod_m128_add_dpbusd_epi32x2(
int32x4_t& acc, int8x16_t a0, int8x16_t b0, int8x16_t a1, int8x16_t b1) {
acc = vdotq_s32(acc, a0, b0);
acc = vdotq_s32(acc, a1, b1);
}
acc = vdotq_s32(acc, a0, b0);
acc = vdotq_s32(acc, a1, b1);
}
[[maybe_unused]] static void dotprod_m128_add_dpbusd_epi32(
int32x4_t& acc,
int8x16_t a, int8x16_t b) {
[[maybe_unused]] static void
dotprod_m128_add_dpbusd_epi32(int32x4_t& acc, int8x16_t a, int8x16_t b) {
acc = vdotq_s32(acc, a, b);
}
acc = vdotq_s32(acc, a, b);
}
#endif
#if defined (USE_NEON)
#if defined(USE_NEON)
[[maybe_unused]] static int neon_m128_reduce_add_epi32(int32x4_t s) {
# if USE_NEON >= 8
return vaddvq_s32(s);
# else
return s[0] + s[1] + s[2] + s[3];
# endif
}
[[maybe_unused]] static int neon_m128_reduce_add_epi32(int32x4_t s) {
#if USE_NEON >= 8
return vaddvq_s32(s);
#else
return s[0] + s[1] + s[2] + s[3];
#endif
}
[[maybe_unused]] static int neon_m128_hadd(int32x4_t sum, int bias) {
return neon_m128_reduce_add_epi32(sum) + bias;
}
[[maybe_unused]] static int neon_m128_hadd(int32x4_t sum, int bias) {
return neon_m128_reduce_add_epi32(sum) + bias;
}
[[maybe_unused]] static void neon_m128_add_dpbusd_epi32x2(
int32x4_t& acc,
int8x8_t a0, int8x8_t b0,
int8x8_t a1, int8x8_t b1) {
[[maybe_unused]] static void
neon_m128_add_dpbusd_epi32x2(int32x4_t& acc, int8x8_t a0, int8x8_t b0, int8x8_t a1, int8x8_t b1) {
int16x8_t product = vmull_s8(a0, b0);
product = vmlal_s8(product, a1, b1);
acc = vpadalq_s16(acc, product);
}
int16x8_t product = vmull_s8(a0, b0);
product = vmlal_s8(product, a1, b1);
acc = vpadalq_s16(acc, product);
}
#endif
#if USE_NEON >= 8
[[maybe_unused]] static void neon_m128_add_dpbusd_epi32(
int32x4_t& acc,
int8x16_t a, int8x16_t b) {
[[maybe_unused]] static void neon_m128_add_dpbusd_epi32(int32x4_t& acc, int8x16_t a, int8x16_t b) {
int16x8_t product0 = vmull_s8(vget_low_s8(a), vget_low_s8(b));
int16x8_t product1 = vmull_high_s8(a, b);
int16x8_t sum = vpaddq_s16(product0, product1);
acc = vpadalq_s16(acc, sum);
}
int16x8_t product0 = vmull_s8(vget_low_s8(a), vget_low_s8(b));
int16x8_t product1 = vmull_high_s8(a, b);
int16x8_t sum = vpaddq_s16(product0, product1);
acc = vpadalq_s16(acc, sum);
}
#endif
}
#endif // STOCKFISH_SIMD_H_INCLUDED
#endif // STOCKFISH_SIMD_H_INCLUDED

View file

@ -29,80 +29,75 @@
namespace Stockfish::Eval::NNUE::Layers {
// Clipped ReLU
template <IndexType InDims>
class SqrClippedReLU {
// Clipped ReLU
template<IndexType InDims>
class SqrClippedReLU {
public:
// Input/output type
using InputType = std::int32_t;
using InputType = std::int32_t;
using OutputType = std::uint8_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = InputDimensions;
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, 32);
ceil_to_multiple<IndexType>(OutputDimensions, 32);
using OutputBuffer = OutputType[PaddedOutputDimensions];
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0x538D24C7u;
hashValue += prevHash;
return hashValue;
std::uint32_t hashValue = 0x538D24C7u;
hashValue += prevHash;
return hashValue;
}
// Read network parameters
bool read_parameters(std::istream&) {
return true;
}
bool read_parameters(std::istream&) { return true; }
// Write network parameters
bool write_parameters(std::ostream&) const {
return true;
}
bool write_parameters(std::ostream&) const { return true; }
// Forward propagation
void propagate(
const InputType* input, OutputType* output) const {
void propagate(const InputType* input, OutputType* output) const {
#if defined(USE_SSE2)
constexpr IndexType NumChunks = InputDimensions / 16;
#if defined(USE_SSE2)
constexpr IndexType NumChunks = InputDimensions / 16;
static_assert(WeightScaleBits == 6);
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
__m128i words0 = _mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1]));
__m128i words1 = _mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3]));
static_assert(WeightScaleBits == 6);
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i)
{
__m128i words0 =
_mm_packs_epi32(_mm_load_si128(&in[i * 4 + 0]), _mm_load_si128(&in[i * 4 + 1]));
__m128i words1 =
_mm_packs_epi32(_mm_load_si128(&in[i * 4 + 2]), _mm_load_si128(&in[i * 4 + 3]));
// We shift by WeightScaleBits * 2 = 12 and divide by 128
// which is an additional shift-right of 7, meaning 19 in total.
// MulHi strips the lower 16 bits so we need to shift out 3 more to match.
words0 = _mm_srli_epi16(_mm_mulhi_epi16(words0, words0), 3);
words1 = _mm_srli_epi16(_mm_mulhi_epi16(words1, words1), 3);
// We shift by WeightScaleBits * 2 = 12 and divide by 128
// which is an additional shift-right of 7, meaning 19 in total.
// MulHi strips the lower 16 bits so we need to shift out 3 more to match.
words0 = _mm_srli_epi16(_mm_mulhi_epi16(words0, words0), 3);
words1 = _mm_srli_epi16(_mm_mulhi_epi16(words1, words1), 3);
_mm_store_si128(&out[i], _mm_packs_epi16(words0, words1));
}
constexpr IndexType Start = NumChunks * 16;
_mm_store_si128(&out[i], _mm_packs_epi16(words0, words1));
}
constexpr IndexType Start = NumChunks * 16;
#else
constexpr IndexType Start = 0;
#endif
#else
constexpr IndexType Start = 0;
#endif
for (IndexType i = Start; i < InputDimensions; ++i) {
output[i] = static_cast<OutputType>(
// Really should be /127 but we need to make it fast so we right shift
// by an extra 7 bits instead. Needs to be accounted for in the trainer.
std::min(127ll, ((long long)input[i] * input[i]) >> (2 * WeightScaleBits + 7)));
}
for (IndexType i = Start; i < InputDimensions; ++i)
{
output[i] = static_cast<OutputType>(
// Really should be /127 but we need to make it fast so we right shift
// by an extra 7 bits instead. Needs to be accounted for in the trainer.
std::min(127ll, ((long long) input[i] * input[i]) >> (2 * WeightScaleBits + 7)));
}
}
};
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
#endif // NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED

View file

@ -28,13 +28,13 @@
namespace Stockfish::Eval::NNUE {
// Class that holds the result of affine transformation of input features
struct alignas(CacheLineSize) Accumulator {
// Class that holds the result of affine transformation of input features
struct alignas(CacheLineSize) Accumulator {
std::int16_t accumulation[2][TransformedFeatureDimensions];
std::int32_t psqtAccumulation[2][PSQTBuckets];
bool computed[2];
};
bool computed[2];
};
} // namespace Stockfish::Eval::NNUE
#endif // NNUE_ACCUMULATOR_H_INCLUDED
#endif // NNUE_ACCUMULATOR_H_INCLUDED

View file

@ -39,97 +39,90 @@ using FeatureSet = Features::HalfKAv2_hm;
// Number of input feature dimensions after conversion
constexpr IndexType TransformedFeatureDimensions = 2560;
constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;
constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;
struct Network
{
static constexpr int FC_0_OUTPUTS = 15;
static constexpr int FC_1_OUTPUTS = 32;
struct Network {
static constexpr int FC_0_OUTPUTS = 15;
static constexpr int FC_1_OUTPUTS = 32;
Layers::AffineTransformSparseInput<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
Layers::SqrClippedReLU<FC_0_OUTPUTS + 1> ac_sqr_0;
Layers::ClippedReLU<FC_0_OUTPUTS + 1> ac_0;
Layers::AffineTransform<FC_0_OUTPUTS * 2, FC_1_OUTPUTS> fc_1;
Layers::ClippedReLU<FC_1_OUTPUTS> ac_1;
Layers::AffineTransform<FC_1_OUTPUTS, 1> fc_2;
Layers::AffineTransformSparseInput<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
Layers::SqrClippedReLU<FC_0_OUTPUTS + 1> ac_sqr_0;
Layers::ClippedReLU<FC_0_OUTPUTS + 1> ac_0;
Layers::AffineTransform<FC_0_OUTPUTS * 2, FC_1_OUTPUTS> fc_1;
Layers::ClippedReLU<FC_1_OUTPUTS> ac_1;
Layers::AffineTransform<FC_1_OUTPUTS, 1> fc_2;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
// input slice hash
std::uint32_t hashValue = 0xEC42E90Du;
hashValue ^= TransformedFeatureDimensions * 2;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
// input slice hash
std::uint32_t hashValue = 0xEC42E90Du;
hashValue ^= TransformedFeatureDimensions * 2;
hashValue = decltype(fc_0)::get_hash_value(hashValue);
hashValue = decltype(ac_0)::get_hash_value(hashValue);
hashValue = decltype(fc_1)::get_hash_value(hashValue);
hashValue = decltype(ac_1)::get_hash_value(hashValue);
hashValue = decltype(fc_2)::get_hash_value(hashValue);
hashValue = decltype(fc_0)::get_hash_value(hashValue);
hashValue = decltype(ac_0)::get_hash_value(hashValue);
hashValue = decltype(fc_1)::get_hash_value(hashValue);
hashValue = decltype(ac_1)::get_hash_value(hashValue);
hashValue = decltype(fc_2)::get_hash_value(hashValue);
return hashValue;
}
return hashValue;
}
// Read network parameters
bool read_parameters(std::istream& stream) {
return fc_0.read_parameters(stream)
&& ac_0.read_parameters(stream)
&& fc_1.read_parameters(stream)
&& ac_1.read_parameters(stream)
&& fc_2.read_parameters(stream);
}
// Read network parameters
bool read_parameters(std::istream& stream) {
return fc_0.read_parameters(stream) && ac_0.read_parameters(stream)
&& fc_1.read_parameters(stream) && ac_1.read_parameters(stream)
&& fc_2.read_parameters(stream);
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
return fc_0.write_parameters(stream)
&& ac_0.write_parameters(stream)
&& fc_1.write_parameters(stream)
&& ac_1.write_parameters(stream)
&& fc_2.write_parameters(stream);
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
return fc_0.write_parameters(stream) && ac_0.write_parameters(stream)
&& fc_1.write_parameters(stream) && ac_1.write_parameters(stream)
&& fc_2.write_parameters(stream);
}
std::int32_t propagate(const TransformedFeatureType* transformedFeatures)
{
struct alignas(CacheLineSize) Buffer
{
alignas(CacheLineSize) decltype(fc_0)::OutputBuffer fc_0_out;
alignas(CacheLineSize) decltype(ac_sqr_0)::OutputType ac_sqr_0_out[ceil_to_multiple<IndexType>(FC_0_OUTPUTS * 2, 32)];
alignas(CacheLineSize) decltype(ac_0)::OutputBuffer ac_0_out;
alignas(CacheLineSize) decltype(fc_1)::OutputBuffer fc_1_out;
alignas(CacheLineSize) decltype(ac_1)::OutputBuffer ac_1_out;
alignas(CacheLineSize) decltype(fc_2)::OutputBuffer fc_2_out;
std::int32_t propagate(const TransformedFeatureType* transformedFeatures) {
struct alignas(CacheLineSize) Buffer {
alignas(CacheLineSize) decltype(fc_0)::OutputBuffer fc_0_out;
alignas(CacheLineSize) decltype(ac_sqr_0)::OutputType
ac_sqr_0_out[ceil_to_multiple<IndexType>(FC_0_OUTPUTS * 2, 32)];
alignas(CacheLineSize) decltype(ac_0)::OutputBuffer ac_0_out;
alignas(CacheLineSize) decltype(fc_1)::OutputBuffer fc_1_out;
alignas(CacheLineSize) decltype(ac_1)::OutputBuffer ac_1_out;
alignas(CacheLineSize) decltype(fc_2)::OutputBuffer fc_2_out;
Buffer()
{
std::memset(this, 0, sizeof(*this));
}
};
Buffer() { std::memset(this, 0, sizeof(*this)); }
};
#if defined(__clang__) && (__APPLE__)
// workaround for a bug reported with xcode 12
static thread_local auto tlsBuffer = std::make_unique<Buffer>();
// Access TLS only once, cache result.
Buffer& buffer = *tlsBuffer;
// workaround for a bug reported with xcode 12
static thread_local auto tlsBuffer = std::make_unique<Buffer>();
// Access TLS only once, cache result.
Buffer& buffer = *tlsBuffer;
#else
alignas(CacheLineSize) static thread_local Buffer buffer;
alignas(CacheLineSize) static thread_local Buffer buffer;
#endif
fc_0.propagate(transformedFeatures, buffer.fc_0_out);
ac_sqr_0.propagate(buffer.fc_0_out, buffer.ac_sqr_0_out);
ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out);
std::memcpy(buffer.ac_sqr_0_out + FC_0_OUTPUTS, buffer.ac_0_out, FC_0_OUTPUTS * sizeof(decltype(ac_0)::OutputType));
fc_1.propagate(buffer.ac_sqr_0_out, buffer.fc_1_out);
ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out);
fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);
fc_0.propagate(transformedFeatures, buffer.fc_0_out);
ac_sqr_0.propagate(buffer.fc_0_out, buffer.ac_sqr_0_out);
ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out);
std::memcpy(buffer.ac_sqr_0_out + FC_0_OUTPUTS, buffer.ac_0_out,
FC_0_OUTPUTS * sizeof(decltype(ac_0)::OutputType));
fc_1.propagate(buffer.ac_sqr_0_out, buffer.fc_1_out);
ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out);
fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);
// buffer.fc_0_out[FC_0_OUTPUTS] is such that 1.0 is equal to 127*(1<<WeightScaleBits) in quantized form
// but we want 1.0 to be equal to 600*OutputScale
std::int32_t fwdOut = int(buffer.fc_0_out[FC_0_OUTPUTS]) * (600*OutputScale) / (127*(1<<WeightScaleBits));
std::int32_t outputValue = buffer.fc_2_out[0] + fwdOut;
// buffer.fc_0_out[FC_0_OUTPUTS] is such that 1.0 is equal to 127*(1<<WeightScaleBits) in quantized form
// but we want 1.0 to be equal to 600*OutputScale
std::int32_t fwdOut =
int(buffer.fc_0_out[FC_0_OUTPUTS]) * (600 * OutputScale) / (127 * (1 << WeightScaleBits));
std::int32_t outputValue = buffer.fc_2_out[0] + fwdOut;
return outputValue;
}
return outputValue;
}
};
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_ARCHITECTURE_H_INCLUDED
#endif // #ifndef NNUE_ARCHITECTURE_H_INCLUDED

View file

@ -31,255 +31,254 @@
#include "../misc.h"
#if defined(USE_AVX2)
#include <immintrin.h>
#include <immintrin.h>
#elif defined(USE_SSE41)
#include <smmintrin.h>
#include <smmintrin.h>
#elif defined(USE_SSSE3)
#include <tmmintrin.h>
#include <tmmintrin.h>
#elif defined(USE_SSE2)
#include <emmintrin.h>
#include <emmintrin.h>
#elif defined(USE_NEON)
#include <arm_neon.h>
#include <arm_neon.h>
#endif
namespace Stockfish::Eval::NNUE {
// Version of the evaluation file
constexpr std::uint32_t Version = 0x7AF32F20u;
// Version of the evaluation file
constexpr std::uint32_t Version = 0x7AF32F20u;
// Constant used in evaluation value calculation
constexpr int OutputScale = 16;
constexpr int WeightScaleBits = 6;
// Constant used in evaluation value calculation
constexpr int OutputScale = 16;
constexpr int WeightScaleBits = 6;
// Size of cache line (in bytes)
constexpr std::size_t CacheLineSize = 64;
// Size of cache line (in bytes)
constexpr std::size_t CacheLineSize = 64;
constexpr const char Leb128MagicString[] = "COMPRESSED_LEB128";
constexpr const std::size_t Leb128MagicStringSize = sizeof(Leb128MagicString) - 1;
constexpr const char Leb128MagicString[] = "COMPRESSED_LEB128";
constexpr const std::size_t Leb128MagicStringSize = sizeof(Leb128MagicString) - 1;
// SIMD width (in bytes)
#if defined(USE_AVX2)
constexpr std::size_t SimdWidth = 32;
// SIMD width (in bytes)
#if defined(USE_AVX2)
constexpr std::size_t SimdWidth = 32;
#elif defined(USE_SSE2)
constexpr std::size_t SimdWidth = 16;
#elif defined(USE_SSE2)
constexpr std::size_t SimdWidth = 16;
#elif defined(USE_NEON)
constexpr std::size_t SimdWidth = 16;
#endif
#elif defined(USE_NEON)
constexpr std::size_t SimdWidth = 16;
#endif
constexpr std::size_t MaxSimdWidth = 32;
constexpr std::size_t MaxSimdWidth = 32;
// Type of input feature after conversion
using TransformedFeatureType = std::uint8_t;
using IndexType = std::uint32_t;
// Type of input feature after conversion
using TransformedFeatureType = std::uint8_t;
using IndexType = std::uint32_t;
// Round n up to be a multiple of base
template <typename IntType>
constexpr IntType ceil_to_multiple(IntType n, IntType base) {
return (n + base - 1) / base * base;
}
// Round n up to be a multiple of base
template<typename IntType>
constexpr IntType ceil_to_multiple(IntType n, IntType base) {
return (n + base - 1) / base * base;
}
// read_little_endian() is our utility to read an integer (signed or unsigned, any size)
// from a stream in little-endian order. We swap the byte order after the read if
// necessary to return a result with the byte ordering of the compiling machine.
template <typename IntType>
inline IntType read_little_endian(std::istream& stream) {
IntType result;
// read_little_endian() is our utility to read an integer (signed or unsigned, any size)
// from a stream in little-endian order. We swap the byte order after the read if
// necessary to return a result with the byte ordering of the compiling machine.
template<typename IntType>
inline IntType read_little_endian(std::istream& stream) {
IntType result;
if (IsLittleEndian)
stream.read(reinterpret_cast<char*>(&result), sizeof(IntType));
else
{
std::uint8_t u[sizeof(IntType)];
std::make_unsigned_t<IntType> v = 0;
if (IsLittleEndian)
stream.read(reinterpret_cast<char*>(&result), sizeof(IntType));
else
{
std::uint8_t u[sizeof(IntType)];
std::make_unsigned_t<IntType> v = 0;
stream.read(reinterpret_cast<char*>(u), sizeof(IntType));
for (std::size_t i = 0; i < sizeof(IntType); ++i)
v = (v << 8) | u[sizeof(IntType) - i - 1];
stream.read(reinterpret_cast<char*>(u), sizeof(IntType));
for (std::size_t i = 0; i < sizeof(IntType); ++i)
v = (v << 8) | u[sizeof(IntType) - i - 1];
std::memcpy(&result, &v, sizeof(IntType));
}
std::memcpy(&result, &v, sizeof(IntType));
}
return result;
}
return result;
}
// write_little_endian() is our utility to write an integer (signed or unsigned, any size)
// to a stream in little-endian order. We swap the byte order before the write if
// necessary to always write in little endian order, independently of the byte
// ordering of the compiling machine.
template <typename IntType>
inline void write_little_endian(std::ostream& stream, IntType value) {
// write_little_endian() is our utility to write an integer (signed or unsigned, any size)
// to a stream in little-endian order. We swap the byte order before the write if
// necessary to always write in little endian order, independently of the byte
// ordering of the compiling machine.
template<typename IntType>
inline void write_little_endian(std::ostream& stream, IntType value) {
if (IsLittleEndian)
stream.write(reinterpret_cast<const char*>(&value), sizeof(IntType));
else
{
std::uint8_t u[sizeof(IntType)];
std::make_unsigned_t<IntType> v = value;
if (IsLittleEndian)
stream.write(reinterpret_cast<const char*>(&value), sizeof(IntType));
else
{
std::uint8_t u[sizeof(IntType)];
std::make_unsigned_t<IntType> v = value;
std::size_t i = 0;
// if constexpr to silence the warning about shift by 8
if constexpr (sizeof(IntType) > 1)
{
std::size_t i = 0;
// if constexpr to silence the warning about shift by 8
if constexpr (sizeof(IntType) > 1)
{
for (; i + 1 < sizeof(IntType); ++i)
{
u[i] = (std::uint8_t)v;
u[i] = (std::uint8_t) v;
v >>= 8;
}
}
u[i] = (std::uint8_t)v;
}
u[i] = (std::uint8_t) v;
stream.write(reinterpret_cast<char*>(u), sizeof(IntType));
}
}
stream.write(reinterpret_cast<char*>(u), sizeof(IntType));
}
}
// read_little_endian(s, out, N) : read integers in bulk from a little indian stream.
// This reads N integers from stream s and put them in array out.
template <typename IntType>
inline void read_little_endian(std::istream& stream, IntType* out, std::size_t count) {
if (IsLittleEndian)
stream.read(reinterpret_cast<char*>(out), sizeof(IntType) * count);
else
for (std::size_t i = 0; i < count; ++i)
out[i] = read_little_endian<IntType>(stream);
}
// read_little_endian(s, out, N) : read integers in bulk from a little indian stream.
// This reads N integers from stream s and put them in array out.
template<typename IntType>
inline void read_little_endian(std::istream& stream, IntType* out, std::size_t count) {
if (IsLittleEndian)
stream.read(reinterpret_cast<char*>(out), sizeof(IntType) * count);
else
for (std::size_t i = 0; i < count; ++i)
out[i] = read_little_endian<IntType>(stream);
}
// write_little_endian(s, values, N) : write integers in bulk to a little indian stream.
// This takes N integers from array values and writes them on stream s.
template <typename IntType>
inline void write_little_endian(std::ostream& stream, const IntType* values, std::size_t count) {
if (IsLittleEndian)
stream.write(reinterpret_cast<const char*>(values), sizeof(IntType) * count);
else
for (std::size_t i = 0; i < count; ++i)
write_little_endian<IntType>(stream, values[i]);
}
// write_little_endian(s, values, N) : write integers in bulk to a little indian stream.
// This takes N integers from array values and writes them on stream s.
template<typename IntType>
inline void write_little_endian(std::ostream& stream, const IntType* values, std::size_t count) {
if (IsLittleEndian)
stream.write(reinterpret_cast<const char*>(values), sizeof(IntType) * count);
else
for (std::size_t i = 0; i < count; ++i)
write_little_endian<IntType>(stream, values[i]);
}
// read_leb_128(s, out, N) : read N signed integers from the stream s, putting them in
// the array out. The stream is assumed to be compressed using the signed LEB128 format.
// See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme.
template <typename IntType>
inline void read_leb_128(std::istream& stream, IntType* out, std::size_t count) {
// read_leb_128(s, out, N) : read N signed integers from the stream s, putting them in
// the array out. The stream is assumed to be compressed using the signed LEB128 format.
// See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme.
template<typename IntType>
inline void read_leb_128(std::istream& stream, IntType* out, std::size_t count) {
// Check the presence of our LEB128 magic string
char leb128MagicString[Leb128MagicStringSize];
stream.read(leb128MagicString, Leb128MagicStringSize);
assert(strncmp(Leb128MagicString, leb128MagicString, Leb128MagicStringSize) == 0);
// Check the presence of our LEB128 magic string
char leb128MagicString[Leb128MagicStringSize];
stream.read(leb128MagicString, Leb128MagicStringSize);
assert(strncmp(Leb128MagicString, leb128MagicString, Leb128MagicStringSize) == 0);
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
const std::uint32_t BUF_SIZE = 4096;
std::uint8_t buf[BUF_SIZE];
const std::uint32_t BUF_SIZE = 4096;
std::uint8_t buf[BUF_SIZE];
auto bytes_left = read_little_endian<std::uint32_t>(stream);
auto bytes_left = read_little_endian<std::uint32_t>(stream);
std::uint32_t buf_pos = BUF_SIZE;
for (std::size_t i = 0; i < count; ++i)
{
IntType result = 0;
size_t shift = 0;
do
{
if (buf_pos == BUF_SIZE)
{
stream.read(reinterpret_cast<char*>(buf), std::min(bytes_left, BUF_SIZE));
buf_pos = 0;
}
std::uint32_t buf_pos = BUF_SIZE;
for (std::size_t i = 0; i < count; ++i)
{
IntType result = 0;
size_t shift = 0;
do
{
if (buf_pos == BUF_SIZE)
{
stream.read(reinterpret_cast<char*>(buf), std::min(bytes_left, BUF_SIZE));
buf_pos = 0;
}
std::uint8_t byte = buf[buf_pos++];
--bytes_left;
result |= (byte & 0x7f) << shift;
shift += 7;
std::uint8_t byte = buf[buf_pos++];
--bytes_left;
result |= (byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0)
{
out[i] = (sizeof(IntType) * 8 <= shift || (byte & 0x40) == 0) ? result
: result | ~((1 << shift) - 1);
break;
}
}
while (shift < sizeof(IntType) * 8);
}
if ((byte & 0x80) == 0)
{
out[i] = (sizeof(IntType) * 8 <= shift || (byte & 0x40) == 0)
? result
: result | ~((1 << shift) - 1);
break;
}
} while (shift < sizeof(IntType) * 8);
}
assert(bytes_left == 0);
}
assert(bytes_left == 0);
}
// write_leb_128(s, values, N) : write signed integers to a stream with LEB128 compression.
// This takes N integers from array values, compress them with the LEB128 algorithm and
// writes the result on the stream s.
// See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme.
template <typename IntType>
inline void write_leb_128(std::ostream& stream, const IntType* values, std::size_t count) {
// write_leb_128(s, values, N) : write signed integers to a stream with LEB128 compression.
// This takes N integers from array values, compress them with the LEB128 algorithm and
// writes the result on the stream s.
// See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme.
template<typename IntType>
inline void write_leb_128(std::ostream& stream, const IntType* values, std::size_t count) {
// Write our LEB128 magic string
stream.write(Leb128MagicString, Leb128MagicStringSize);
// Write our LEB128 magic string
stream.write(Leb128MagicString, Leb128MagicStringSize);
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
std::uint32_t byte_count = 0;
for (std::size_t i = 0; i < count; ++i)
{
IntType value = values[i];
std::uint8_t byte;
do
{
byte = value & 0x7f;
value >>= 7;
++byte_count;
}
while ((byte & 0x40) == 0 ? value != 0 : value != -1);
}
std::uint32_t byte_count = 0;
for (std::size_t i = 0; i < count; ++i)
{
IntType value = values[i];
std::uint8_t byte;
do
{
byte = value & 0x7f;
value >>= 7;
++byte_count;
} while ((byte & 0x40) == 0 ? value != 0 : value != -1);
}
write_little_endian(stream, byte_count);
write_little_endian(stream, byte_count);
const std::uint32_t BUF_SIZE = 4096;
std::uint8_t buf[BUF_SIZE];
std::uint32_t buf_pos = 0;
const std::uint32_t BUF_SIZE = 4096;
std::uint8_t buf[BUF_SIZE];
std::uint32_t buf_pos = 0;
auto flush = [&]() {
if (buf_pos > 0)
{
stream.write(reinterpret_cast<char*>(buf), buf_pos);
buf_pos = 0;
}
};
auto flush = [&]() {
if (buf_pos > 0)
{
stream.write(reinterpret_cast<char*>(buf), buf_pos);
buf_pos = 0;
}
};
auto write = [&](std::uint8_t byte) {
buf[buf_pos++] = byte;
if (buf_pos == BUF_SIZE)
flush();
};
auto write = [&](std::uint8_t byte) {
buf[buf_pos++] = byte;
if (buf_pos == BUF_SIZE)
flush();
};
for (std::size_t i = 0; i < count; ++i)
{
IntType value = values[i];
while (true)
{
std::uint8_t byte = value & 0x7f;
value >>= 7;
if ((byte & 0x40) == 0 ? value == 0 : value == -1)
{
write(byte);
break;
}
write(byte | 0x80);
}
}
for (std::size_t i = 0; i < count; ++i)
{
IntType value = values[i];
while (true)
{
std::uint8_t byte = value & 0x7f;
value >>= 7;
if ((byte & 0x40) == 0 ? value == 0 : value == -1)
{
write(byte);
break;
}
write(byte | 0x80);
}
}
flush();
}
flush();
}
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_COMMON_H_INCLUDED
#endif // #ifndef NNUE_COMMON_H_INCLUDED

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -37,27 +37,27 @@ namespace Stockfish {
struct StateInfo {
// Copied when making a move
Key materialKey;
Value nonPawnMaterial[COLOR_NB];
int castlingRights;
int rule50;
int pliesFromNull;
Square epSquare;
// Copied when making a move
Key materialKey;
Value nonPawnMaterial[COLOR_NB];
int castlingRights;
int rule50;
int pliesFromNull;
Square epSquare;
// Not copied when making a move (will be recomputed anyhow)
Key key;
Bitboard checkersBB;
StateInfo* previous;
Bitboard blockersForKing[COLOR_NB];
Bitboard pinners[COLOR_NB];
Bitboard checkSquares[PIECE_TYPE_NB];
Piece capturedPiece;
int repetition;
// Not copied when making a move (will be recomputed anyhow)
Key key;
Bitboard checkersBB;
StateInfo* previous;
Bitboard blockersForKing[COLOR_NB];
Bitboard pinners[COLOR_NB];
Bitboard checkSquares[PIECE_TYPE_NB];
Piece capturedPiece;
int repetition;
// Used by NNUE
Eval::NNUE::Accumulator accumulator;
DirtyPiece dirtyPiece;
// Used by NNUE
Eval::NNUE::Accumulator accumulator;
DirtyPiece dirtyPiece;
};
@ -75,329 +75,290 @@ using StateListPtr = std::unique_ptr<std::deque<StateInfo>>;
class Thread;
class Position {
public:
static void init();
public:
static void init();
Position() = default;
Position(const Position&) = delete;
Position& operator=(const Position&) = delete;
Position() = default;
Position(const Position&) = delete;
Position& operator=(const Position&) = delete;
// FEN string input/output
Position& set(const std::string& fenStr, bool isChess960, StateInfo* si, Thread* th);
Position& set(const std::string& code, Color c, StateInfo* si);
std::string fen() const;
// FEN string input/output
Position& set(const std::string& fenStr, bool isChess960, StateInfo* si, Thread* th);
Position& set(const std::string& code, Color c, StateInfo* si);
std::string fen() const;
// Position representation
Bitboard pieces(PieceType pt = ALL_PIECES) const;
template<typename ...PieceTypes> Bitboard pieces(PieceType pt, PieceTypes... pts) const;
Bitboard pieces(Color c) const;
template<typename ...PieceTypes> Bitboard pieces(Color c, PieceTypes... pts) const;
Piece piece_on(Square s) const;
Square ep_square() const;
bool empty(Square s) const;
template<PieceType Pt> int count(Color c) const;
template<PieceType Pt> int count() const;
template<PieceType Pt> Square square(Color c) const;
// Position representation
Bitboard pieces(PieceType pt = ALL_PIECES) const;
template<typename... PieceTypes>
Bitboard pieces(PieceType pt, PieceTypes... pts) const;
Bitboard pieces(Color c) const;
template<typename... PieceTypes>
Bitboard pieces(Color c, PieceTypes... pts) const;
Piece piece_on(Square s) const;
Square ep_square() const;
bool empty(Square s) const;
template<PieceType Pt>
int count(Color c) const;
template<PieceType Pt>
int count() const;
template<PieceType Pt>
Square square(Color c) const;
// Castling
CastlingRights castling_rights(Color c) const;
bool can_castle(CastlingRights cr) const;
bool castling_impeded(CastlingRights cr) const;
Square castling_rook_square(CastlingRights cr) const;
// Castling
CastlingRights castling_rights(Color c) const;
bool can_castle(CastlingRights cr) const;
bool castling_impeded(CastlingRights cr) const;
Square castling_rook_square(CastlingRights cr) const;
// Checking
Bitboard checkers() const;
Bitboard blockers_for_king(Color c) const;
Bitboard check_squares(PieceType pt) const;
Bitboard pinners(Color c) const;
// Checking
Bitboard checkers() const;
Bitboard blockers_for_king(Color c) const;
Bitboard check_squares(PieceType pt) const;
Bitboard pinners(Color c) const;
// Attacks to/from a given square
Bitboard attackers_to(Square s) const;
Bitboard attackers_to(Square s, Bitboard occupied) const;
void update_slider_blockers(Color c) const;
template<PieceType Pt> Bitboard attacks_by(Color c) const;
// Attacks to/from a given square
Bitboard attackers_to(Square s) const;
Bitboard attackers_to(Square s, Bitboard occupied) const;
void update_slider_blockers(Color c) const;
template<PieceType Pt>
Bitboard attacks_by(Color c) const;
// Properties of moves
bool legal(Move m) const;
bool pseudo_legal(const Move m) const;
bool capture(Move m) const;
bool capture_stage(Move m) const;
bool gives_check(Move m) const;
Piece moved_piece(Move m) const;
Piece captured_piece() const;
// Properties of moves
bool legal(Move m) const;
bool pseudo_legal(const Move m) const;
bool capture(Move m) const;
bool capture_stage(Move m) const;
bool gives_check(Move m) const;
Piece moved_piece(Move m) const;
Piece captured_piece() const;
// Doing and undoing moves
void do_move(Move m, StateInfo& newSt);
void do_move(Move m, StateInfo& newSt, bool givesCheck);
void undo_move(Move m);
void do_null_move(StateInfo& newSt);
void undo_null_move();
// Doing and undoing moves
void do_move(Move m, StateInfo& newSt);
void do_move(Move m, StateInfo& newSt, bool givesCheck);
void undo_move(Move m);
void do_null_move(StateInfo& newSt);
void undo_null_move();
// Static Exchange Evaluation
bool see_ge(Move m, Value threshold = VALUE_ZERO) const;
// Static Exchange Evaluation
bool see_ge(Move m, Value threshold = VALUE_ZERO) const;
// Accessing hash keys
Key key() const;
Key key_after(Move m) const;
Key material_key() const;
// Accessing hash keys
Key key() const;
Key key_after(Move m) const;
Key material_key() const;
// Other properties of the position
Color side_to_move() const;
int game_ply() const;
bool is_chess960() const;
Thread* this_thread() const;
bool is_draw(int ply) const;
bool has_game_cycle(int ply) const;
bool has_repeated() const;
int rule50_count() const;
Value non_pawn_material(Color c) const;
Value non_pawn_material() const;
// Other properties of the position
Color side_to_move() const;
int game_ply() const;
bool is_chess960() const;
Thread* this_thread() const;
bool is_draw(int ply) const;
bool has_game_cycle(int ply) const;
bool has_repeated() const;
int rule50_count() const;
Value non_pawn_material(Color c) const;
Value non_pawn_material() const;
// Position consistency check, for debugging
bool pos_is_ok() const;
void flip();
// Position consistency check, for debugging
bool pos_is_ok() const;
void flip();
// Used by NNUE
StateInfo* state() const;
// Used by NNUE
StateInfo* state() const;
void put_piece(Piece pc, Square s);
void remove_piece(Square s);
void put_piece(Piece pc, Square s);
void remove_piece(Square s);
private:
// Initialization helpers (used while setting up a position)
void set_castling_right(Color c, Square rfrom);
void set_state() const;
void set_check_info() const;
private:
// Initialization helpers (used while setting up a position)
void set_castling_right(Color c, Square rfrom);
void set_state() const;
void set_check_info() const;
// Other helpers
void move_piece(Square from, Square to);
template<bool Do>
void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto);
template<bool AfterMove>
Key adjust_key50(Key k) const;
// Other helpers
void move_piece(Square from, Square to);
template<bool Do>
void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto);
template<bool AfterMove>
Key adjust_key50(Key k) const;
// Data members
Piece board[SQUARE_NB];
Bitboard byTypeBB[PIECE_TYPE_NB];
Bitboard byColorBB[COLOR_NB];
int pieceCount[PIECE_NB];
int castlingRightsMask[SQUARE_NB];
Square castlingRookSquare[CASTLING_RIGHT_NB];
Bitboard castlingPath[CASTLING_RIGHT_NB];
Thread* thisThread;
StateInfo* st;
int gamePly;
Color sideToMove;
bool chess960;
// Data members
Piece board[SQUARE_NB];
Bitboard byTypeBB[PIECE_TYPE_NB];
Bitboard byColorBB[COLOR_NB];
int pieceCount[PIECE_NB];
int castlingRightsMask[SQUARE_NB];
Square castlingRookSquare[CASTLING_RIGHT_NB];
Bitboard castlingPath[CASTLING_RIGHT_NB];
Thread* thisThread;
StateInfo* st;
int gamePly;
Color sideToMove;
bool chess960;
};
std::ostream& operator<<(std::ostream& os, const Position& pos);
inline Color Position::side_to_move() const {
return sideToMove;
}
inline Color Position::side_to_move() const { return sideToMove; }
inline Piece Position::piece_on(Square s) const {
assert(is_ok(s));
return board[s];
assert(is_ok(s));
return board[s];
}
inline bool Position::empty(Square s) const {
return piece_on(s) == NO_PIECE;
}
inline bool Position::empty(Square s) const { return piece_on(s) == NO_PIECE; }
inline Piece Position::moved_piece(Move m) const {
return piece_on(from_sq(m));
}
inline Piece Position::moved_piece(Move m) const { return piece_on(from_sq(m)); }
inline Bitboard Position::pieces(PieceType pt) const {
return byTypeBB[pt];
}
inline Bitboard Position::pieces(PieceType pt) const { return byTypeBB[pt]; }
template<typename ...PieceTypes>
template<typename... PieceTypes>
inline Bitboard Position::pieces(PieceType pt, PieceTypes... pts) const {
return pieces(pt) | pieces(pts...);
return pieces(pt) | pieces(pts...);
}
inline Bitboard Position::pieces(Color c) const {
return byColorBB[c];
}
inline Bitboard Position::pieces(Color c) const { return byColorBB[c]; }
template<typename ...PieceTypes>
template<typename... PieceTypes>
inline Bitboard Position::pieces(Color c, PieceTypes... pts) const {
return pieces(c) & pieces(pts...);
return pieces(c) & pieces(pts...);
}
template<PieceType Pt> inline int Position::count(Color c) const {
return pieceCount[make_piece(c, Pt)];
template<PieceType Pt>
inline int Position::count(Color c) const {
return pieceCount[make_piece(c, Pt)];
}
template<PieceType Pt> inline int Position::count() const {
return count<Pt>(WHITE) + count<Pt>(BLACK);
template<PieceType Pt>
inline int Position::count() const {
return count<Pt>(WHITE) + count<Pt>(BLACK);
}
template<PieceType Pt> inline Square Position::square(Color c) const {
assert(count<Pt>(c) == 1);
return lsb(pieces(c, Pt));
template<PieceType Pt>
inline Square Position::square(Color c) const {
assert(count<Pt>(c) == 1);
return lsb(pieces(c, Pt));
}
inline Square Position::ep_square() const {
return st->epSquare;
}
inline Square Position::ep_square() const { return st->epSquare; }
inline bool Position::can_castle(CastlingRights cr) const {
return st->castlingRights & cr;
}
inline bool Position::can_castle(CastlingRights cr) const { return st->castlingRights & cr; }
inline CastlingRights Position::castling_rights(Color c) const {
return c & CastlingRights(st->castlingRights);
return c & CastlingRights(st->castlingRights);
}
inline bool Position::castling_impeded(CastlingRights cr) const {
assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO);
assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO);
return pieces() & castlingPath[cr];
return pieces() & castlingPath[cr];
}
inline Square Position::castling_rook_square(CastlingRights cr) const {
assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO);
assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO);
return castlingRookSquare[cr];
return castlingRookSquare[cr];
}
inline Bitboard Position::attackers_to(Square s) const {
return attackers_to(s, pieces());
}
inline Bitboard Position::attackers_to(Square s) const { return attackers_to(s, pieces()); }
template<PieceType Pt>
inline Bitboard Position::attacks_by(Color c) const {
if constexpr (Pt == PAWN)
return c == WHITE ? pawn_attacks_bb<WHITE>(pieces(WHITE, PAWN))
: pawn_attacks_bb<BLACK>(pieces(BLACK, PAWN));
else
{
Bitboard threats = 0;
Bitboard attackers = pieces(c, Pt);
while (attackers)
threats |= attacks_bb<Pt>(pop_lsb(attackers), pieces());
return threats;
}
if constexpr (Pt == PAWN)
return c == WHITE ? pawn_attacks_bb<WHITE>(pieces(WHITE, PAWN))
: pawn_attacks_bb<BLACK>(pieces(BLACK, PAWN));
else
{
Bitboard threats = 0;
Bitboard attackers = pieces(c, Pt);
while (attackers)
threats |= attacks_bb<Pt>(pop_lsb(attackers), pieces());
return threats;
}
}
inline Bitboard Position::checkers() const {
return st->checkersBB;
}
inline Bitboard Position::checkers() const { return st->checkersBB; }
inline Bitboard Position::blockers_for_king(Color c) const {
return st->blockersForKing[c];
}
inline Bitboard Position::blockers_for_king(Color c) const { return st->blockersForKing[c]; }
inline Bitboard Position::pinners(Color c) const {
return st->pinners[c];
}
inline Bitboard Position::pinners(Color c) const { return st->pinners[c]; }
inline Bitboard Position::check_squares(PieceType pt) const {
return st->checkSquares[pt];
}
inline Bitboard Position::check_squares(PieceType pt) const { return st->checkSquares[pt]; }
inline Key Position::key() const {
return adjust_key50<false>(st->key);
}
inline Key Position::key() const { return adjust_key50<false>(st->key); }
template<bool AfterMove>
inline Key Position::adjust_key50(Key k) const
{
return st->rule50 < 14 - AfterMove
? k : k ^ make_key((st->rule50 - (14 - AfterMove)) / 8);
inline Key Position::adjust_key50(Key k) const {
return st->rule50 < 14 - AfterMove ? k : k ^ make_key((st->rule50 - (14 - AfterMove)) / 8);
}
inline Key Position::material_key() const {
return st->materialKey;
}
inline Key Position::material_key() const { return st->materialKey; }
inline Value Position::non_pawn_material(Color c) const {
return st->nonPawnMaterial[c];
}
inline Value Position::non_pawn_material(Color c) const { return st->nonPawnMaterial[c]; }
inline Value Position::non_pawn_material() const {
return non_pawn_material(WHITE) + non_pawn_material(BLACK);
return non_pawn_material(WHITE) + non_pawn_material(BLACK);
}
inline int Position::game_ply() const {
return gamePly;
}
inline int Position::game_ply() const { return gamePly; }
inline int Position::rule50_count() const {
return st->rule50;
}
inline int Position::rule50_count() const { return st->rule50; }
inline bool Position::is_chess960() const {
return chess960;
}
inline bool Position::is_chess960() const { return chess960; }
inline bool Position::capture(Move m) const {
assert(is_ok(m));
return (!empty(to_sq(m)) && type_of(m) != CASTLING)
|| type_of(m) == EN_PASSANT;
assert(is_ok(m));
return (!empty(to_sq(m)) && type_of(m) != CASTLING) || type_of(m) == EN_PASSANT;
}
// Returns true if a move is generated from the capture stage, having also
// queen promotions covered, i.e. consistency with the capture stage move generation
// is needed to avoid the generation of duplicate moves.
inline bool Position::capture_stage(Move m) const {
assert(is_ok(m));
return capture(m) || promotion_type(m) == QUEEN;
assert(is_ok(m));
return capture(m) || promotion_type(m) == QUEEN;
}
inline Piece Position::captured_piece() const {
return st->capturedPiece;
}
inline Piece Position::captured_piece() const { return st->capturedPiece; }
inline Thread* Position::this_thread() const {
return thisThread;
}
inline Thread* Position::this_thread() const { return thisThread; }
inline void Position::put_piece(Piece pc, Square s) {
board[s] = pc;
byTypeBB[ALL_PIECES] |= byTypeBB[type_of(pc)] |= s;
byColorBB[color_of(pc)] |= s;
pieceCount[pc]++;
pieceCount[make_piece(color_of(pc), ALL_PIECES)]++;
board[s] = pc;
byTypeBB[ALL_PIECES] |= byTypeBB[type_of(pc)] |= s;
byColorBB[color_of(pc)] |= s;
pieceCount[pc]++;
pieceCount[make_piece(color_of(pc), ALL_PIECES)]++;
}
inline void Position::remove_piece(Square s) {
Piece pc = board[s];
byTypeBB[ALL_PIECES] ^= s;
byTypeBB[type_of(pc)] ^= s;
byColorBB[color_of(pc)] ^= s;
board[s] = NO_PIECE;
pieceCount[pc]--;
pieceCount[make_piece(color_of(pc), ALL_PIECES)]--;
Piece pc = board[s];
byTypeBB[ALL_PIECES] ^= s;
byTypeBB[type_of(pc)] ^= s;
byColorBB[color_of(pc)] ^= s;
board[s] = NO_PIECE;
pieceCount[pc]--;
pieceCount[make_piece(color_of(pc), ALL_PIECES)]--;
}
inline void Position::move_piece(Square from, Square to) {
Piece pc = board[from];
Bitboard fromTo = from | to;
byTypeBB[ALL_PIECES] ^= fromTo;
byTypeBB[type_of(pc)] ^= fromTo;
byColorBB[color_of(pc)] ^= fromTo;
board[from] = NO_PIECE;
board[to] = pc;
Piece pc = board[from];
Bitboard fromTo = from | to;
byTypeBB[ALL_PIECES] ^= fromTo;
byTypeBB[type_of(pc)] ^= fromTo;
byColorBB[color_of(pc)] ^= fromTo;
board[from] = NO_PIECE;
board[to] = pc;
}
inline void Position::do_move(Move m, StateInfo& newSt) {
do_move(m, newSt, gives_check(m));
}
inline void Position::do_move(Move m, StateInfo& newSt) { do_move(m, newSt, gives_check(m)); }
inline StateInfo* Position::state() const {
inline StateInfo* Position::state() const { return st; }
return st;
}
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef POSITION_H_INCLUDED
#endif // #ifndef POSITION_H_INCLUDED

File diff suppressed because it is too large Load diff

View file

@ -38,20 +38,20 @@ namespace Search {
// its own array of Stack objects, indexed by the current ply.
struct Stack {
Move* pv;
PieceToHistory* continuationHistory;
int ply;
Move currentMove;
Move excludedMove;
Move killers[2];
Value staticEval;
int statScore;
int moveCount;
bool inCheck;
bool ttPv;
bool ttHit;
int doubleExtensions;
int cutoffCnt;
Move* pv;
PieceToHistory* continuationHistory;
int ply;
Move currentMove;
Move excludedMove;
Move killers[2];
Value staticEval;
int statScore;
int moveCount;
bool inCheck;
bool ttPv;
bool ttHit;
int doubleExtensions;
int cutoffCnt;
};
@ -61,24 +61,24 @@ struct Stack {
struct RootMove {
explicit RootMove(Move m) : pv(1, m) {}
bool extract_ponder_from_tt(Position& pos);
bool operator==(const Move& m) const { return pv[0] == m; }
bool operator<(const RootMove& m) const { // Sort in descending order
return m.score != score ? m.score < score
: m.previousScore < previousScore;
}
explicit RootMove(Move m) :
pv(1, m) {}
bool extract_ponder_from_tt(Position& pos);
bool operator==(const Move& m) const { return pv[0] == m; }
bool operator<(const RootMove& m) const { // Sort in descending order
return m.score != score ? m.score < score : m.previousScore < previousScore;
}
Value score = -VALUE_INFINITE;
Value previousScore = -VALUE_INFINITE;
Value averageScore = -VALUE_INFINITE;
Value uciScore = -VALUE_INFINITE;
bool scoreLowerbound = false;
bool scoreUpperbound = false;
int selDepth = 0;
int tbRank = 0;
Value tbScore;
std::vector<Move> pv;
Value score = -VALUE_INFINITE;
Value previousScore = -VALUE_INFINITE;
Value averageScore = -VALUE_INFINITE;
Value uciScore = -VALUE_INFINITE;
bool scoreLowerbound = false;
bool scoreUpperbound = false;
int selDepth = 0;
int tbRank = 0;
Value tbScore;
std::vector<Move> pv;
};
using RootMoves = std::vector<RootMove>;
@ -89,20 +89,18 @@ using RootMoves = std::vector<RootMove>;
struct LimitsType {
LimitsType() { // Init explicitly due to broken value-initialization of non POD in MSVC
time[WHITE] = time[BLACK] = inc[WHITE] = inc[BLACK] = npmsec = movetime = TimePoint(0);
movestogo = depth = mate = perft = infinite = 0;
nodes = 0;
}
LimitsType() { // Init explicitly due to broken value-initialization of non POD in MSVC
time[WHITE] = time[BLACK] = inc[WHITE] = inc[BLACK] = npmsec = movetime = TimePoint(0);
movestogo = depth = mate = perft = infinite = 0;
nodes = 0;
}
bool use_time_management() const {
return time[WHITE] || time[BLACK];
}
bool use_time_management() const { return time[WHITE] || time[BLACK]; }
std::vector<Move> searchmoves;
TimePoint time[COLOR_NB], inc[COLOR_NB], npmsec, movetime, startTime;
int movestogo, depth, mate, perft, infinite;
int64_t nodes;
std::vector<Move> searchmoves;
TimePoint time[COLOR_NB], inc[COLOR_NB], npmsec, movetime, startTime;
int movestogo, depth, mate, perft, infinite;
int64_t nodes;
};
extern LimitsType Limits;
@ -110,8 +108,8 @@ extern LimitsType Limits;
void init();
void clear();
} // namespace Search
} // namespace Search
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef SEARCH_H_INCLUDED
#endif // #ifndef SEARCH_H_INCLUDED

File diff suppressed because it is too large Load diff

View file

@ -30,30 +30,30 @@ class Position;
namespace Stockfish::Tablebases {
enum WDLScore {
WDLLoss = -2, // Loss
WDLBlessedLoss = -1, // Loss, but draw under 50-move rule
WDLDraw = 0, // Draw
WDLCursedWin = 1, // Win, but draw under 50-move rule
WDLWin = 2, // Win
WDLLoss = -2, // Loss
WDLBlessedLoss = -1, // Loss, but draw under 50-move rule
WDLDraw = 0, // Draw
WDLCursedWin = 1, // Win, but draw under 50-move rule
WDLWin = 2, // Win
};
// Possible states after a probing operation
enum ProbeState {
FAIL = 0, // Probe failed (missing file table)
OK = 1, // Probe successful
CHANGE_STM = -1, // DTZ should check the other side
ZEROING_BEST_MOVE = 2 // Best move zeroes DTZ (capture or pawn move)
FAIL = 0, // Probe failed (missing file table)
OK = 1, // Probe successful
CHANGE_STM = -1, // DTZ should check the other side
ZEROING_BEST_MOVE = 2 // Best move zeroes DTZ (capture or pawn move)
};
extern int MaxCardinality;
void init(const std::string& paths);
void init(const std::string& paths);
WDLScore probe_wdl(Position& pos, ProbeState* result);
int probe_dtz(Position& pos, ProbeState* result);
bool root_probe(Position& pos, Search::RootMoves& rootMoves);
bool root_probe_wdl(Position& pos, Search::RootMoves& rootMoves);
void rank_root_moves(Position& pos, Search::RootMoves& rootMoves);
int probe_dtz(Position& pos, ProbeState* result);
bool root_probe(Position& pos, Search::RootMoves& rootMoves);
bool root_probe_wdl(Position& pos, Search::RootMoves& rootMoves);
void rank_root_moves(Position& pos, Search::RootMoves& rootMoves);
} // namespace Stockfish::Tablebases
} // namespace Stockfish::Tablebases
#endif

View file

@ -37,15 +37,17 @@
namespace Stockfish {
ThreadPool Threads; // Global object
ThreadPool Threads; // Global object
// Thread constructor launches the thread and waits until it goes to sleep
// in idle_loop(). Note that 'searching' and 'exit' should be already set.
Thread::Thread(size_t n) : idx(n), stdThread(&Thread::idle_loop, this) {
Thread::Thread(size_t n) :
idx(n),
stdThread(&Thread::idle_loop, this) {
wait_for_search_finished();
wait_for_search_finished();
}
@ -54,11 +56,11 @@ Thread::Thread(size_t n) : idx(n), stdThread(&Thread::idle_loop, this) {
Thread::~Thread() {
assert(!searching);
assert(!searching);
exit = true;
start_searching();
stdThread.join();
exit = true;
start_searching();
stdThread.join();
}
@ -66,25 +68,25 @@ Thread::~Thread() {
void Thread::clear() {
counterMoves.fill(MOVE_NONE);
mainHistory.fill(0);
captureHistory.fill(0);
counterMoves.fill(MOVE_NONE);
mainHistory.fill(0);
captureHistory.fill(0);
for (bool inCheck : { false, true })
for (StatsType c : { NoCaptures, Captures })
for (auto& to : continuationHistory[inCheck][c])
for (auto& h : to)
h->fill(-71);
for (bool inCheck : {false, true})
for (StatsType c : {NoCaptures, Captures})
for (auto& to : continuationHistory[inCheck][c])
for (auto& h : to)
h->fill(-71);
}
// Thread::start_searching() wakes up the thread that will start the search
void Thread::start_searching() {
mutex.lock();
searching = true;
mutex.unlock(); // Unlock before notifying saves a few CPU-cycles
cv.notify_one(); // Wake up the thread in idle_loop()
mutex.lock();
searching = true;
mutex.unlock(); // Unlock before notifying saves a few CPU-cycles
cv.notify_one(); // Wake up the thread in idle_loop()
}
@ -93,8 +95,8 @@ void Thread::start_searching() {
void Thread::wait_for_search_finished() {
std::unique_lock<std::mutex> lk(mutex);
cv.wait(lk, [&]{ return !searching; });
std::unique_lock<std::mutex> lk(mutex);
cv.wait(lk, [&] { return !searching; });
}
@ -103,28 +105,28 @@ void Thread::wait_for_search_finished() {
void Thread::idle_loop() {
// If OS already scheduled us on a different group than 0 then don't overwrite
// the choice, eventually we are one of many one-threaded processes running on
// some Windows NUMA hardware, for instance in fishtest. To make it simple,
// just check if running threads are below a threshold, in this case, all this
// NUMA machinery is not needed.
if (Options["Threads"] > 8)
WinProcGroup::bindThisThread(idx);
// If OS already scheduled us on a different group than 0 then don't overwrite
// the choice, eventually we are one of many one-threaded processes running on
// some Windows NUMA hardware, for instance in fishtest. To make it simple,
// just check if running threads are below a threshold, in this case, all this
// NUMA machinery is not needed.
if (Options["Threads"] > 8)
WinProcGroup::bindThisThread(idx);
while (true)
{
std::unique_lock<std::mutex> lk(mutex);
searching = false;
cv.notify_one(); // Wake up anyone waiting for search finished
cv.wait(lk, [&]{ return searching; });
while (true)
{
std::unique_lock<std::mutex> lk(mutex);
searching = false;
cv.notify_one(); // Wake up anyone waiting for search finished
cv.wait(lk, [&] { return searching; });
if (exit)
return;
if (exit)
return;
lk.unlock();
lk.unlock();
search();
}
search();
}
}
// ThreadPool::set() creates/destroys threads to match the requested number.
@ -133,28 +135,28 @@ void Thread::idle_loop() {
void ThreadPool::set(size_t requested) {
if (threads.size() > 0) // destroy any existing thread(s)
{
main()->wait_for_search_finished();
if (threads.size() > 0) // destroy any existing thread(s)
{
main()->wait_for_search_finished();
while (threads.size() > 0)
delete threads.back(), threads.pop_back();
}
while (threads.size() > 0)
delete threads.back(), threads.pop_back();
}
if (requested > 0) // create new thread(s)
{
threads.push_back(new MainThread(0));
if (requested > 0) // create new thread(s)
{
threads.push_back(new MainThread(0));
while (threads.size() < requested)
threads.push_back(new Thread(threads.size()));
clear();
while (threads.size() < requested)
threads.push_back(new Thread(threads.size()));
clear();
// Reallocate the hash with the new threadpool size
TT.resize(size_t(Options["Hash"]));
// Reallocate the hash with the new threadpool size
TT.resize(size_t(Options["Hash"]));
// Init thread number dependent search params.
Search::init();
}
// Init thread number dependent search params.
Search::init();
}
}
@ -162,77 +164,79 @@ void ThreadPool::set(size_t requested) {
void ThreadPool::clear() {
for (Thread* th : threads)
th->clear();
for (Thread* th : threads)
th->clear();
main()->callsCnt = 0;
main()->bestPreviousScore = VALUE_INFINITE;
main()->bestPreviousAverageScore = VALUE_INFINITE;
main()->previousTimeReduction = 1.0;
main()->callsCnt = 0;
main()->bestPreviousScore = VALUE_INFINITE;
main()->bestPreviousAverageScore = VALUE_INFINITE;
main()->previousTimeReduction = 1.0;
}
// ThreadPool::start_thinking() wakes up main thread waiting in idle_loop() and
// returns immediately. Main thread will wake up other threads and start the search.
void ThreadPool::start_thinking(Position& pos, StateListPtr& states,
const Search::LimitsType& limits, bool ponderMode) {
void ThreadPool::start_thinking(Position& pos,
StateListPtr& states,
const Search::LimitsType& limits,
bool ponderMode) {
main()->wait_for_search_finished();
main()->wait_for_search_finished();
main()->stopOnPonderhit = stop = false;
increaseDepth = true;
main()->ponder = ponderMode;
Search::Limits = limits;
Search::RootMoves rootMoves;
main()->stopOnPonderhit = stop = false;
increaseDepth = true;
main()->ponder = ponderMode;
Search::Limits = limits;
Search::RootMoves rootMoves;
for (const auto& m : MoveList<LEGAL>(pos))
if ( limits.searchmoves.empty()
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m))
rootMoves.emplace_back(m);
for (const auto& m : MoveList<LEGAL>(pos))
if (limits.searchmoves.empty()
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m))
rootMoves.emplace_back(m);
if (!rootMoves.empty())
Tablebases::rank_root_moves(pos, rootMoves);
if (!rootMoves.empty())
Tablebases::rank_root_moves(pos, rootMoves);
// After ownership transfer 'states' becomes empty, so if we stop the search
// and call 'go' again without setting a new position states.get() == nullptr.
assert(states.get() || setupStates.get());
// After ownership transfer 'states' becomes empty, so if we stop the search
// and call 'go' again without setting a new position states.get() == nullptr.
assert(states.get() || setupStates.get());
if (states.get())
setupStates = std::move(states); // Ownership transfer, states is now empty
if (states.get())
setupStates = std::move(states); // Ownership transfer, states is now empty
// We use Position::set() to set root position across threads. But there are
// some StateInfo fields (previous, pliesFromNull, capturedPiece) that cannot
// be deduced from a fen string, so set() clears them and they are set from
// setupStates->back() later. The rootState is per thread, earlier states are shared
// since they are read-only.
for (Thread* th : threads)
{
th->nodes = th->tbHits = th->nmpMinPly = th->bestMoveChanges = 0;
th->rootDepth = th->completedDepth = 0;
th->rootMoves = rootMoves;
th->rootPos.set(pos.fen(), pos.is_chess960(), &th->rootState, th);
th->rootState = setupStates->back();
th->rootSimpleEval = Eval::simple_eval(pos, pos.side_to_move());
}
// We use Position::set() to set root position across threads. But there are
// some StateInfo fields (previous, pliesFromNull, capturedPiece) that cannot
// be deduced from a fen string, so set() clears them and they are set from
// setupStates->back() later. The rootState is per thread, earlier states are shared
// since they are read-only.
for (Thread* th : threads)
{
th->nodes = th->tbHits = th->nmpMinPly = th->bestMoveChanges = 0;
th->rootDepth = th->completedDepth = 0;
th->rootMoves = rootMoves;
th->rootPos.set(pos.fen(), pos.is_chess960(), &th->rootState, th);
th->rootState = setupStates->back();
th->rootSimpleEval = Eval::simple_eval(pos, pos.side_to_move());
}
main()->start_searching();
main()->start_searching();
}
Thread* ThreadPool::get_best_thread() const {
Thread* bestThread = threads.front();
Thread* bestThread = threads.front();
std::map<Move, int64_t> votes;
Value minScore = VALUE_NONE;
Value minScore = VALUE_NONE;
// Find the minimum score of all threads
for (Thread* th: threads)
for (Thread* th : threads)
minScore = std::min(minScore, th->rootMoves[0].score);
// Vote according to score and depth, and select the best thread
auto thread_value = [minScore](Thread* th) {
return (th->rootMoves[0].score - minScore + 14) * int(th->completedDepth);
};
return (th->rootMoves[0].score - minScore + 14) * int(th->completedDepth);
};
for (Thread* th : threads)
votes[th->rootMoves[0].pv[0]] += thread_value(th);
@ -244,12 +248,13 @@ Thread* ThreadPool::get_best_thread() const {
if (th->rootMoves[0].score > bestThread->rootMoves[0].score)
bestThread = th;
}
else if ( th->rootMoves[0].score >= VALUE_TB_WIN_IN_MAX_PLY
|| ( th->rootMoves[0].score > VALUE_TB_LOSS_IN_MAX_PLY
&& ( votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]]
|| ( votes[th->rootMoves[0].pv[0]] == votes[bestThread->rootMoves[0].pv[0]]
&& thread_value(th) * int(th->rootMoves[0].pv.size() > 2)
> thread_value(bestThread) * int(bestThread->rootMoves[0].pv.size() > 2)))))
else if (th->rootMoves[0].score >= VALUE_TB_WIN_IN_MAX_PLY
|| (th->rootMoves[0].score > VALUE_TB_LOSS_IN_MAX_PLY
&& (votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]]
|| (votes[th->rootMoves[0].pv[0]] == votes[bestThread->rootMoves[0].pv[0]]
&& thread_value(th) * int(th->rootMoves[0].pv.size() > 2)
> thread_value(bestThread)
* int(bestThread->rootMoves[0].pv.size() > 2)))))
bestThread = th;
return bestThread;
@ -275,4 +280,4 @@ void ThreadPool::wait_for_search_finished() const {
th->wait_for_search_finished();
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -41,56 +41,56 @@ namespace Stockfish {
class Thread {
std::mutex mutex;
std::condition_variable cv;
size_t idx;
bool exit = false, searching = true; // Set before starting std::thread
NativeThread stdThread;
std::mutex mutex;
std::condition_variable cv;
size_t idx;
bool exit = false, searching = true; // Set before starting std::thread
NativeThread stdThread;
public:
explicit Thread(size_t);
virtual ~Thread();
virtual void search();
void clear();
void idle_loop();
void start_searching();
void wait_for_search_finished();
size_t id() const { return idx; }
public:
explicit Thread(size_t);
virtual ~Thread();
virtual void search();
void clear();
void idle_loop();
void start_searching();
void wait_for_search_finished();
size_t id() const { return idx; }
size_t pvIdx, pvLast;
std::atomic<uint64_t> nodes, tbHits, bestMoveChanges;
int selDepth, nmpMinPly;
Value bestValue, optimism[COLOR_NB];
size_t pvIdx, pvLast;
std::atomic<uint64_t> nodes, tbHits, bestMoveChanges;
int selDepth, nmpMinPly;
Value bestValue, optimism[COLOR_NB];
Position rootPos;
StateInfo rootState;
Search::RootMoves rootMoves;
Depth rootDepth, completedDepth;
Value rootDelta;
Value rootSimpleEval;
CounterMoveHistory counterMoves;
ButterflyHistory mainHistory;
CapturePieceToHistory captureHistory;
ContinuationHistory continuationHistory[2][2];
Position rootPos;
StateInfo rootState;
Search::RootMoves rootMoves;
Depth rootDepth, completedDepth;
Value rootDelta;
Value rootSimpleEval;
CounterMoveHistory counterMoves;
ButterflyHistory mainHistory;
CapturePieceToHistory captureHistory;
ContinuationHistory continuationHistory[2][2];
};
// MainThread is a derived class specific for main thread
struct MainThread : public Thread {
struct MainThread: public Thread {
using Thread::Thread;
using Thread::Thread;
void search() override;
void check_time();
void search() override;
void check_time();
double previousTimeReduction;
Value bestPreviousScore;
Value bestPreviousAverageScore;
Value iterValue[4];
int callsCnt;
bool stopOnPonderhit;
std::atomic_bool ponder;
double previousTimeReduction;
Value bestPreviousScore;
Value bestPreviousAverageScore;
Value iterValue[4];
int callsCnt;
bool stopOnPonderhit;
std::atomic_bool ponder;
};
@ -100,41 +100,41 @@ struct MainThread : public Thread {
struct ThreadPool {
void start_thinking(Position&, StateListPtr&, const Search::LimitsType&, bool = false);
void clear();
void set(size_t);
void start_thinking(Position&, StateListPtr&, const Search::LimitsType&, bool = false);
void clear();
void set(size_t);
MainThread* main() const { return static_cast<MainThread*>(threads.front()); }
uint64_t nodes_searched() const { return accumulate(&Thread::nodes); }
uint64_t tb_hits() const { return accumulate(&Thread::tbHits); }
Thread* get_best_thread() const;
void start_searching();
void wait_for_search_finished() const;
MainThread* main() const { return static_cast<MainThread*>(threads.front()); }
uint64_t nodes_searched() const { return accumulate(&Thread::nodes); }
uint64_t tb_hits() const { return accumulate(&Thread::tbHits); }
Thread* get_best_thread() const;
void start_searching();
void wait_for_search_finished() const;
std::atomic_bool stop, increaseDepth;
std::atomic_bool stop, increaseDepth;
auto cbegin() const noexcept { return threads.cbegin(); }
auto begin() noexcept { return threads.begin(); }
auto end() noexcept { return threads.end(); }
auto cend() const noexcept { return threads.cend(); }
auto size() const noexcept { return threads.size(); }
auto empty() const noexcept { return threads.empty(); }
auto cbegin() const noexcept { return threads.cbegin(); }
auto begin() noexcept { return threads.begin(); }
auto end() noexcept { return threads.end(); }
auto cend() const noexcept { return threads.cend(); }
auto size() const noexcept { return threads.size(); }
auto empty() const noexcept { return threads.empty(); }
private:
StateListPtr setupStates;
std::vector<Thread*> threads;
private:
StateListPtr setupStates;
std::vector<Thread*> threads;
uint64_t accumulate(std::atomic<uint64_t> Thread::* member) const {
uint64_t accumulate(std::atomic<uint64_t> Thread::*member) const {
uint64_t sum = 0;
for (Thread* th : threads)
sum += (th->*member).load(std::memory_order_relaxed);
return sum;
}
uint64_t sum = 0;
for (Thread* th : threads)
sum += (th->*member).load(std::memory_order_relaxed);
return sum;
}
};
extern ThreadPool Threads;
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef THREAD_H_INCLUDED
#endif // #ifndef THREAD_H_INCLUDED

View file

@ -29,46 +29,45 @@
#if defined(__APPLE__) || defined(__MINGW32__) || defined(__MINGW64__) || defined(USE_PTHREADS)
#include <pthread.h>
#include <pthread.h>
namespace Stockfish {
static const size_t TH_STACK_SIZE = 8 * 1024 * 1024;
template <class T, class P = std::pair<T*, void(T::*)()>>
void* start_routine(void* ptr)
{
P* p = reinterpret_cast<P*>(ptr);
(p->first->*(p->second))(); // Call member function pointer
delete p;
return nullptr;
template<class T, class P = std::pair<T*, void (T::*)()>>
void* start_routine(void* ptr) {
P* p = reinterpret_cast<P*>(ptr);
(p->first->*(p->second))(); // Call member function pointer
delete p;
return nullptr;
}
class NativeThread {
pthread_t thread;
pthread_t thread;
public:
template<class T, class P = std::pair<T*, void(T::*)()>>
explicit NativeThread(void(T::*fun)(), T* obj) {
pthread_attr_t attr_storage, *attr = &attr_storage;
pthread_attr_init(attr);
pthread_attr_setstacksize(attr, TH_STACK_SIZE);
pthread_create(&thread, attr, start_routine<T>, new P(obj, fun));
}
void join() { pthread_join(thread, nullptr); }
public:
template<class T, class P = std::pair<T*, void (T::*)()>>
explicit NativeThread(void (T::*fun)(), T* obj) {
pthread_attr_t attr_storage, *attr = &attr_storage;
pthread_attr_init(attr);
pthread_attr_setstacksize(attr, TH_STACK_SIZE);
pthread_create(&thread, attr, start_routine<T>, new P(obj, fun));
}
void join() { pthread_join(thread, nullptr); }
};
} // namespace Stockfish
} // namespace Stockfish
#else // Default case: use STL classes
#else // Default case: use STL classes
namespace Stockfish {
using NativeThread = std::thread;
} // namespace Stockfish
} // namespace Stockfish
#endif
#endif // #ifndef THREAD_WIN32_OSX_H_INCLUDED
#endif // #ifndef THREAD_WIN32_OSX_H_INCLUDED

View file

@ -26,7 +26,7 @@
namespace Stockfish {
TimeManagement Time; // Our global time management object
TimeManagement Time; // Our global time management object
// TimeManagement::init() is called at the beginning of the search and calculates
@ -36,74 +36,74 @@ TimeManagement Time; // Our global time management object
void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
// If we have no time, no need to initialize TM, except for the start time,
// which is used by movetime.
startTime = limits.startTime;
if (limits.time[us] == 0)
return;
// If we have no time, no need to initialize TM, except for the start time,
// which is used by movetime.
startTime = limits.startTime;
if (limits.time[us] == 0)
return;
TimePoint moveOverhead = TimePoint(Options["Move Overhead"]);
TimePoint slowMover = TimePoint(Options["Slow Mover"]);
TimePoint npmsec = TimePoint(Options["nodestime"]);
TimePoint moveOverhead = TimePoint(Options["Move Overhead"]);
TimePoint slowMover = TimePoint(Options["Slow Mover"]);
TimePoint npmsec = TimePoint(Options["nodestime"]);
// optScale is a percentage of available time to use for the current move.
// maxScale is a multiplier applied to optimumTime.
double optScale, maxScale;
// optScale is a percentage of available time to use for the current move.
// maxScale is a multiplier applied to optimumTime.
double optScale, maxScale;
// If we have to play in 'nodes as time' mode, then convert from time
// to nodes, and use resulting values in time management formulas.
// WARNING: to avoid time losses, the given npmsec (nodes per millisecond)
// must be much lower than the real engine speed.
if (npmsec)
{
if (!availableNodes) // Only once at game start
availableNodes = npmsec * limits.time[us]; // Time is in msec
// If we have to play in 'nodes as time' mode, then convert from time
// to nodes, and use resulting values in time management formulas.
// WARNING: to avoid time losses, the given npmsec (nodes per millisecond)
// must be much lower than the real engine speed.
if (npmsec)
{
if (!availableNodes) // Only once at game start
availableNodes = npmsec * limits.time[us]; // Time is in msec
// Convert from milliseconds to nodes
limits.time[us] = TimePoint(availableNodes);
limits.inc[us] *= npmsec;
limits.npmsec = npmsec;
}
// Convert from milliseconds to nodes
limits.time[us] = TimePoint(availableNodes);
limits.inc[us] *= npmsec;
limits.npmsec = npmsec;
}
// Maximum move horizon of 50 moves
int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50;
// Maximum move horizon of 50 moves
int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50;
// Make sure timeLeft is > 0 since we may use it as a divisor
TimePoint timeLeft = std::max(TimePoint(1),
limits.time[us] + limits.inc[us] * (mtg - 1) - moveOverhead * (2 + mtg));
// Make sure timeLeft is > 0 since we may use it as a divisor
TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1)
- moveOverhead * (2 + mtg));
// Use extra time with larger increments
double optExtra = std::clamp(1.0 + 12.0 * limits.inc[us] / limits.time[us], 1.0, 1.12);
// Use extra time with larger increments
double optExtra = std::clamp(1.0 + 12.0 * limits.inc[us] / limits.time[us], 1.0, 1.12);
// A user may scale time usage by setting UCI option "Slow Mover"
// Default is 100 and changing this value will probably lose elo.
timeLeft = slowMover * timeLeft / 100;
// A user may scale time usage by setting UCI option "Slow Mover"
// Default is 100 and changing this value will probably lose elo.
timeLeft = slowMover * timeLeft / 100;
// x basetime (+ z increment)
// If there is a healthy increment, timeLeft can exceed actual available
// game time for the current move, so also cap to 20% of available game time.
if (limits.movestogo == 0)
{
optScale = std::min(0.0120 + std::pow(ply + 3.0, 0.45) * 0.0039,
0.2 * limits.time[us] / double(timeLeft))
// x basetime (+ z increment)
// If there is a healthy increment, timeLeft can exceed actual available
// game time for the current move, so also cap to 20% of available game time.
if (limits.movestogo == 0)
{
optScale = std::min(0.0120 + std::pow(ply + 3.0, 0.45) * 0.0039,
0.2 * limits.time[us] / double(timeLeft))
* optExtra;
maxScale = std::min(7.0, 4.0 + ply / 12.0);
}
maxScale = std::min(7.0, 4.0 + ply / 12.0);
}
// x moves in y seconds (+ z increment)
else
{
optScale = std::min((0.88 + ply / 116.4) / mtg,
0.88 * limits.time[us] / double(timeLeft));
maxScale = std::min(6.3, 1.5 + 0.11 * mtg);
}
// x moves in y seconds (+ z increment)
else
{
optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / double(timeLeft));
maxScale = std::min(6.3, 1.5 + 0.11 * mtg);
}
// Never use more than 80% of the available time for this move
optimumTime = TimePoint(optScale * timeLeft);
maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10;
// Never use more than 80% of the available time for this move
optimumTime = TimePoint(optScale * timeLeft);
maximumTime =
TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10;
if (Options["Ponder"])
optimumTime += optimumTime / 4;
if (Options["Ponder"])
optimumTime += optimumTime / 4;
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -32,23 +32,24 @@ namespace Stockfish {
// the maximum available time, the game move number, and other parameters.
class TimeManagement {
public:
void init(Search::LimitsType& limits, Color us, int ply);
TimePoint optimum() const { return optimumTime; }
TimePoint maximum() const { return maximumTime; }
TimePoint elapsed() const { return Search::Limits.npmsec ?
TimePoint(Threads.nodes_searched()) : now() - startTime; }
public:
void init(Search::LimitsType& limits, Color us, int ply);
TimePoint optimum() const { return optimumTime; }
TimePoint maximum() const { return maximumTime; }
TimePoint elapsed() const {
return Search::Limits.npmsec ? TimePoint(Threads.nodes_searched()) : now() - startTime;
}
int64_t availableNodes; // When in 'nodes as time' mode
int64_t availableNodes; // When in 'nodes as time' mode
private:
TimePoint startTime;
TimePoint optimumTime;
TimePoint maximumTime;
private:
TimePoint startTime;
TimePoint optimumTime;
TimePoint maximumTime;
};
extern TimeManagement Time;
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef TIMEMAN_H_INCLUDED
#endif // #ifndef TIMEMAN_H_INCLUDED

View file

@ -31,31 +31,29 @@
namespace Stockfish {
TranspositionTable TT; // Our global transposition table
TranspositionTable TT; // Our global transposition table
// TTEntry::save() populates the TTEntry with a new node's data, possibly
// overwriting an old position. The update is not atomic and can be racy.
void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) {
// Preserve any existing move for the same position
if (m || uint16_t(k) != key16)
move16 = uint16_t(m);
// Preserve any existing move for the same position
if (m || uint16_t(k) != key16)
move16 = uint16_t(m);
// Overwrite less valuable entries (cheapest checks first)
if ( b == BOUND_EXACT
|| uint16_t(k) != key16
|| d - DEPTH_OFFSET + 2 * pv > depth8 - 4)
{
assert(d > DEPTH_OFFSET);
assert(d < 256 + DEPTH_OFFSET);
// Overwrite less valuable entries (cheapest checks first)
if (b == BOUND_EXACT || uint16_t(k) != key16 || d - DEPTH_OFFSET + 2 * pv > depth8 - 4)
{
assert(d > DEPTH_OFFSET);
assert(d < 256 + DEPTH_OFFSET);
key16 = uint16_t(k);
depth8 = uint8_t(d - DEPTH_OFFSET);
genBound8 = uint8_t(TT.generation8 | uint8_t(pv) << 2 | b);
value16 = int16_t(v);
eval16 = int16_t(ev);
}
key16 = uint16_t(k);
depth8 = uint8_t(d - DEPTH_OFFSET);
genBound8 = uint8_t(TT.generation8 | uint8_t(pv) << 2 | b);
value16 = int16_t(v);
eval16 = int16_t(ev);
}
}
@ -65,21 +63,20 @@ void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev)
void TranspositionTable::resize(size_t mbSize) {
Threads.main()->wait_for_search_finished();
Threads.main()->wait_for_search_finished();
aligned_large_pages_free(table);
aligned_large_pages_free(table);
clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster);
clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster);
table = static_cast<Cluster*>(aligned_large_pages_alloc(clusterCount * sizeof(Cluster)));
if (!table)
{
std::cerr << "Failed to allocate " << mbSize
<< "MB for transposition table." << std::endl;
exit(EXIT_FAILURE);
}
table = static_cast<Cluster*>(aligned_large_pages_alloc(clusterCount * sizeof(Cluster)));
if (!table)
{
std::cerr << "Failed to allocate " << mbSize << "MB for transposition table." << std::endl;
exit(EXIT_FAILURE);
}
clear();
clear();
}
@ -88,28 +85,27 @@ void TranspositionTable::resize(size_t mbSize) {
void TranspositionTable::clear() {
std::vector<std::thread> threads;
std::vector<std::thread> threads;
for (size_t idx = 0; idx < size_t(Options["Threads"]); ++idx)
{
threads.emplace_back([this, idx]() {
for (size_t idx = 0; idx < size_t(Options["Threads"]); ++idx)
{
threads.emplace_back([this, idx]() {
// Thread binding gives faster search on systems with a first-touch policy
if (Options["Threads"] > 8)
WinProcGroup::bindThisThread(idx);
// Thread binding gives faster search on systems with a first-touch policy
if (Options["Threads"] > 8)
WinProcGroup::bindThisThread(idx);
// Each thread will zero its part of the hash table
const size_t stride = size_t(clusterCount / Options["Threads"]),
start = size_t(stride * idx),
len =
idx != size_t(Options["Threads"]) - 1 ? stride : clusterCount - start;
// Each thread will zero its part of the hash table
const size_t stride = size_t(clusterCount / Options["Threads"]),
start = size_t(stride * idx),
len = idx != size_t(Options["Threads"]) - 1 ?
stride : clusterCount - start;
std::memset(&table[start], 0, len * sizeof(Cluster));
});
}
std::memset(&table[start], 0, len * sizeof(Cluster));
});
}
for (std::thread& th : threads)
th.join();
for (std::thread& th : threads)
th.join();
}
@ -122,30 +118,33 @@ void TranspositionTable::clear() {
TTEntry* TranspositionTable::probe(const Key key, bool& found) const {
TTEntry* const tte = first_entry(key);
const uint16_t key16 = uint16_t(key); // Use the low 16 bits as key inside the cluster
TTEntry* const tte = first_entry(key);
const uint16_t key16 = uint16_t(key); // Use the low 16 bits as key inside the cluster
for (int i = 0; i < ClusterSize; ++i)
if (tte[i].key16 == key16 || !tte[i].depth8)
{
tte[i].genBound8 = uint8_t(generation8 | (tte[i].genBound8 & (GENERATION_DELTA - 1))); // Refresh
for (int i = 0; i < ClusterSize; ++i)
if (tte[i].key16 == key16 || !tte[i].depth8)
{
tte[i].genBound8 =
uint8_t(generation8 | (tte[i].genBound8 & (GENERATION_DELTA - 1))); // Refresh
return found = bool(tte[i].depth8), &tte[i];
}
return found = bool(tte[i].depth8), &tte[i];
}
// Find an entry to be replaced according to the replacement strategy
TTEntry* replace = tte;
for (int i = 1; i < ClusterSize; ++i)
// Due to our packed storage format for generation and its cyclic
// nature we add GENERATION_CYCLE (256 is the modulus, plus what
// is needed to keep the unrelated lowest n bits from affecting
// the result) to calculate the entry age correctly even after
// generation8 overflows into the next cycle.
if ( replace->depth8 - ((GENERATION_CYCLE + generation8 - replace->genBound8) & GENERATION_MASK)
> tte[i].depth8 - ((GENERATION_CYCLE + generation8 - tte[i].genBound8) & GENERATION_MASK))
replace = &tte[i];
// Find an entry to be replaced according to the replacement strategy
TTEntry* replace = tte;
for (int i = 1; i < ClusterSize; ++i)
// Due to our packed storage format for generation and its cyclic
// nature we add GENERATION_CYCLE (256 is the modulus, plus what
// is needed to keep the unrelated lowest n bits from affecting
// the result) to calculate the entry age correctly even after
// generation8 overflows into the next cycle.
if (replace->depth8
- ((GENERATION_CYCLE + generation8 - replace->genBound8) & GENERATION_MASK)
> tte[i].depth8
- ((GENERATION_CYCLE + generation8 - tte[i].genBound8) & GENERATION_MASK))
replace = &tte[i];
return found = false, replace;
return found = false, replace;
}
@ -154,12 +153,13 @@ TTEntry* TranspositionTable::probe(const Key key, bool& found) const {
int TranspositionTable::hashfull() const {
int cnt = 0;
for (int i = 0; i < 1000; ++i)
for (int j = 0; j < ClusterSize; ++j)
cnt += table[i].entry[j].depth8 && (table[i].entry[j].genBound8 & GENERATION_MASK) == generation8;
int cnt = 0;
for (int i = 0; i < 1000; ++i)
for (int j = 0; j < ClusterSize; ++j)
cnt += table[i].entry[j].depth8
&& (table[i].entry[j].genBound8 & GENERATION_MASK) == generation8;
return cnt / ClusterSize;
return cnt / ClusterSize;
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -40,23 +40,23 @@ namespace Stockfish {
struct TTEntry {
Move move() const { return Move (move16); }
Value value() const { return Value(value16); }
Value eval() const { return Value(eval16); }
Depth depth() const { return Depth(depth8 + DEPTH_OFFSET); }
bool is_pv() const { return bool (genBound8 & 0x4); }
Bound bound() const { return Bound(genBound8 & 0x3); }
void save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev);
Move move() const { return Move(move16); }
Value value() const { return Value(value16); }
Value eval() const { return Value(eval16); }
Depth depth() const { return Depth(depth8 + DEPTH_OFFSET); }
bool is_pv() const { return bool(genBound8 & 0x4); }
Bound bound() const { return Bound(genBound8 & 0x3); }
void save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev);
private:
friend class TranspositionTable;
private:
friend class TranspositionTable;
uint16_t key16;
uint8_t depth8;
uint8_t genBound8;
uint16_t move16;
int16_t value16;
int16_t eval16;
uint16_t key16;
uint8_t depth8;
uint8_t genBound8;
uint16_t move16;
int16_t value16;
int16_t eval16;
};
@ -68,43 +68,45 @@ private:
class TranspositionTable {
static constexpr int ClusterSize = 3;
static constexpr int ClusterSize = 3;
struct Cluster {
TTEntry entry[ClusterSize];
char padding[2]; // Pad to 32 bytes
};
struct Cluster {
TTEntry entry[ClusterSize];
char padding[2]; // Pad to 32 bytes
};
static_assert(sizeof(Cluster) == 32, "Unexpected Cluster size");
static_assert(sizeof(Cluster) == 32, "Unexpected Cluster size");
// Constants used to refresh the hash table periodically
static constexpr unsigned GENERATION_BITS = 3; // nb of bits reserved for other things
static constexpr int GENERATION_DELTA = (1 << GENERATION_BITS); // increment for generation field
static constexpr int GENERATION_CYCLE = 255 + (1 << GENERATION_BITS); // cycle length
static constexpr int GENERATION_MASK = (0xFF << GENERATION_BITS) & 0xFF; // mask to pull out generation number
// Constants used to refresh the hash table periodically
static constexpr unsigned GENERATION_BITS = 3; // nb of bits reserved for other things
static constexpr int GENERATION_DELTA =
(1 << GENERATION_BITS); // increment for generation field
static constexpr int GENERATION_CYCLE = 255 + (1 << GENERATION_BITS); // cycle length
static constexpr int GENERATION_MASK =
(0xFF << GENERATION_BITS) & 0xFF; // mask to pull out generation number
public:
~TranspositionTable() { aligned_large_pages_free(table); }
void new_search() { generation8 += GENERATION_DELTA; } // Lower bits are used for other things
TTEntry* probe(const Key key, bool& found) const;
int hashfull() const;
void resize(size_t mbSize);
void clear();
public:
~TranspositionTable() { aligned_large_pages_free(table); }
void new_search() { generation8 += GENERATION_DELTA; } // Lower bits are used for other things
TTEntry* probe(const Key key, bool& found) const;
int hashfull() const;
void resize(size_t mbSize);
void clear();
TTEntry* first_entry(const Key key) const {
return &table[mul_hi64(key, clusterCount)].entry[0];
}
TTEntry* first_entry(const Key key) const {
return &table[mul_hi64(key, clusterCount)].entry[0];
}
private:
friend struct TTEntry;
private:
friend struct TTEntry;
size_t clusterCount;
Cluster* table;
uint8_t generation8; // Size must be not bigger than TTEntry::genBound8
size_t clusterCount;
Cluster* table;
uint8_t generation8; // Size must be not bigger than TTEntry::genBound8
};
extern TranspositionTable TT;
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef TT_H_INCLUDED
#endif // #ifndef TT_H_INCLUDED

View file

@ -34,75 +34,84 @@ using std::string;
namespace Stockfish {
bool Tune::update_on_last;
const UCI::Option* LastOption = nullptr;
bool Tune::update_on_last;
const UCI::Option* LastOption = nullptr;
static std::map<std::string, int> TuneResults;
string Tune::next(string& names, bool pop) {
string name;
string name;
do {
string token = names.substr(0, names.find(','));
do
{
string token = names.substr(0, names.find(','));
if (pop)
names.erase(0, token.size() + 1);
if (pop)
names.erase(0, token.size() + 1);
std::stringstream ws(token);
name += (ws >> token, token); // Remove trailing whitespace
std::stringstream ws(token);
name += (ws >> token, token); // Remove trailing whitespace
} while ( std::count(name.begin(), name.end(), '(')
- std::count(name.begin(), name.end(), ')'));
} while (std::count(name.begin(), name.end(), '(') - std::count(name.begin(), name.end(), ')'));
return name;
return name;
}
static void on_tune(const UCI::Option& o) {
if (!Tune::update_on_last || LastOption == &o)
Tune::read_options();
if (!Tune::update_on_last || LastOption == &o)
Tune::read_options();
}
static void make_option(const string& n, int v, const SetRange& r) {
// Do not generate option when there is nothing to tune (ie. min = max)
if (r(v).first == r(v).second)
return;
// Do not generate option when there is nothing to tune (ie. min = max)
if (r(v).first == r(v).second)
return;
if (TuneResults.count(n))
v = TuneResults[n];
if (TuneResults.count(n))
v = TuneResults[n];
Options[n] << UCI::Option(v, r(v).first, r(v).second, on_tune);
LastOption = &Options[n];
Options[n] << UCI::Option(v, r(v).first, r(v).second, on_tune);
LastOption = &Options[n];
// Print formatted parameters, ready to be copy-pasted in Fishtest
std::cout << n << ","
<< v << ","
<< r(v).first << "," << r(v).second << ","
<< (r(v).second - r(v).first) / 20.0 << ","
<< "0.0020"
<< std::endl;
// Print formatted parameters, ready to be copy-pasted in Fishtest
std::cout << n << "," << v << "," << r(v).first << "," << r(v).second << ","
<< (r(v).second - r(v).first) / 20.0 << ","
<< "0.0020" << std::endl;
}
template<> void Tune::Entry<int>::init_option() { make_option(name, value, range); }
template<> void Tune::Entry<int>::read_option() {
if (Options.count(name))
value = int(Options[name]);
template<>
void Tune::Entry<int>::init_option() {
make_option(name, value, range);
}
template<> void Tune::Entry<Value>::init_option() { make_option(name, value, range); }
template<>
void Tune::Entry<int>::read_option() {
if (Options.count(name))
value = int(Options[name]);
}
template<> void Tune::Entry<Value>::read_option() {
if (Options.count(name))
value = Value(int(Options[name]));
template<>
void Tune::Entry<Value>::init_option() {
make_option(name, value, range);
}
template<>
void Tune::Entry<Value>::read_option() {
if (Options.count(name))
value = Value(int(Options[name]));
}
// Instead of a variable here we have a PostUpdate function: just call it
template<> void Tune::Entry<Tune::PostUpdate>::init_option() {}
template<> void Tune::Entry<Tune::PostUpdate>::read_option() { value(); }
template<>
void Tune::Entry<Tune::PostUpdate>::init_option() {}
template<>
void Tune::Entry<Tune::PostUpdate>::read_option() {
value();
}
} // namespace Stockfish
} // namespace Stockfish
// Init options with tuning session results instead of default values. Useful to
@ -117,9 +126,7 @@ template<> void Tune::Entry<Tune::PostUpdate>::read_option() { value(); }
namespace Stockfish {
void Tune::read_results() {
/* ...insert your values here... */
void Tune::read_results() { /* ...insert your values here... */
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -22,28 +22,29 @@
#include <cstddef>
#include <memory>
#include <string>
#include <type_traits> // IWYU pragma: keep
#include <type_traits> // IWYU pragma: keep
#include <utility>
#include <vector>
namespace Stockfish {
enum Value : int;
using Range = std::pair<int, int>; // Option's min-max values
using RangeFun = Range (int);
using Range = std::pair<int, int>; // Option's min-max values
using RangeFun = Range(int);
// Default Range function, to calculate Option's min-max values
inline Range default_range(int v) {
return v > 0 ? Range(0, 2 * v) : Range(2 * v, 0);
}
inline Range default_range(int v) { return v > 0 ? Range(0, 2 * v) : Range(2 * v, 0); }
struct SetRange {
explicit SetRange(RangeFun f) : fun(f) {}
SetRange(int min, int max) : fun(nullptr), range(min, max) {}
Range operator()(int v) const { return fun ? fun(v) : range; }
explicit SetRange(RangeFun f) :
fun(f) {}
SetRange(int min, int max) :
fun(nullptr),
range(min, max) {}
Range operator()(int v) const { return fun ? fun(v) : range; }
RangeFun* fun;
Range range;
RangeFun* fun;
Range range;
};
#define SetDefaultRange SetRange(default_range)
@ -76,88 +77,102 @@ struct SetRange {
class Tune {
using PostUpdate = void (); // Post-update function
using PostUpdate = void(); // Post-update function
Tune() { read_results(); }
Tune(const Tune&) = delete;
void operator=(const Tune&) = delete;
void read_results();
Tune() { read_results(); }
Tune(const Tune&) = delete;
void operator=(const Tune&) = delete;
void read_results();
static Tune& instance() { static Tune t; return t; } // Singleton
static Tune& instance() {
static Tune t;
return t;
} // Singleton
// Use polymorphism to accommodate Entry of different types in the same vector
struct EntryBase {
virtual ~EntryBase() = default;
virtual void init_option() = 0;
virtual void read_option() = 0;
};
// Use polymorphism to accommodate Entry of different types in the same vector
struct EntryBase {
virtual ~EntryBase() = default;
virtual void init_option() = 0;
virtual void read_option() = 0;
};
template<typename T>
struct Entry : public EntryBase {
template<typename T>
struct Entry: public EntryBase {
static_assert(!std::is_const_v<T>, "Parameter cannot be const!");
static_assert(!std::is_const_v<T>, "Parameter cannot be const!");
static_assert( std::is_same_v<T, int>
|| std::is_same_v<T, Value>
|| std::is_same_v<T, PostUpdate>, "Parameter type not supported!");
static_assert(std::is_same_v<T, int> || std::is_same_v<T, Value>
|| std::is_same_v<T, PostUpdate>,
"Parameter type not supported!");
Entry(const std::string& n, T& v, const SetRange& r) : name(n), value(v), range(r) {}
void operator=(const Entry&) = delete; // Because 'value' is a reference
void init_option() override;
void read_option() override;
Entry(const std::string& n, T& v, const SetRange& r) :
name(n),
value(v),
range(r) {}
void operator=(const Entry&) = delete; // Because 'value' is a reference
void init_option() override;
void read_option() override;
std::string name;
T& value;
SetRange range;
};
std::string name;
T& value;
SetRange range;
};
// Our facility to fill the container, each Entry corresponds to a parameter
// to tune. We use variadic templates to deal with an unspecified number of
// entries, each one of a possible different type.
static std::string next(std::string& names, bool pop = true);
// Our facility to fill the container, each Entry corresponds to a parameter
// to tune. We use variadic templates to deal with an unspecified number of
// entries, each one of a possible different type.
static std::string next(std::string& names, bool pop = true);
int add(const SetRange&, std::string&&) { return 0; }
int add(const SetRange&, std::string&&) { return 0; }
template<typename T, typename... Args>
int add(const SetRange& range, std::string&& names, T& value, Args&&... args) {
list.push_back(std::unique_ptr<EntryBase>(new Entry<T>(next(names), value, range)));
return add(range, std::move(names), args...);
}
template<typename T, typename... Args>
int add(const SetRange& range, std::string&& names, T& value, Args&&... args) {
list.push_back(std::unique_ptr<EntryBase>(new Entry<T>(next(names), value, range)));
return add(range, std::move(names), args...);
}
// Template specialization for arrays: recursively handle multi-dimensional arrays
template<typename T, size_t N, typename... Args>
int add(const SetRange& range, std::string&& names, T (&value)[N], Args&&... args) {
for (size_t i = 0; i < N; i++)
add(range, next(names, i == N - 1) + "[" + std::to_string(i) + "]", value[i]);
return add(range, std::move(names), args...);
}
// Template specialization for arrays: recursively handle multi-dimensional arrays
template<typename T, size_t N, typename... Args>
int add(const SetRange& range, std::string&& names, T (&value)[N], Args&&... args) {
for (size_t i = 0; i < N; i++)
add(range, next(names, i == N - 1) + "[" + std::to_string(i) + "]", value[i]);
return add(range, std::move(names), args...);
}
// Template specialization for SetRange
template<typename... Args>
int add(const SetRange&, std::string&& names, SetRange& value, Args&&... args) {
return add(value, (next(names), std::move(names)), args...);
}
// Template specialization for SetRange
template<typename... Args>
int add(const SetRange&, std::string&& names, SetRange& value, Args&&... args) {
return add(value, (next(names), std::move(names)), args...);
}
std::vector<std::unique_ptr<EntryBase>> list;
std::vector<std::unique_ptr<EntryBase>> list;
public:
template<typename... Args>
static int add(const std::string& names, Args&&... args) {
return instance().add(SetDefaultRange, names.substr(1, names.size() - 2), args...); // Remove trailing parenthesis
}
static void init() { for (auto& e : instance().list) e->init_option(); read_options(); } // Deferred, due to UCI::Options access
static void read_options() { for (auto& e : instance().list) e->read_option(); }
static bool update_on_last;
public:
template<typename... Args>
static int add(const std::string& names, Args&&... args) {
return instance().add(SetDefaultRange, names.substr(1, names.size() - 2),
args...); // Remove trailing parenthesis
}
static void init() {
for (auto& e : instance().list)
e->init_option();
read_options();
} // Deferred, due to UCI::Options access
static void read_options() {
for (auto& e : instance().list)
e->read_option();
}
static bool update_on_last;
};
// Some macro magic :-) we define a dummy int variable that the compiler initializes calling Tune::add()
#define STRINGIFY(x) #x
#define UNIQUE2(x, y) x ## y
#define UNIQUE(x, y) UNIQUE2(x, y) // Two indirection levels to expand __LINE__
#define UNIQUE2(x, y) x##y
#define UNIQUE(x, y) UNIQUE2(x, y) // Two indirection levels to expand __LINE__
#define TUNE(...) int UNIQUE(p, __LINE__) = Tune::add(STRINGIFY((__VA_ARGS__)), __VA_ARGS__)
#define UPDATE_ON_LAST() bool UNIQUE(p, __LINE__) = Tune::update_on_last = true
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef TUNE_H_INCLUDED
#endif // #ifndef TUNE_H_INCLUDED

View file

@ -17,7 +17,7 @@
*/
#ifndef TYPES_H_INCLUDED
#define TYPES_H_INCLUDED
#define TYPES_H_INCLUDED
// When compiling with provided Makefile (e.g. for Linux and OSX), configuration
// is done automatically. To get started type 'make help'.
@ -36,15 +36,15 @@
// -DUSE_PEXT | Add runtime support for use of pext asm-instruction. Works
// | only in 64-bit mode and requires hardware with pext support.
#include <cassert>
#include <cstdint>
#include <cassert>
#include <cstdint>
#if defined(_MSC_VER)
// Disable some silly and noisy warnings from MSVC compiler
#pragma warning(disable: 4127) // Conditional expression is constant
#pragma warning(disable: 4146) // Unary minus operator applied to unsigned type
#pragma warning(disable: 4800) // Forcing value to bool 'true' or 'false'
#endif
#if defined(_MSC_VER)
// Disable some silly and noisy warnings from MSVC compiler
#pragma warning(disable: 4127) // Conditional expression is constant
#pragma warning(disable: 4146) // Unary minus operator applied to unsigned type
#pragma warning(disable: 4800) // Forcing value to bool 'true' or 'false'
#endif
// Predefined macros hell:
//
@ -55,53 +55,54 @@
// _WIN32 Building on Windows (any)
// _WIN64 Building on Windows 64 bit
#if defined(__GNUC__ ) && (__GNUC__ < 9 || (__GNUC__ == 9 && __GNUC_MINOR__ <= 2)) && defined(_WIN32) && !defined(__clang__)
#define ALIGNAS_ON_STACK_VARIABLES_BROKEN
#endif
#if defined(__GNUC__) && (__GNUC__ < 9 || (__GNUC__ == 9 && __GNUC_MINOR__ <= 2)) \
&& defined(_WIN32) && !defined(__clang__)
#define ALIGNAS_ON_STACK_VARIABLES_BROKEN
#endif
#define ASSERT_ALIGNED(ptr, alignment) assert(reinterpret_cast<uintptr_t>(ptr) % alignment == 0)
#define ASSERT_ALIGNED(ptr, alignment) assert(reinterpret_cast<uintptr_t>(ptr) % alignment == 0)
#if defined(_WIN64) && defined(_MSC_VER) // No Makefile used
# include <intrin.h> // Microsoft header for _BitScanForward64()
# define IS_64BIT
#endif
#if defined(_WIN64) && defined(_MSC_VER) // No Makefile used
#include <intrin.h> // Microsoft header for _BitScanForward64()
#define IS_64BIT
#endif
#if defined(USE_POPCNT) && defined(_MSC_VER)
# include <nmmintrin.h> // Microsoft header for _mm_popcnt_u64()
#endif
#if defined(USE_POPCNT) && defined(_MSC_VER)
#include <nmmintrin.h> // Microsoft header for _mm_popcnt_u64()
#endif
#if !defined(NO_PREFETCH) && defined(_MSC_VER)
# include <xmmintrin.h> // Microsoft header for _mm_prefetch()
#endif
#if !defined(NO_PREFETCH) && defined(_MSC_VER)
#include <xmmintrin.h> // Microsoft header for _mm_prefetch()
#endif
#if defined(USE_PEXT)
# include <immintrin.h> // Header for _pext_u64() intrinsic
# define pext(b, m) _pext_u64(b, m)
#else
# define pext(b, m) 0
#endif
#if defined(USE_PEXT)
#include <immintrin.h> // Header for _pext_u64() intrinsic
#define pext(b, m) _pext_u64(b, m)
#else
#define pext(b, m) 0
#endif
namespace Stockfish {
#ifdef USE_POPCNT
#ifdef USE_POPCNT
constexpr bool HasPopCnt = true;
#else
#else
constexpr bool HasPopCnt = false;
#endif
#endif
#ifdef USE_PEXT
#ifdef USE_PEXT
constexpr bool HasPext = true;
#else
#else
constexpr bool HasPext = false;
#endif
#endif
#ifdef IS_64BIT
#ifdef IS_64BIT
constexpr bool Is64Bit = true;
#else
#else
constexpr bool Is64Bit = false;
#endif
#endif
using Key = uint64_t;
using Key = uint64_t;
using Bitboard = uint64_t;
constexpr int MAX_MOVES = 256;
@ -120,164 +121,187 @@ constexpr int MAX_PLY = 246;
// while MOVE_NONE and MOVE_NULL have the same origin and destination square.
enum Move : int {
MOVE_NONE,
MOVE_NULL = 65
MOVE_NONE,
MOVE_NULL = 65
};
enum MoveType {
NORMAL,
PROMOTION = 1 << 14,
EN_PASSANT = 2 << 14,
CASTLING = 3 << 14
NORMAL,
PROMOTION = 1 << 14,
EN_PASSANT = 2 << 14,
CASTLING = 3 << 14
};
enum Color {
WHITE, BLACK, COLOR_NB = 2
WHITE,
BLACK,
COLOR_NB = 2
};
enum CastlingRights {
NO_CASTLING,
WHITE_OO,
WHITE_OOO = WHITE_OO << 1,
BLACK_OO = WHITE_OO << 2,
BLACK_OOO = WHITE_OO << 3,
NO_CASTLING,
WHITE_OO,
WHITE_OOO = WHITE_OO << 1,
BLACK_OO = WHITE_OO << 2,
BLACK_OOO = WHITE_OO << 3,
KING_SIDE = WHITE_OO | BLACK_OO,
QUEEN_SIDE = WHITE_OOO | BLACK_OOO,
WHITE_CASTLING = WHITE_OO | WHITE_OOO,
BLACK_CASTLING = BLACK_OO | BLACK_OOO,
ANY_CASTLING = WHITE_CASTLING | BLACK_CASTLING,
KING_SIDE = WHITE_OO | BLACK_OO,
QUEEN_SIDE = WHITE_OOO | BLACK_OOO,
WHITE_CASTLING = WHITE_OO | WHITE_OOO,
BLACK_CASTLING = BLACK_OO | BLACK_OOO,
ANY_CASTLING = WHITE_CASTLING | BLACK_CASTLING,
CASTLING_RIGHT_NB = 16
CASTLING_RIGHT_NB = 16
};
enum Bound {
BOUND_NONE,
BOUND_UPPER,
BOUND_LOWER,
BOUND_EXACT = BOUND_UPPER | BOUND_LOWER
BOUND_NONE,
BOUND_UPPER,
BOUND_LOWER,
BOUND_EXACT = BOUND_UPPER | BOUND_LOWER
};
enum Value : int {
VALUE_ZERO = 0,
VALUE_DRAW = 0,
VALUE_MATE = 32000,
VALUE_INFINITE = 32001,
VALUE_NONE = 32002,
VALUE_ZERO = 0,
VALUE_DRAW = 0,
VALUE_MATE = 32000,
VALUE_INFINITE = 32001,
VALUE_NONE = 32002,
VALUE_TB_WIN_IN_MAX_PLY = VALUE_MATE - 2 * MAX_PLY,
VALUE_TB_LOSS_IN_MAX_PLY = -VALUE_TB_WIN_IN_MAX_PLY,
VALUE_MATE_IN_MAX_PLY = VALUE_MATE - MAX_PLY,
VALUE_MATED_IN_MAX_PLY = -VALUE_MATE_IN_MAX_PLY,
VALUE_TB_WIN_IN_MAX_PLY = VALUE_MATE - 2 * MAX_PLY,
VALUE_TB_LOSS_IN_MAX_PLY = -VALUE_TB_WIN_IN_MAX_PLY,
VALUE_MATE_IN_MAX_PLY = VALUE_MATE - MAX_PLY,
VALUE_MATED_IN_MAX_PLY = -VALUE_MATE_IN_MAX_PLY,
// In the code, we make the assumption that these values
// are such that non_pawn_material() can be used to uniquely
// identify the material on the board.
PawnValue = 208,
KnightValue = 781,
BishopValue = 825,
RookValue = 1276,
QueenValue = 2538,
// In the code, we make the assumption that these values
// are such that non_pawn_material() can be used to uniquely
// identify the material on the board.
PawnValue = 208,
KnightValue = 781,
BishopValue = 825,
RookValue = 1276,
QueenValue = 2538,
};
// clang-format off
enum PieceType {
NO_PIECE_TYPE, PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING,
ALL_PIECES = 0,
PIECE_TYPE_NB = 8
NO_PIECE_TYPE, PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING,
ALL_PIECES = 0,
PIECE_TYPE_NB = 8
};
enum Piece {
NO_PIECE,
W_PAWN = PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING,
B_PAWN = PAWN + 8, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING,
PIECE_NB = 16
NO_PIECE,
W_PAWN = PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING,
B_PAWN = PAWN + 8, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING,
PIECE_NB = 16
};
// clang-format on
constexpr Value PieceValue[PIECE_NB] = { VALUE_ZERO, PawnValue, KnightValue, BishopValue, RookValue, QueenValue, VALUE_ZERO, VALUE_ZERO,
VALUE_ZERO, PawnValue, KnightValue, BishopValue, RookValue, QueenValue, VALUE_ZERO, VALUE_ZERO };
constexpr Value PieceValue[PIECE_NB] = {
VALUE_ZERO, PawnValue, KnightValue, BishopValue, RookValue, QueenValue, VALUE_ZERO, VALUE_ZERO,
VALUE_ZERO, PawnValue, KnightValue, BishopValue, RookValue, QueenValue, VALUE_ZERO, VALUE_ZERO};
using Depth = int;
enum : int {
DEPTH_QS_CHECKS = 0,
DEPTH_QS_NO_CHECKS = -1,
DEPTH_QS_RECAPTURES = -5,
DEPTH_QS_CHECKS = 0,
DEPTH_QS_NO_CHECKS = -1,
DEPTH_QS_RECAPTURES = -5,
DEPTH_NONE = -6,
DEPTH_NONE = -6,
DEPTH_OFFSET = -7 // value used only for TT entry occupancy check
DEPTH_OFFSET = -7 // value used only for TT entry occupancy check
};
// clang-format off
enum Square : int {
SQ_A1, SQ_B1, SQ_C1, SQ_D1, SQ_E1, SQ_F1, SQ_G1, SQ_H1,
SQ_A2, SQ_B2, SQ_C2, SQ_D2, SQ_E2, SQ_F2, SQ_G2, SQ_H2,
SQ_A3, SQ_B3, SQ_C3, SQ_D3, SQ_E3, SQ_F3, SQ_G3, SQ_H3,
SQ_A4, SQ_B4, SQ_C4, SQ_D4, SQ_E4, SQ_F4, SQ_G4, SQ_H4,
SQ_A5, SQ_B5, SQ_C5, SQ_D5, SQ_E5, SQ_F5, SQ_G5, SQ_H5,
SQ_A6, SQ_B6, SQ_C6, SQ_D6, SQ_E6, SQ_F6, SQ_G6, SQ_H6,
SQ_A7, SQ_B7, SQ_C7, SQ_D7, SQ_E7, SQ_F7, SQ_G7, SQ_H7,
SQ_A8, SQ_B8, SQ_C8, SQ_D8, SQ_E8, SQ_F8, SQ_G8, SQ_H8,
SQ_NONE,
SQ_A1, SQ_B1, SQ_C1, SQ_D1, SQ_E1, SQ_F1, SQ_G1, SQ_H1,
SQ_A2, SQ_B2, SQ_C2, SQ_D2, SQ_E2, SQ_F2, SQ_G2, SQ_H2,
SQ_A3, SQ_B3, SQ_C3, SQ_D3, SQ_E3, SQ_F3, SQ_G3, SQ_H3,
SQ_A4, SQ_B4, SQ_C4, SQ_D4, SQ_E4, SQ_F4, SQ_G4, SQ_H4,
SQ_A5, SQ_B5, SQ_C5, SQ_D5, SQ_E5, SQ_F5, SQ_G5, SQ_H5,
SQ_A6, SQ_B6, SQ_C6, SQ_D6, SQ_E6, SQ_F6, SQ_G6, SQ_H6,
SQ_A7, SQ_B7, SQ_C7, SQ_D7, SQ_E7, SQ_F7, SQ_G7, SQ_H7,
SQ_A8, SQ_B8, SQ_C8, SQ_D8, SQ_E8, SQ_F8, SQ_G8, SQ_H8,
SQ_NONE,
SQUARE_ZERO = 0,
SQUARE_NB = 64
SQUARE_ZERO = 0,
SQUARE_NB = 64
};
// clang-format on
enum Direction : int {
NORTH = 8,
EAST = 1,
SOUTH = -NORTH,
WEST = -EAST,
NORTH = 8,
EAST = 1,
SOUTH = -NORTH,
WEST = -EAST,
NORTH_EAST = NORTH + EAST,
SOUTH_EAST = SOUTH + EAST,
SOUTH_WEST = SOUTH + WEST,
NORTH_WEST = NORTH + WEST
NORTH_EAST = NORTH + EAST,
SOUTH_EAST = SOUTH + EAST,
SOUTH_WEST = SOUTH + WEST,
NORTH_WEST = NORTH + WEST
};
enum File : int {
FILE_A, FILE_B, FILE_C, FILE_D, FILE_E, FILE_F, FILE_G, FILE_H, FILE_NB
FILE_A,
FILE_B,
FILE_C,
FILE_D,
FILE_E,
FILE_F,
FILE_G,
FILE_H,
FILE_NB
};
enum Rank : int {
RANK_1, RANK_2, RANK_3, RANK_4, RANK_5, RANK_6, RANK_7, RANK_8, RANK_NB
RANK_1,
RANK_2,
RANK_3,
RANK_4,
RANK_5,
RANK_6,
RANK_7,
RANK_8,
RANK_NB
};
// Keep track of what a move changes on the board (used by NNUE)
struct DirtyPiece {
// Number of changed pieces
int dirty_num;
// Number of changed pieces
int dirty_num;
// Max 3 pieces can change in one move. A promotion with capture moves
// both the pawn and the captured piece to SQ_NONE and the piece promoted
// to from SQ_NONE to the capture square.
Piece piece[3];
// Max 3 pieces can change in one move. A promotion with capture moves
// both the pawn and the captured piece to SQ_NONE and the piece promoted
// to from SQ_NONE to the capture square.
Piece piece[3];
// From and to squares, which may be SQ_NONE
Square from[3];
Square to[3];
// From and to squares, which may be SQ_NONE
Square from[3];
Square to[3];
};
#define ENABLE_BASE_OPERATORS_ON(T) \
constexpr T operator+(T d1, int d2) { return T(int(d1) + d2); } \
constexpr T operator-(T d1, int d2) { return T(int(d1) - d2); } \
constexpr T operator-(T d) { return T(-int(d)); } \
inline T& operator+=(T& d1, int d2) { return d1 = d1 + d2; } \
inline T& operator-=(T& d1, int d2) { return d1 = d1 - d2; }
#define ENABLE_BASE_OPERATORS_ON(T) \
constexpr T operator+(T d1, int d2) { return T(int(d1) + d2); } \
constexpr T operator-(T d1, int d2) { return T(int(d1) - d2); } \
constexpr T operator-(T d) { return T(-int(d)); } \
inline T& operator+=(T& d1, int d2) { return d1 = d1 + d2; } \
inline T& operator-=(T& d1, int d2) { return d1 = d1 - d2; }
#define ENABLE_INCR_OPERATORS_ON(T) \
inline T& operator++(T& d) { return d = T(int(d) + 1); } \
inline T& operator--(T& d) { return d = T(int(d) - 1); }
#define ENABLE_INCR_OPERATORS_ON(T) \
inline T& operator++(T& d) { return d = T(int(d) + 1); } \
inline T& operator--(T& d) { return d = T(int(d) - 1); }
#define ENABLE_FULL_OPERATORS_ON(T) \
ENABLE_BASE_OPERATORS_ON(T) \
constexpr T operator*(int i, T d) { return T(i * int(d)); } \
constexpr T operator*(T d, int i) { return T(int(d) * i); } \
constexpr T operator/(T d, int i) { return T(int(d) / i); } \
constexpr int operator/(T d1, T d2) { return int(d1) / int(d2); } \
inline T& operator*=(T& d, int i) { return d = T(int(d) * i); } \
inline T& operator/=(T& d, int i) { return d = T(int(d) / i); }
#define ENABLE_FULL_OPERATORS_ON(T) \
ENABLE_BASE_OPERATORS_ON(T) \
constexpr T operator*(int i, T d) { return T(i * int(d)); } \
constexpr T operator*(T d, int i) { return T(int(d) * i); } \
constexpr T operator/(T d, int i) { return T(int(d) / i); } \
constexpr int operator/(T d1, T d2) { return int(d1) / int(d2); } \
inline T& operator*=(T& d, int i) { return d = T(int(d) * i); } \
inline T& operator/=(T& d, int i) { return d = T(int(d) / i); }
ENABLE_FULL_OPERATORS_ON(Value)
ENABLE_FULL_OPERATORS_ON(Direction)
@ -287,131 +311,97 @@ ENABLE_INCR_OPERATORS_ON(Square)
ENABLE_INCR_OPERATORS_ON(File)
ENABLE_INCR_OPERATORS_ON(Rank)
#undef ENABLE_FULL_OPERATORS_ON
#undef ENABLE_INCR_OPERATORS_ON
#undef ENABLE_BASE_OPERATORS_ON
#undef ENABLE_FULL_OPERATORS_ON
#undef ENABLE_INCR_OPERATORS_ON
#undef ENABLE_BASE_OPERATORS_ON
// Additional operators to add a Direction to a Square
constexpr Square operator+(Square s, Direction d) { return Square(int(s) + int(d)); }
constexpr Square operator-(Square s, Direction d) { return Square(int(s) - int(d)); }
inline Square& operator+=(Square& s, Direction d) { return s = s + d; }
inline Square& operator-=(Square& s, Direction d) { return s = s - d; }
inline Square& operator+=(Square& s, Direction d) { return s = s + d; }
inline Square& operator-=(Square& s, Direction d) { return s = s - d; }
constexpr Color operator~(Color c) {
return Color(c ^ BLACK); // Toggle color
return Color(c ^ BLACK); // Toggle color
}
constexpr Square flip_rank(Square s) { // Swap A1 <-> A8
return Square(s ^ SQ_A8);
constexpr Square flip_rank(Square s) { // Swap A1 <-> A8
return Square(s ^ SQ_A8);
}
constexpr Square flip_file(Square s) { // Swap A1 <-> H1
return Square(s ^ SQ_H1);
constexpr Square flip_file(Square s) { // Swap A1 <-> H1
return Square(s ^ SQ_H1);
}
constexpr Piece operator~(Piece pc) {
return Piece(pc ^ 8); // Swap color of piece B_KNIGHT <-> W_KNIGHT
return Piece(pc ^ 8); // Swap color of piece B_KNIGHT <-> W_KNIGHT
}
constexpr CastlingRights operator&(Color c, CastlingRights cr) {
return CastlingRights((c == WHITE ? WHITE_CASTLING : BLACK_CASTLING) & cr);
return CastlingRights((c == WHITE ? WHITE_CASTLING : BLACK_CASTLING) & cr);
}
constexpr Value mate_in(int ply) {
return VALUE_MATE - ply;
}
constexpr Value mate_in(int ply) { return VALUE_MATE - ply; }
constexpr Value mated_in(int ply) {
return -VALUE_MATE + ply;
}
constexpr Value mated_in(int ply) { return -VALUE_MATE + ply; }
constexpr Square make_square(File f, Rank r) {
return Square((r << 3) + f);
}
constexpr Square make_square(File f, Rank r) { return Square((r << 3) + f); }
constexpr Piece make_piece(Color c, PieceType pt) {
return Piece((c << 3) + pt);
}
constexpr Piece make_piece(Color c, PieceType pt) { return Piece((c << 3) + pt); }
constexpr PieceType type_of(Piece pc) {
return PieceType(pc & 7);
}
constexpr PieceType type_of(Piece pc) { return PieceType(pc & 7); }
inline Color color_of(Piece pc) {
assert(pc != NO_PIECE);
return Color(pc >> 3);
assert(pc != NO_PIECE);
return Color(pc >> 3);
}
constexpr bool is_ok(Move m) {
return m != MOVE_NONE && m != MOVE_NULL;
}
constexpr bool is_ok(Move m) { return m != MOVE_NONE && m != MOVE_NULL; }
constexpr bool is_ok(Square s) {
return s >= SQ_A1 && s <= SQ_H8;
}
constexpr bool is_ok(Square s) { return s >= SQ_A1 && s <= SQ_H8; }
constexpr File file_of(Square s) {
return File(s & 7);
}
constexpr File file_of(Square s) { return File(s & 7); }
constexpr Rank rank_of(Square s) {
return Rank(s >> 3);
}
constexpr Rank rank_of(Square s) { return Rank(s >> 3); }
constexpr Square relative_square(Color c, Square s) {
return Square(s ^ (c * 56));
}
constexpr Square relative_square(Color c, Square s) { return Square(s ^ (c * 56)); }
constexpr Rank relative_rank(Color c, Rank r) {
return Rank(r ^ (c * 7));
}
constexpr Rank relative_rank(Color c, Rank r) { return Rank(r ^ (c * 7)); }
constexpr Rank relative_rank(Color c, Square s) {
return relative_rank(c, rank_of(s));
}
constexpr Rank relative_rank(Color c, Square s) { return relative_rank(c, rank_of(s)); }
constexpr Direction pawn_push(Color c) {
return c == WHITE ? NORTH : SOUTH;
}
constexpr Direction pawn_push(Color c) { return c == WHITE ? NORTH : SOUTH; }
constexpr Square from_sq(Move m) {
assert(is_ok(m));
return Square((m >> 6) & 0x3F);
assert(is_ok(m));
return Square((m >> 6) & 0x3F);
}
constexpr Square to_sq(Move m) {
assert(is_ok(m));
return Square(m & 0x3F);
assert(is_ok(m));
return Square(m & 0x3F);
}
constexpr int from_to(Move m) {
return m & 0xFFF;
}
constexpr int from_to(Move m) { return m & 0xFFF; }
constexpr MoveType type_of(Move m) {
return MoveType(m & (3 << 14));
}
constexpr MoveType type_of(Move m) { return MoveType(m & (3 << 14)); }
constexpr PieceType promotion_type(Move m) {
return PieceType(((m >> 12) & 3) + KNIGHT);
}
constexpr PieceType promotion_type(Move m) { return PieceType(((m >> 12) & 3) + KNIGHT); }
constexpr Move make_move(Square from, Square to) {
return Move((from << 6) + to);
}
constexpr Move make_move(Square from, Square to) { return Move((from << 6) + to); }
template<MoveType T>
constexpr Move make(Square from, Square to, PieceType pt = KNIGHT) {
return Move(T + ((pt - KNIGHT) << 12) + (from << 6) + to);
return Move(T + ((pt - KNIGHT) << 12) + (from << 6) + to);
}
// Based on a congruential pseudo-random number generator
constexpr Key make_key(uint64_t seed) {
return seed * 6364136223846793005ULL + 1442695040888963407ULL;
return seed * 6364136223846793005ULL + 1442695040888963407ULL;
}
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef TYPES_H_INCLUDED
#endif // #ifndef TYPES_H_INCLUDED
#include "tune.h" // Global visibility to tuning setup
#include "tune.h" // Global visibility to tuning setup

View file

@ -45,18 +45,18 @@ namespace Stockfish {
namespace {
// FEN string for the initial position in standard chess
const char* StartFEN = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1";
// FEN string for the initial position in standard chess
const char* StartFEN = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1";
// position() is called when the engine receives the "position" UCI command.
// It sets up the position that is described in the given FEN string ("fen") or
// the initial position ("startpos") and then makes the moves given in the following
// move list ("moves").
// position() is called when the engine receives the "position" UCI command.
// It sets up the position that is described in the given FEN string ("fen") or
// the initial position ("startpos") and then makes the moves given in the following
// move list ("moves").
void position(Position& pos, std::istringstream& is, StateListPtr& states) {
void position(Position& pos, std::istringstream& is, StateListPtr& states) {
Move m;
Move m;
std::string token, fen;
is >> token;
@ -64,7 +64,7 @@ namespace {
if (token == "startpos")
{
fen = StartFEN;
is >> token; // Consume the "moves" token, if any
is >> token; // Consume the "moves" token, if any
}
else if (token == "fen")
while (is >> token && token != "moves")
@ -72,7 +72,7 @@ namespace {
else
return;
states = StateListPtr(new std::deque<StateInfo>(1)); // Drop the old state and create a new one
states = StateListPtr(new std::deque<StateInfo>(1)); // Drop the old state and create a new one
pos.set(fen, Options["UCI_Chess960"], &states->back(), Threads.main());
// Parse the move list, if any
@ -81,33 +81,33 @@ namespace {
states->emplace_back();
pos.do_move(m, states->back());
}
}
}
// trace_eval() prints the evaluation of the current position, consistent with
// the UCI options set so far.
// trace_eval() prints the evaluation of the current position, consistent with
// the UCI options set so far.
void trace_eval(Position& pos) {
void trace_eval(Position& pos) {
StateListPtr states(new std::deque<StateInfo>(1));
Position p;
Position p;
p.set(pos.fen(), Options["UCI_Chess960"], &states->back(), Threads.main());
Eval::NNUE::verify();
sync_cout << "\n" << Eval::trace(p) << sync_endl;
}
}
// setoption() is called when the engine receives the "setoption" UCI command.
// The function updates the UCI option ("name") to the given value ("value").
// setoption() is called when the engine receives the "setoption" UCI command.
// The function updates the UCI option ("name") to the given value ("value").
void setoption(std::istringstream& is) {
void setoption(std::istringstream& is) {
Threads.main()->wait_for_search_finished();
std::string token, name, value;
is >> token; // Consume the "name" token
is >> token; // Consume the "name" token
// Read the option name (can contain spaces)
while (is >> token && token != "value")
@ -121,54 +121,67 @@ namespace {
Options[name] = value;
else
sync_cout << "No such option: " << name << sync_endl;
}
}
// go() is called when the engine receives the "go" UCI command. The function
// sets the thinking time and other parameters from the input string, then starts
// with a search.
// go() is called when the engine receives the "go" UCI command. The function
// sets the thinking time and other parameters from the input string, then starts
// with a search.
void go(Position& pos, std::istringstream& is, StateListPtr& states) {
void go(Position& pos, std::istringstream& is, StateListPtr& states) {
Search::LimitsType limits;
std::string token;
bool ponderMode = false;
std::string token;
bool ponderMode = false;
limits.startTime = now(); // The search starts as early as possible
limits.startTime = now(); // The search starts as early as possible
while (is >> token)
if (token == "searchmoves") // Needs to be the last command on the line
if (token == "searchmoves") // Needs to be the last command on the line
while (is >> token)
limits.searchmoves.push_back(UCI::to_move(pos, token));
else if (token == "wtime") is >> limits.time[WHITE];
else if (token == "btime") is >> limits.time[BLACK];
else if (token == "winc") is >> limits.inc[WHITE];
else if (token == "binc") is >> limits.inc[BLACK];
else if (token == "movestogo") is >> limits.movestogo;
else if (token == "depth") is >> limits.depth;
else if (token == "nodes") is >> limits.nodes;
else if (token == "movetime") is >> limits.movetime;
else if (token == "mate") is >> limits.mate;
else if (token == "perft") is >> limits.perft;
else if (token == "infinite") limits.infinite = 1;
else if (token == "ponder") ponderMode = true;
else if (token == "wtime")
is >> limits.time[WHITE];
else if (token == "btime")
is >> limits.time[BLACK];
else if (token == "winc")
is >> limits.inc[WHITE];
else if (token == "binc")
is >> limits.inc[BLACK];
else if (token == "movestogo")
is >> limits.movestogo;
else if (token == "depth")
is >> limits.depth;
else if (token == "nodes")
is >> limits.nodes;
else if (token == "movetime")
is >> limits.movetime;
else if (token == "mate")
is >> limits.mate;
else if (token == "perft")
is >> limits.perft;
else if (token == "infinite")
limits.infinite = 1;
else if (token == "ponder")
ponderMode = true;
Threads.start_thinking(pos, states, limits, ponderMode);
}
}
// bench() is called when the engine receives the "bench" command.
// First, a list of UCI commands is set up according to the bench
// parameters, then it is run one by one, printing a summary at the end.
// bench() is called when the engine receives the "bench" command.
// First, a list of UCI commands is set up according to the bench
// parameters, then it is run one by one, printing a summary at the end.
void bench(Position& pos, std::istream& args, StateListPtr& states) {
void bench(Position& pos, std::istream& args, StateListPtr& states) {
std::string token;
uint64_t num, nodes = 0, cnt = 1;
uint64_t num, nodes = 0, cnt = 1;
std::vector<std::string> list = setup_bench(pos, args);
num = count_if(list.begin(), list.end(), [](const std::string& s) { return s.find("go ") == 0 || s.find("eval") == 0; });
num = count_if(list.begin(), list.end(),
[](const std::string& s) { return s.find("go ") == 0 || s.find("eval") == 0; });
TimePoint elapsed = now();
@ -179,58 +192,64 @@ namespace {
if (token == "go" || token == "eval")
{
std::cerr << "\nPosition: " << cnt++ << '/' << num << " (" << pos.fen() << ")" << std::endl;
std::cerr << "\nPosition: " << cnt++ << '/' << num << " (" << pos.fen() << ")"
<< std::endl;
if (token == "go")
{
go(pos, is, states);
Threads.main()->wait_for_search_finished();
nodes += Threads.nodes_searched();
go(pos, is, states);
Threads.main()->wait_for_search_finished();
nodes += Threads.nodes_searched();
}
else
trace_eval(pos);
trace_eval(pos);
}
else if (token == "setoption") setoption(is);
else if (token == "position") position(pos, is, states);
else if (token == "ucinewgame") { Search::clear(); elapsed = now(); } // Search::clear() may take a while
else if (token == "setoption")
setoption(is);
else if (token == "position")
position(pos, is, states);
else if (token == "ucinewgame")
{
Search::clear();
elapsed = now();
} // Search::clear() may take a while
}
elapsed = now() - elapsed + 1; // Ensure positivity to avoid a 'divide by zero'
elapsed = now() - elapsed + 1; // Ensure positivity to avoid a 'divide by zero'
dbg_print();
std::cerr << "\n==========================="
<< "\nTotal time (ms) : " << elapsed
<< "\nNodes searched : " << nodes
<< "\nTotal time (ms) : " << elapsed << "\nNodes searched : " << nodes
<< "\nNodes/second : " << 1000 * nodes / elapsed << std::endl;
}
}
// The win rate model returns the probability of winning (in per mille units) given an
// eval and a game ply. It fits the LTC fishtest statistics rather accurately.
int win_rate_model(Value v, int ply) {
// The win rate model returns the probability of winning (in per mille units) given an
// eval and a game ply. It fits the LTC fishtest statistics rather accurately.
int win_rate_model(Value v, int ply) {
// The model only captures up to 240 plies, so limit the input and then rescale
double m = std::min(240, ply) / 64.0;
// The model only captures up to 240 plies, so limit the input and then rescale
double m = std::min(240, ply) / 64.0;
// The coefficients of a third-order polynomial fit is based on the fishtest data
// for two parameters that need to transform eval to the argument of a logistic
// function.
constexpr double as[] = { 0.38036525, -2.82015070, 23.17882135, 307.36768407};
constexpr double bs[] = { -2.29434733, 13.27689788, -14.26828904, 63.45318330 };
// The coefficients of a third-order polynomial fit is based on the fishtest data
// for two parameters that need to transform eval to the argument of a logistic
// function.
constexpr double as[] = {0.38036525, -2.82015070, 23.17882135, 307.36768407};
constexpr double bs[] = {-2.29434733, 13.27689788, -14.26828904, 63.45318330};
// Enforce that NormalizeToPawnValue corresponds to a 50% win rate at ply 64
static_assert(UCI::NormalizeToPawnValue == int(as[0] + as[1] + as[2] + as[3]));
// Enforce that NormalizeToPawnValue corresponds to a 50% win rate at ply 64
static_assert(UCI::NormalizeToPawnValue == int(as[0] + as[1] + as[2] + as[3]));
double a = (((as[0] * m + as[1]) * m + as[2]) * m) + as[3];
double b = (((bs[0] * m + bs[1]) * m + bs[2]) * m) + bs[3];
double a = (((as[0] * m + as[1]) * m + as[2]) * m) + as[3];
double b = (((bs[0] * m + bs[1]) * m + bs[2]) * m) + bs[3];
// Transform the eval to centipawns with limited range
double x = std::clamp(double(v), -4000.0, 4000.0);
// Transform the eval to centipawns with limited range
double x = std::clamp(double(v), -4000.0, 4000.0);
// Return the win rate in per mille units, rounded to the nearest integer
return int(0.5 + 1000 / (1 + std::exp((a - x) / b)));
}
// Return the win rate in per mille units, rounded to the nearest integer
return int(0.5 + 1000 / (1 + std::exp((a - x) / b)));
}
} // namespace
} // namespace
// UCI::loop() waits for a command from the stdin, parses it, and then calls the appropriate
@ -241,81 +260,91 @@ namespace {
void UCI::loop(int argc, char* argv[]) {
Position pos;
std::string token, cmd;
StateListPtr states(new std::deque<StateInfo>(1));
Position pos;
std::string token, cmd;
StateListPtr states(new std::deque<StateInfo>(1));
pos.set(StartFEN, false, &states->back(), Threads.main());
pos.set(StartFEN, false, &states->back(), Threads.main());
for (int i = 1; i < argc; ++i)
cmd += std::string(argv[i]) + " ";
for (int i = 1; i < argc; ++i)
cmd += std::string(argv[i]) + " ";
do {
if (argc == 1 && !getline(std::cin, cmd)) // Wait for an input or an end-of-file (EOF) indication
cmd = "quit";
do
{
if (argc == 1
&& !getline(std::cin, cmd)) // Wait for an input or an end-of-file (EOF) indication
cmd = "quit";
std::istringstream is(cmd);
std::istringstream is(cmd);
token.clear(); // Avoid a stale if getline() returns nothing or a blank line
is >> std::skipws >> token;
token.clear(); // Avoid a stale if getline() returns nothing or a blank line
is >> std::skipws >> token;
if ( token == "quit"
|| token == "stop")
Threads.stop = true;
if (token == "quit" || token == "stop")
Threads.stop = true;
// The GUI sends 'ponderhit' to tell that the user has played the expected move.
// So, 'ponderhit' is sent if pondering was done on the same move that the user
// has played. The search should continue, but should also switch from pondering
// to the normal search.
else if (token == "ponderhit")
Threads.main()->ponder = false; // Switch to the normal search
// The GUI sends 'ponderhit' to tell that the user has played the expected move.
// So, 'ponderhit' is sent if pondering was done on the same move that the user
// has played. The search should continue, but should also switch from pondering
// to the normal search.
else if (token == "ponderhit")
Threads.main()->ponder = false; // Switch to the normal search
else if (token == "uci")
sync_cout << "id name " << engine_info(true)
<< "\n" << Options
<< "\nuciok" << sync_endl;
else if (token == "uci")
sync_cout << "id name " << engine_info(true) << "\n"
<< Options << "\nuciok" << sync_endl;
else if (token == "setoption") setoption(is);
else if (token == "go") go(pos, is, states);
else if (token == "position") position(pos, is, states);
else if (token == "ucinewgame") Search::clear();
else if (token == "isready") sync_cout << "readyok" << sync_endl;
else if (token == "setoption")
setoption(is);
else if (token == "go")
go(pos, is, states);
else if (token == "position")
position(pos, is, states);
else if (token == "ucinewgame")
Search::clear();
else if (token == "isready")
sync_cout << "readyok" << sync_endl;
// Add custom non-UCI commands, mainly for debugging purposes.
// These commands must not be used during a search!
else if (token == "flip") pos.flip();
else if (token == "bench") bench(pos, is, states);
else if (token == "d") sync_cout << pos << sync_endl;
else if (token == "eval") trace_eval(pos);
else if (token == "compiler") sync_cout << compiler_info() << sync_endl;
else if (token == "export_net")
{
std::optional<std::string> filename;
std::string f;
if (is >> std::skipws >> f)
filename = f;
Eval::NNUE::save_eval(filename);
}
else if (token == "--help" || token == "help" || token == "--license" || token == "license")
sync_cout << "\nStockfish is a powerful chess engine for playing and analyzing."
"\nIt is released as free software licensed under the GNU GPLv3 License."
"\nStockfish is normally used with a graphical user interface (GUI) and implements"
"\nthe Universal Chess Interface (UCI) protocol to communicate with a GUI, an API, etc."
"\nFor any further information, visit https://github.com/official-stockfish/Stockfish#readme"
"\nor read the corresponding README.md and Copying.txt files distributed along with this program.\n" << sync_endl;
else if (!token.empty() && token[0] != '#')
sync_cout << "Unknown command: '" << cmd << "'. Type help for more information." << sync_endl;
// Add custom non-UCI commands, mainly for debugging purposes.
// These commands must not be used during a search!
else if (token == "flip")
pos.flip();
else if (token == "bench")
bench(pos, is, states);
else if (token == "d")
sync_cout << pos << sync_endl;
else if (token == "eval")
trace_eval(pos);
else if (token == "compiler")
sync_cout << compiler_info() << sync_endl;
else if (token == "export_net")
{
std::optional<std::string> filename;
std::string f;
if (is >> std::skipws >> f)
filename = f;
Eval::NNUE::save_eval(filename);
}
else if (token == "--help" || token == "help" || token == "--license" || token == "license")
sync_cout
<< "\nStockfish is a powerful chess engine for playing and analyzing."
"\nIt is released as free software licensed under the GNU GPLv3 License."
"\nStockfish is normally used with a graphical user interface (GUI) and implements"
"\nthe Universal Chess Interface (UCI) protocol to communicate with a GUI, an API, etc."
"\nFor any further information, visit https://github.com/official-stockfish/Stockfish#readme"
"\nor read the corresponding README.md and Copying.txt files distributed along with this program.\n"
<< sync_endl;
else if (!token.empty() && token[0] != '#')
sync_cout << "Unknown command: '" << cmd << "'. Type help for more information."
<< sync_endl;
} while (token != "quit" && argc == 1); // The command-line arguments are one-shot
} while (token != "quit" && argc == 1); // The command-line arguments are one-shot
}
// Turns a Value to an integer centipawn number,
// without treatment of mate and similar special scores.
int UCI::to_cp(Value v) {
return 100 * v / UCI::NormalizeToPawnValue;
}
int UCI::to_cp(Value v) { return 100 * v / UCI::NormalizeToPawnValue; }
// UCI::value() converts a Value to a string by adhering to the UCI protocol specification:
//
@ -325,21 +354,21 @@ int UCI::to_cp(Value v) {
std::string UCI::value(Value v) {
assert(-VALUE_INFINITE < v && v < VALUE_INFINITE);
assert(-VALUE_INFINITE < v && v < VALUE_INFINITE);
std::stringstream ss;
std::stringstream ss;
if (abs(v) < VALUE_TB_WIN_IN_MAX_PLY)
ss << "cp " << UCI::to_cp(v);
else if (abs(v) < VALUE_MATE_IN_MAX_PLY)
{
const int ply = VALUE_MATE_IN_MAX_PLY - 1 - std::abs(v); // recompute ss->ply
ss << "cp " << (v > 0 ? 20000 - ply : -20000 + ply);
}
else
ss << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2;
if (abs(v) < VALUE_TB_WIN_IN_MAX_PLY)
ss << "cp " << UCI::to_cp(v);
else if (abs(v) < VALUE_MATE_IN_MAX_PLY)
{
const int ply = VALUE_MATE_IN_MAX_PLY - 1 - std::abs(v); // recompute ss->ply
ss << "cp " << (v > 0 ? 20000 - ply : -20000 + ply);
}
else
ss << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2;
return ss.str();
return ss.str();
}
@ -348,21 +377,21 @@ std::string UCI::value(Value v) {
std::string UCI::wdl(Value v, int ply) {
std::stringstream ss;
std::stringstream ss;
int wdl_w = win_rate_model( v, ply);
int wdl_l = win_rate_model(-v, ply);
int wdl_d = 1000 - wdl_w - wdl_l;
ss << " wdl " << wdl_w << " " << wdl_d << " " << wdl_l;
int wdl_w = win_rate_model(v, ply);
int wdl_l = win_rate_model(-v, ply);
int wdl_d = 1000 - wdl_w - wdl_l;
ss << " wdl " << wdl_w << " " << wdl_d << " " << wdl_l;
return ss.str();
return ss.str();
}
// UCI::square() converts a Square to a string in algebraic notation (g1, a7, etc.)
std::string UCI::square(Square s) {
return std::string{ char('a' + file_of(s)), char('1' + rank_of(s)) };
return std::string{char('a' + file_of(s)), char('1' + rank_of(s))};
}
@ -373,24 +402,24 @@ std::string UCI::square(Square s) {
std::string UCI::move(Move m, bool chess960) {
if (m == MOVE_NONE)
return "(none)";
if (m == MOVE_NONE)
return "(none)";
if (m == MOVE_NULL)
return "0000";
if (m == MOVE_NULL)
return "0000";
Square from = from_sq(m);
Square to = to_sq(m);
Square from = from_sq(m);
Square to = to_sq(m);
if (type_of(m) == CASTLING && !chess960)
to = make_square(to > from ? FILE_G : FILE_C, rank_of(from));
if (type_of(m) == CASTLING && !chess960)
to = make_square(to > from ? FILE_G : FILE_C, rank_of(from));
std::string move = UCI::square(from) + UCI::square(to);
std::string move = UCI::square(from) + UCI::square(to);
if (type_of(m) == PROMOTION)
move += " pnbrqk"[promotion_type(m)];
if (type_of(m) == PROMOTION)
move += " pnbrqk"[promotion_type(m)];
return move;
return move;
}
@ -399,14 +428,14 @@ std::string UCI::move(Move m, bool chess960) {
Move UCI::to_move(const Position& pos, std::string& str) {
if (str.length() == 5)
str[4] = char(tolower(str[4])); // The promotion piece character must be lowercased
if (str.length() == 5)
str[4] = char(tolower(str[4])); // The promotion piece character must be lowercased
for (const auto& m : MoveList<LEGAL>(pos))
if (str == UCI::move(m, pos.is_chess960()))
return m;
for (const auto& m : MoveList<LEGAL>(pos))
if (str == UCI::move(m, pos.is_chess960()))
return m;
return MOVE_NONE;
return MOVE_NONE;
}
} // namespace Stockfish
} // namespace Stockfish

View file

@ -43,7 +43,7 @@ class Option;
// Define a custom comparator, because the UCI options should be case-insensitive
struct CaseInsensitiveLess {
bool operator() (const std::string&, const std::string&) const;
bool operator()(const std::string&, const std::string&) const;
};
// The options container is defined as a std::map
@ -52,44 +52,44 @@ using OptionsMap = std::map<std::string, Option, CaseInsensitiveLess>;
// The Option class implements each option as specified by the UCI protocol
class Option {
using OnChange = void (*)(const Option&);
using OnChange = void (*)(const Option&);
public:
Option(OnChange = nullptr);
Option(bool v, OnChange = nullptr);
Option(const char* v, OnChange = nullptr);
Option(double v, int minv, int maxv, OnChange = nullptr);
Option(const char* v, const char* cur, OnChange = nullptr);
public:
Option(OnChange = nullptr);
Option(bool v, OnChange = nullptr);
Option(const char* v, OnChange = nullptr);
Option(double v, int minv, int maxv, OnChange = nullptr);
Option(const char* v, const char* cur, OnChange = nullptr);
Option& operator=(const std::string&);
void operator<<(const Option&);
operator int() const;
operator std::string() const;
bool operator==(const char*) const;
Option& operator=(const std::string&);
void operator<<(const Option&);
operator int() const;
operator std::string() const;
bool operator==(const char*) const;
private:
friend std::ostream& operator<<(std::ostream&, const OptionsMap&);
private:
friend std::ostream& operator<<(std::ostream&, const OptionsMap&);
std::string defaultValue, currentValue, type;
int min, max;
size_t idx;
OnChange on_change;
std::string defaultValue, currentValue, type;
int min, max;
size_t idx;
OnChange on_change;
};
void init(OptionsMap&);
void loop(int argc, char* argv[]);
int to_cp(Value v);
void init(OptionsMap&);
void loop(int argc, char* argv[]);
int to_cp(Value v);
std::string value(Value v);
std::string square(Square s);
std::string move(Move m, bool chess960);
std::string pv(const Position& pos, Depth depth);
std::string wdl(Value v, int ply);
Move to_move(const Position& pos, std::string& str);
Move to_move(const Position& pos, std::string& str);
} // namespace UCI
} // namespace UCI
extern UCI::OptionsMap Options;
} // namespace Stockfish
} // namespace Stockfish
#endif // #ifndef UCI_H_INCLUDED
#endif // #ifndef UCI_H_INCLUDED

View file

@ -40,7 +40,7 @@ using std::string;
namespace Stockfish {
UCI::OptionsMap Options; // Global object
UCI::OptionsMap Options; // Global object
namespace UCI {
@ -53,10 +53,10 @@ static void on_tb_path(const Option& o) { Tablebases::init(o); }
static void on_eval_file(const Option&) { Eval::NNUE::init(); }
// Our case insensitive less() function as required by UCI protocol
bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const {
bool CaseInsensitiveLess::operator()(const string& s1, const string& s2) const {
return std::lexicographical_compare(s1.begin(), s1.end(), s2.begin(), s2.end(),
[](char c1, char c2) { return tolower(c1) < tolower(c2); });
return std::lexicographical_compare(s1.begin(), s1.end(), s2.begin(), s2.end(),
[](char c1, char c2) { return tolower(c1) < tolower(c2); });
}
@ -64,28 +64,28 @@ bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const
void init(OptionsMap& o) {
constexpr int MaxHashMB = Is64Bit ? 33554432 : 2048;
constexpr int MaxHashMB = Is64Bit ? 33554432 : 2048;
o["Debug Log File"] << Option("", on_logger);
o["Threads"] << Option(1, 1, 1024, on_threads);
o["Hash"] << Option(16, 1, MaxHashMB, on_hash_size);
o["Clear Hash"] << Option(on_clear_hash);
o["Ponder"] << Option(false);
o["MultiPV"] << Option(1, 1, 500);
o["Skill Level"] << Option(20, 0, 20);
o["Move Overhead"] << Option(10, 0, 5000);
o["Slow Mover"] << Option(100, 10, 1000);
o["nodestime"] << Option(0, 0, 10000);
o["UCI_Chess960"] << Option(false);
o["UCI_AnalyseMode"] << Option(false);
o["UCI_LimitStrength"] << Option(false);
o["UCI_Elo"] << Option(1320, 1320, 3190);
o["UCI_ShowWDL"] << Option(false);
o["SyzygyPath"] << Option("<empty>", on_tb_path);
o["SyzygyProbeDepth"] << Option(1, 1, 100);
o["Syzygy50MoveRule"] << Option(true);
o["SyzygyProbeLimit"] << Option(7, 0, 7);
o["EvalFile"] << Option(EvalFileDefaultName, on_eval_file);
o["Debug Log File"] << Option("", on_logger);
o["Threads"] << Option(1, 1, 1024, on_threads);
o["Hash"] << Option(16, 1, MaxHashMB, on_hash_size);
o["Clear Hash"] << Option(on_clear_hash);
o["Ponder"] << Option(false);
o["MultiPV"] << Option(1, 1, 500);
o["Skill Level"] << Option(20, 0, 20);
o["Move Overhead"] << Option(10, 0, 5000);
o["Slow Mover"] << Option(100, 10, 1000);
o["nodestime"] << Option(0, 0, 10000);
o["UCI_Chess960"] << Option(false);
o["UCI_AnalyseMode"] << Option(false);
o["UCI_LimitStrength"] << Option(false);
o["UCI_Elo"] << Option(1320, 1320, 3190);
o["UCI_ShowWDL"] << Option(false);
o["SyzygyPath"] << Option("<empty>", on_tb_path);
o["SyzygyProbeDepth"] << Option(1, 1, 100);
o["Syzygy50MoveRule"] << Option(true);
o["SyzygyProbeLimit"] << Option(7, 0, 7);
o["EvalFile"] << Option(EvalFileDefaultName, on_eval_file);
}
@ -94,59 +94,81 @@ void init(OptionsMap& o) {
std::ostream& operator<<(std::ostream& os, const OptionsMap& om) {
for (size_t idx = 0; idx < om.size(); ++idx)
for (const auto& it : om)
if (it.second.idx == idx)
{
const Option& o = it.second;
os << "\noption name " << it.first << " type " << o.type;
for (size_t idx = 0; idx < om.size(); ++idx)
for (const auto& it : om)
if (it.second.idx == idx)
{
const Option& o = it.second;
os << "\noption name " << it.first << " type " << o.type;
if (o.type == "string" || o.type == "check" || o.type == "combo")
os << " default " << o.defaultValue;
if (o.type == "string" || o.type == "check" || o.type == "combo")
os << " default " << o.defaultValue;
if (o.type == "spin")
os << " default " << int(stof(o.defaultValue))
<< " min " << o.min
<< " max " << o.max;
if (o.type == "spin")
os << " default " << int(stof(o.defaultValue)) << " min " << o.min << " max "
<< o.max;
break;
}
break;
}
return os;
return os;
}
// Option class constructors and conversion operators
Option::Option(const char* v, OnChange f) : type("string"), min(0), max(0), on_change(f)
{ defaultValue = currentValue = v; }
Option::Option(const char* v, OnChange f) :
type("string"),
min(0),
max(0),
on_change(f) {
defaultValue = currentValue = v;
}
Option::Option(bool v, OnChange f) : type("check"), min(0), max(0), on_change(f)
{ defaultValue = currentValue = (v ? "true" : "false"); }
Option::Option(bool v, OnChange f) :
type("check"),
min(0),
max(0),
on_change(f) {
defaultValue = currentValue = (v ? "true" : "false");
}
Option::Option(OnChange f) : type("button"), min(0), max(0), on_change(f)
{}
Option::Option(OnChange f) :
type("button"),
min(0),
max(0),
on_change(f) {}
Option::Option(double v, int minv, int maxv, OnChange f) : type("spin"), min(minv), max(maxv), on_change(f)
{ defaultValue = currentValue = std::to_string(v); }
Option::Option(double v, int minv, int maxv, OnChange f) :
type("spin"),
min(minv),
max(maxv),
on_change(f) {
defaultValue = currentValue = std::to_string(v);
}
Option::Option(const char* v, const char* cur, OnChange f) : type("combo"), min(0), max(0), on_change(f)
{ defaultValue = v; currentValue = cur; }
Option::Option(const char* v, const char* cur, OnChange f) :
type("combo"),
min(0),
max(0),
on_change(f) {
defaultValue = v;
currentValue = cur;
}
Option::operator int() const {
assert(type == "check" || type == "spin");
return (type == "spin" ? std::stoi(currentValue) : currentValue == "true");
assert(type == "check" || type == "spin");
return (type == "spin" ? std::stoi(currentValue) : currentValue == "true");
}
Option::operator std::string() const {
assert(type == "string");
return currentValue;
assert(type == "string");
return currentValue;
}
bool Option::operator==(const char* s) const {
assert(type == "combo");
return !CaseInsensitiveLess()(currentValue, s)
&& !CaseInsensitiveLess()(s, currentValue);
assert(type == "combo");
return !CaseInsensitiveLess()(currentValue, s) && !CaseInsensitiveLess()(s, currentValue);
}
@ -154,10 +176,10 @@ bool Option::operator==(const char* s) const {
void Option::operator<<(const Option& o) {
static size_t insert_order = 0;
static size_t insert_order = 0;
*this = o;
idx = insert_order++;
*this = o;
idx = insert_order++;
}
@ -167,33 +189,33 @@ void Option::operator<<(const Option& o) {
Option& Option::operator=(const string& v) {
assert(!type.empty());
assert(!type.empty());
if ( (type != "button" && type != "string" && v.empty())
|| (type == "check" && v != "true" && v != "false")
|| (type == "spin" && (stof(v) < min || stof(v) > max)))
return *this;
if ((type != "button" && type != "string" && v.empty())
|| (type == "check" && v != "true" && v != "false")
|| (type == "spin" && (stof(v) < min || stof(v) > max)))
return *this;
if (type == "combo")
{
OptionsMap comboMap; // To have case insensitive compare
string token;
std::istringstream ss(defaultValue);
while (ss >> token)
comboMap[token] << Option();
if (!comboMap.count(v) || v == "var")
return *this;
}
if (type == "combo")
{
OptionsMap comboMap; // To have case insensitive compare
string token;
std::istringstream ss(defaultValue);
while (ss >> token)
comboMap[token] << Option();
if (!comboMap.count(v) || v == "var")
return *this;
}
if (type != "button")
currentValue = v;
if (type != "button")
currentValue = v;
if (on_change)
on_change(*this);
if (on_change)
on_change(*this);
return *this;
return *this;
}
} // namespace UCI
} // namespace UCI
} // namespace Stockfish
} // namespace Stockfish