mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 00:33:09 +00:00

Assorted cleanups closes https://github.com/official-stockfish/Stockfish/pull/5046 No functional change Co-Authored-By: Shahin M. Shahin <41402573+peregrineshahin@users.noreply.github.com> Co-Authored-By: cj5716 <125858804+cj5716@users.noreply.github.com>
371 lines
11 KiB
C++
371 lines
11 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef BITBOARD_H_INCLUDED
|
|
#define BITBOARD_H_INCLUDED
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <string>
|
|
|
|
#include "types.h"
|
|
|
|
namespace Stockfish {
|
|
|
|
namespace Bitboards {
|
|
|
|
void init();
|
|
std::string pretty(Bitboard b);
|
|
|
|
} // namespace Stockfish::Bitboards
|
|
|
|
constexpr Bitboard FileABB = 0x0101010101010101ULL;
|
|
constexpr Bitboard FileBBB = FileABB << 1;
|
|
constexpr Bitboard FileCBB = FileABB << 2;
|
|
constexpr Bitboard FileDBB = FileABB << 3;
|
|
constexpr Bitboard FileEBB = FileABB << 4;
|
|
constexpr Bitboard FileFBB = FileABB << 5;
|
|
constexpr Bitboard FileGBB = FileABB << 6;
|
|
constexpr Bitboard FileHBB = FileABB << 7;
|
|
|
|
constexpr Bitboard Rank1BB = 0xFF;
|
|
constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
|
|
constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
|
|
constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
|
|
constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
|
|
constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
|
|
constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
|
|
constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
|
|
|
|
extern uint8_t PopCnt16[1 << 16];
|
|
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
|
|
|
|
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
|
|
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
|
|
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
|
|
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
|
|
|
|
|
|
// Magic holds all magic bitboards relevant data for a single square
|
|
struct Magic {
|
|
Bitboard mask;
|
|
Bitboard magic;
|
|
Bitboard* attacks;
|
|
unsigned shift;
|
|
|
|
// Compute the attack's index using the 'magic bitboards' approach
|
|
unsigned index(Bitboard occupied) const {
|
|
|
|
if (HasPext)
|
|
return unsigned(pext(occupied, mask));
|
|
|
|
if (Is64Bit)
|
|
return unsigned(((occupied & mask) * magic) >> shift);
|
|
|
|
unsigned lo = unsigned(occupied) & unsigned(mask);
|
|
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
|
|
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
|
|
}
|
|
};
|
|
|
|
extern Magic RookMagics[SQUARE_NB];
|
|
extern Magic BishopMagics[SQUARE_NB];
|
|
|
|
constexpr Bitboard square_bb(Square s) {
|
|
assert(is_ok(s));
|
|
return (1ULL << s);
|
|
}
|
|
|
|
|
|
// Overloads of bitwise operators between a Bitboard and a Square for testing
|
|
// whether a given bit is set in a bitboard, and for setting and clearing bits.
|
|
|
|
inline Bitboard operator&(Bitboard b, Square s) { return b & square_bb(s); }
|
|
inline Bitboard operator|(Bitboard b, Square s) { return b | square_bb(s); }
|
|
inline Bitboard operator^(Bitboard b, Square s) { return b ^ square_bb(s); }
|
|
inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); }
|
|
inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); }
|
|
|
|
inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
|
|
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
|
|
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
|
|
|
|
inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
|
|
|
|
constexpr bool more_than_one(Bitboard b) { return b & (b - 1); }
|
|
|
|
|
|
// rank_bb() and file_bb() return a bitboard representing all the squares on
|
|
// the given file or rank.
|
|
|
|
constexpr Bitboard rank_bb(Rank r) { return Rank1BB << (8 * r); }
|
|
|
|
constexpr Bitboard rank_bb(Square s) { return rank_bb(rank_of(s)); }
|
|
|
|
constexpr Bitboard file_bb(File f) { return FileABB << f; }
|
|
|
|
constexpr Bitboard file_bb(Square s) { return file_bb(file_of(s)); }
|
|
|
|
|
|
// Moves a bitboard one or two steps as specified by the direction D
|
|
template<Direction D>
|
|
constexpr Bitboard shift(Bitboard b) {
|
|
return D == NORTH ? b << 8
|
|
: D == SOUTH ? b >> 8
|
|
: D == NORTH + NORTH ? b << 16
|
|
: D == SOUTH + SOUTH ? b >> 16
|
|
: D == EAST ? (b & ~FileHBB) << 1
|
|
: D == WEST ? (b & ~FileABB) >> 1
|
|
: D == NORTH_EAST ? (b & ~FileHBB) << 9
|
|
: D == NORTH_WEST ? (b & ~FileABB) << 7
|
|
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7
|
|
: D == SOUTH_WEST ? (b & ~FileABB) >> 9
|
|
: 0;
|
|
}
|
|
|
|
|
|
// Returns the squares attacked by pawns of the given color
|
|
// from the squares in the given bitboard.
|
|
template<Color C>
|
|
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
|
|
return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
|
|
: shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
|
|
}
|
|
|
|
inline Bitboard pawn_attacks_bb(Color c, Square s) {
|
|
|
|
assert(is_ok(s));
|
|
return PawnAttacks[c][s];
|
|
}
|
|
|
|
// Returns a bitboard representing an entire line (from board edge
|
|
// to board edge) that intersects the two given squares. If the given squares
|
|
// are not on a same file/rank/diagonal, the function returns 0. For instance,
|
|
// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal.
|
|
inline Bitboard line_bb(Square s1, Square s2) {
|
|
|
|
assert(is_ok(s1) && is_ok(s2));
|
|
return LineBB[s1][s2];
|
|
}
|
|
|
|
|
|
// Returns a bitboard representing the squares in the semi-open
|
|
// segment between the squares s1 and s2 (excluding s1 but including s2). If the
|
|
// given squares are not on a same file/rank/diagonal, it returns s2. For instance,
|
|
// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but
|
|
// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick
|
|
// allows to generate non-king evasion moves faster: the defending piece must either
|
|
// interpose itself to cover the check or capture the checking piece.
|
|
inline Bitboard between_bb(Square s1, Square s2) {
|
|
|
|
assert(is_ok(s1) && is_ok(s2));
|
|
return BetweenBB[s1][s2];
|
|
}
|
|
|
|
// Returns true if the squares s1, s2 and s3 are aligned either on a
|
|
// straight or on a diagonal line.
|
|
inline bool aligned(Square s1, Square s2, Square s3) { return line_bb(s1, s2) & s3; }
|
|
|
|
|
|
// distance() functions return the distance between x and y, defined as the
|
|
// number of steps for a king in x to reach y.
|
|
|
|
template<typename T1 = Square>
|
|
inline int distance(Square x, Square y);
|
|
|
|
template<>
|
|
inline int distance<File>(Square x, Square y) {
|
|
return std::abs(file_of(x) - file_of(y));
|
|
}
|
|
|
|
template<>
|
|
inline int distance<Rank>(Square x, Square y) {
|
|
return std::abs(rank_of(x) - rank_of(y));
|
|
}
|
|
|
|
template<>
|
|
inline int distance<Square>(Square x, Square y) {
|
|
return SquareDistance[x][y];
|
|
}
|
|
|
|
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
|
|
|
|
// Returns the pseudo attacks of the given piece type
|
|
// assuming an empty board.
|
|
template<PieceType Pt>
|
|
inline Bitboard attacks_bb(Square s) {
|
|
|
|
assert((Pt != PAWN) && (is_ok(s)));
|
|
return PseudoAttacks[Pt][s];
|
|
}
|
|
|
|
|
|
// Returns the attacks by the given piece
|
|
// assuming the board is occupied according to the passed Bitboard.
|
|
// Sliding piece attacks do not continue passed an occupied square.
|
|
template<PieceType Pt>
|
|
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
|
|
|
|
assert((Pt != PAWN) && (is_ok(s)));
|
|
|
|
switch (Pt)
|
|
{
|
|
case BISHOP :
|
|
return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
|
|
case ROOK :
|
|
return RookMagics[s].attacks[RookMagics[s].index(occupied)];
|
|
case QUEEN :
|
|
return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
|
|
default :
|
|
return PseudoAttacks[Pt][s];
|
|
}
|
|
}
|
|
|
|
// Returns the attacks by the given piece
|
|
// assuming the board is occupied according to the passed Bitboard.
|
|
// Sliding piece attacks do not continue passed an occupied square.
|
|
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
|
|
|
|
assert((pt != PAWN) && (is_ok(s)));
|
|
|
|
switch (pt)
|
|
{
|
|
case BISHOP :
|
|
return attacks_bb<BISHOP>(s, occupied);
|
|
case ROOK :
|
|
return attacks_bb<ROOK>(s, occupied);
|
|
case QUEEN :
|
|
return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
|
|
default :
|
|
return PseudoAttacks[pt][s];
|
|
}
|
|
}
|
|
|
|
|
|
// Counts the number of non-zero bits in a bitboard.
|
|
inline int popcount(Bitboard b) {
|
|
|
|
#ifndef USE_POPCNT
|
|
|
|
union {
|
|
Bitboard bb;
|
|
uint16_t u[4];
|
|
} v = {b};
|
|
return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
return int(_mm_popcnt_u64(b));
|
|
|
|
#else // Assumed gcc or compatible compiler
|
|
|
|
return __builtin_popcountll(b);
|
|
|
|
#endif
|
|
}
|
|
|
|
// Returns the least significant bit in a non-zero bitboard.
|
|
inline Square lsb(Bitboard b) {
|
|
assert(b);
|
|
|
|
#if defined(__GNUC__) // GCC, Clang, ICX
|
|
|
|
return Square(__builtin_ctzll(b));
|
|
|
|
#elif defined(_MSC_VER)
|
|
#ifdef _WIN64 // MSVC, WIN64
|
|
|
|
unsigned long idx;
|
|
_BitScanForward64(&idx, b);
|
|
return Square(idx);
|
|
|
|
#else // MSVC, WIN32
|
|
unsigned long idx;
|
|
|
|
if (b & 0xffffffff)
|
|
{
|
|
_BitScanForward(&idx, int32_t(b));
|
|
return Square(idx);
|
|
}
|
|
else
|
|
{
|
|
_BitScanForward(&idx, int32_t(b >> 32));
|
|
return Square(idx + 32);
|
|
}
|
|
#endif
|
|
#else // Compiler is neither GCC nor MSVC compatible
|
|
#error "Compiler not supported."
|
|
#endif
|
|
}
|
|
|
|
// Returns the most significant bit in a non-zero bitboard.
|
|
inline Square msb(Bitboard b) {
|
|
assert(b);
|
|
|
|
#if defined(__GNUC__) // GCC, Clang, ICX
|
|
|
|
return Square(63 ^ __builtin_clzll(b));
|
|
|
|
#elif defined(_MSC_VER)
|
|
#ifdef _WIN64 // MSVC, WIN64
|
|
|
|
unsigned long idx;
|
|
_BitScanReverse64(&idx, b);
|
|
return Square(idx);
|
|
|
|
#else // MSVC, WIN32
|
|
|
|
unsigned long idx;
|
|
|
|
if (b >> 32)
|
|
{
|
|
_BitScanReverse(&idx, int32_t(b >> 32));
|
|
return Square(idx + 32);
|
|
}
|
|
else
|
|
{
|
|
_BitScanReverse(&idx, int32_t(b));
|
|
return Square(idx);
|
|
}
|
|
#endif
|
|
#else // Compiler is neither GCC nor MSVC compatible
|
|
#error "Compiler not supported."
|
|
#endif
|
|
}
|
|
|
|
// Returns the bitboard of the least significant
|
|
// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
|
|
inline Bitboard least_significant_square_bb(Bitboard b) {
|
|
assert(b);
|
|
return b & -b;
|
|
}
|
|
|
|
// Finds and clears the least significant bit in a non-zero bitboard.
|
|
inline Square pop_lsb(Bitboard& b) {
|
|
assert(b);
|
|
const Square s = lsb(b);
|
|
b &= b - 1;
|
|
return s;
|
|
}
|
|
|
|
} // namespace Stockfish
|
|
|
|
#endif // #ifndef BITBOARD_H_INCLUDED
|