mirror of
https://github.com/sockspls/badfish
synced 2025-04-29 16:23:09 +00:00

`speedtest [threads] [hash_MiB] [time_s]`. `threads` default to system concurrency. `hash_MiB` defaults to `threads*128`. `time_s` defaults to 150. Intended to be used with default parameters, as a stable hardware benchmark. Example: ``` C:\dev\stockfish-master\src>stockfish.exe speedtest Stockfish dev-20240928-nogit by the Stockfish developers (see AUTHORS file) info string Using 16 threads Warmup position 3/3 Position 258/258 =========================== Version : Stockfish dev-20240928-nogit Compiled by : g++ (GNUC) 13.2.0 on MinGW64 Compilation architecture : x86-64-vnni256 Compilation settings : 64bit VNNI BMI2 AVX2 SSE41 SSSE3 SSE2 POPCNT Compiler __VERSION__ macro : 13.2.0 Large pages : yes User invocation : speedtest Filled invocation : speedtest 16 2048 150 Available processors : 0-15 Thread count : 16 Thread binding : none TT size [MiB] : 2048 Hash max, avg [per mille] : single search : 40, 21 single game : 631, 428 Total nodes searched : 2099917842 Total search time [s] : 153.937 Nodes/second : 13641410 ``` ------------------------------- Small unrelated tweaks: - Network verification output is now handled as a callback. - TT hashfull queries allow specifying maximum entry age. closes https://github.com/official-stockfish/Stockfish/pull/5354 No functional change
464 lines
16 KiB
C++
464 lines
16 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "network.h"
|
|
|
|
#include <cstdlib>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "../evaluate.h"
|
|
#include "../incbin/incbin.h"
|
|
#include "../memory.h"
|
|
#include "../misc.h"
|
|
#include "../position.h"
|
|
#include "../types.h"
|
|
#include "nnue_architecture.h"
|
|
#include "nnue_common.h"
|
|
#include "nnue_misc.h"
|
|
|
|
namespace {
|
|
// Macro to embed the default efficiently updatable neural network (NNUE) file
|
|
// data in the engine binary (using incbin.h, by Dale Weiler).
|
|
// This macro invocation will declare the following three variables
|
|
// const unsigned char gEmbeddedNNUEData[]; // a pointer to the embedded data
|
|
// const unsigned char *const gEmbeddedNNUEEnd; // a marker to the end
|
|
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
|
|
// Note that this does not work in Microsoft Visual Studio.
|
|
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
|
|
INCBIN(EmbeddedNNUEBig, EvalFileDefaultNameBig);
|
|
INCBIN(EmbeddedNNUESmall, EvalFileDefaultNameSmall);
|
|
#else
|
|
const unsigned char gEmbeddedNNUEBigData[1] = {0x0};
|
|
const unsigned char* const gEmbeddedNNUEBigEnd = &gEmbeddedNNUEBigData[1];
|
|
const unsigned int gEmbeddedNNUEBigSize = 1;
|
|
const unsigned char gEmbeddedNNUESmallData[1] = {0x0};
|
|
const unsigned char* const gEmbeddedNNUESmallEnd = &gEmbeddedNNUESmallData[1];
|
|
const unsigned int gEmbeddedNNUESmallSize = 1;
|
|
#endif
|
|
|
|
struct EmbeddedNNUE {
|
|
EmbeddedNNUE(const unsigned char* embeddedData,
|
|
const unsigned char* embeddedEnd,
|
|
const unsigned int embeddedSize) :
|
|
data(embeddedData),
|
|
end(embeddedEnd),
|
|
size(embeddedSize) {}
|
|
const unsigned char* data;
|
|
const unsigned char* end;
|
|
const unsigned int size;
|
|
};
|
|
|
|
using namespace Stockfish::Eval::NNUE;
|
|
|
|
EmbeddedNNUE get_embedded(EmbeddedNNUEType type) {
|
|
if (type == EmbeddedNNUEType::BIG)
|
|
return EmbeddedNNUE(gEmbeddedNNUEBigData, gEmbeddedNNUEBigEnd, gEmbeddedNNUEBigSize);
|
|
else
|
|
return EmbeddedNNUE(gEmbeddedNNUESmallData, gEmbeddedNNUESmallEnd, gEmbeddedNNUESmallSize);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
namespace Stockfish::Eval::NNUE {
|
|
|
|
|
|
namespace Detail {
|
|
|
|
// Read evaluation function parameters
|
|
template<typename T>
|
|
bool read_parameters(std::istream& stream, T& reference) {
|
|
|
|
std::uint32_t header;
|
|
header = read_little_endian<std::uint32_t>(stream);
|
|
if (!stream || header != T::get_hash_value())
|
|
return false;
|
|
return reference.read_parameters(stream);
|
|
}
|
|
|
|
// Write evaluation function parameters
|
|
template<typename T>
|
|
bool write_parameters(std::ostream& stream, const T& reference) {
|
|
|
|
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
|
|
return reference.write_parameters(stream);
|
|
}
|
|
|
|
} // namespace Detail
|
|
|
|
template<typename Arch, typename Transformer>
|
|
Network<Arch, Transformer>::Network(const Network<Arch, Transformer>& other) :
|
|
evalFile(other.evalFile),
|
|
embeddedType(other.embeddedType) {
|
|
|
|
if (other.featureTransformer)
|
|
featureTransformer = make_unique_large_page<Transformer>(*other.featureTransformer);
|
|
|
|
network = make_unique_aligned<Arch[]>(LayerStacks);
|
|
|
|
if (!other.network)
|
|
return;
|
|
|
|
for (std::size_t i = 0; i < LayerStacks; ++i)
|
|
network[i] = other.network[i];
|
|
}
|
|
|
|
template<typename Arch, typename Transformer>
|
|
Network<Arch, Transformer>&
|
|
Network<Arch, Transformer>::operator=(const Network<Arch, Transformer>& other) {
|
|
evalFile = other.evalFile;
|
|
embeddedType = other.embeddedType;
|
|
|
|
if (other.featureTransformer)
|
|
featureTransformer = make_unique_large_page<Transformer>(*other.featureTransformer);
|
|
|
|
network = make_unique_aligned<Arch[]>(LayerStacks);
|
|
|
|
if (!other.network)
|
|
return *this;
|
|
|
|
for (std::size_t i = 0; i < LayerStacks; ++i)
|
|
network[i] = other.network[i];
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename Arch, typename Transformer>
|
|
void Network<Arch, Transformer>::load(const std::string& rootDirectory, std::string evalfilePath) {
|
|
#if defined(DEFAULT_NNUE_DIRECTORY)
|
|
std::vector<std::string> dirs = {"<internal>", "", rootDirectory,
|
|
stringify(DEFAULT_NNUE_DIRECTORY)};
|
|
#else
|
|
std::vector<std::string> dirs = {"<internal>", "", rootDirectory};
|
|
#endif
|
|
|
|
if (evalfilePath.empty())
|
|
evalfilePath = evalFile.defaultName;
|
|
|
|
for (const auto& directory : dirs)
|
|
{
|
|
if (evalFile.current != evalfilePath)
|
|
{
|
|
if (directory != "<internal>")
|
|
{
|
|
load_user_net(directory, evalfilePath);
|
|
}
|
|
|
|
if (directory == "<internal>" && evalfilePath == evalFile.defaultName)
|
|
{
|
|
load_internal();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
bool Network<Arch, Transformer>::save(const std::optional<std::string>& filename) const {
|
|
std::string actualFilename;
|
|
std::string msg;
|
|
|
|
if (filename.has_value())
|
|
actualFilename = filename.value();
|
|
else
|
|
{
|
|
if (evalFile.current != evalFile.defaultName)
|
|
{
|
|
msg = "Failed to export a net. "
|
|
"A non-embedded net can only be saved if the filename is specified";
|
|
|
|
sync_cout << msg << sync_endl;
|
|
return false;
|
|
}
|
|
|
|
actualFilename = evalFile.defaultName;
|
|
}
|
|
|
|
std::ofstream stream(actualFilename, std::ios_base::binary);
|
|
bool saved = save(stream, evalFile.current, evalFile.netDescription);
|
|
|
|
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
|
|
|
|
sync_cout << msg << sync_endl;
|
|
return saved;
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
NetworkOutput
|
|
Network<Arch, Transformer>::evaluate(const Position& pos,
|
|
AccumulatorCaches::Cache<FTDimensions>* cache) const {
|
|
// We manually align the arrays on the stack because with gcc < 9.3
|
|
// overaligning stack variables with alignas() doesn't work correctly.
|
|
|
|
constexpr uint64_t alignment = CacheLineSize;
|
|
|
|
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
|
|
TransformedFeatureType
|
|
transformedFeaturesUnaligned[FeatureTransformer<FTDimensions, nullptr>::BufferSize
|
|
+ alignment / sizeof(TransformedFeatureType)];
|
|
|
|
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
|
|
#else
|
|
alignas(alignment) TransformedFeatureType
|
|
transformedFeatures[FeatureTransformer<FTDimensions, nullptr>::BufferSize];
|
|
#endif
|
|
|
|
ASSERT_ALIGNED(transformedFeatures, alignment);
|
|
|
|
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
|
|
const auto psqt = featureTransformer->transform(pos, cache, transformedFeatures, bucket);
|
|
const auto positional = network[bucket].propagate(transformedFeatures);
|
|
return {static_cast<Value>(psqt / OutputScale), static_cast<Value>(positional / OutputScale)};
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
void Network<Arch, Transformer>::verify(std::string evalfilePath,
|
|
const std::function<void(std::string_view)>& f) const {
|
|
if (evalfilePath.empty())
|
|
evalfilePath = evalFile.defaultName;
|
|
|
|
if (evalFile.current != evalfilePath)
|
|
{
|
|
if (f)
|
|
{
|
|
std::string msg1 =
|
|
"Network evaluation parameters compatible with the engine must be available.";
|
|
std::string msg2 = "The network file " + evalfilePath + " was not loaded successfully.";
|
|
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
|
|
"including the directory name, to the network file.";
|
|
std::string msg4 = "The default net can be downloaded from: "
|
|
"https://tests.stockfishchess.org/api/nn/"
|
|
+ evalFile.defaultName;
|
|
std::string msg5 = "The engine will be terminated now.";
|
|
|
|
std::string msg = "ERROR: " + msg1 + '\n' + "ERROR: " + msg2 + '\n' + "ERROR: " + msg3
|
|
+ '\n' + "ERROR: " + msg4 + '\n' + "ERROR: " + msg5 + '\n';
|
|
|
|
f(msg);
|
|
}
|
|
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (f)
|
|
{
|
|
size_t size = sizeof(*featureTransformer) + sizeof(Arch) * LayerStacks;
|
|
f("info string NNUE evaluation using " + evalfilePath + " ("
|
|
+ std::to_string(size / (1024 * 1024)) + "MiB, ("
|
|
+ std::to_string(featureTransformer->InputDimensions) + ", "
|
|
+ std::to_string(network[0].TransformedFeatureDimensions) + ", "
|
|
+ std::to_string(network[0].FC_0_OUTPUTS) + ", " + std::to_string(network[0].FC_1_OUTPUTS)
|
|
+ ", 1))");
|
|
}
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
void Network<Arch, Transformer>::hint_common_access(
|
|
const Position& pos, AccumulatorCaches::Cache<FTDimensions>* cache) const {
|
|
featureTransformer->hint_common_access(pos, cache);
|
|
}
|
|
|
|
template<typename Arch, typename Transformer>
|
|
NnueEvalTrace
|
|
Network<Arch, Transformer>::trace_evaluate(const Position& pos,
|
|
AccumulatorCaches::Cache<FTDimensions>* cache) const {
|
|
// We manually align the arrays on the stack because with gcc < 9.3
|
|
// overaligning stack variables with alignas() doesn't work correctly.
|
|
constexpr uint64_t alignment = CacheLineSize;
|
|
|
|
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
|
|
TransformedFeatureType
|
|
transformedFeaturesUnaligned[FeatureTransformer<FTDimensions, nullptr>::BufferSize
|
|
+ alignment / sizeof(TransformedFeatureType)];
|
|
|
|
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
|
|
#else
|
|
alignas(alignment) TransformedFeatureType
|
|
transformedFeatures[FeatureTransformer<FTDimensions, nullptr>::BufferSize];
|
|
#endif
|
|
|
|
ASSERT_ALIGNED(transformedFeatures, alignment);
|
|
|
|
NnueEvalTrace t{};
|
|
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
|
|
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
|
|
{
|
|
const auto materialist =
|
|
featureTransformer->transform(pos, cache, transformedFeatures, bucket);
|
|
const auto positional = network[bucket].propagate(transformedFeatures);
|
|
|
|
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
|
|
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
void Network<Arch, Transformer>::load_user_net(const std::string& dir,
|
|
const std::string& evalfilePath) {
|
|
std::ifstream stream(dir + evalfilePath, std::ios::binary);
|
|
auto description = load(stream);
|
|
|
|
if (description.has_value())
|
|
{
|
|
evalFile.current = evalfilePath;
|
|
evalFile.netDescription = description.value();
|
|
}
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
void Network<Arch, Transformer>::load_internal() {
|
|
// C++ way to prepare a buffer for a memory stream
|
|
class MemoryBuffer: public std::basic_streambuf<char> {
|
|
public:
|
|
MemoryBuffer(char* p, size_t n) {
|
|
setg(p, p, p + n);
|
|
setp(p, p + n);
|
|
}
|
|
};
|
|
|
|
const auto embedded = get_embedded(embeddedType);
|
|
|
|
MemoryBuffer buffer(const_cast<char*>(reinterpret_cast<const char*>(embedded.data)),
|
|
size_t(embedded.size));
|
|
|
|
std::istream stream(&buffer);
|
|
auto description = load(stream);
|
|
|
|
if (description.has_value())
|
|
{
|
|
evalFile.current = evalFile.defaultName;
|
|
evalFile.netDescription = description.value();
|
|
}
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
void Network<Arch, Transformer>::initialize() {
|
|
featureTransformer = make_unique_large_page<Transformer>();
|
|
network = make_unique_aligned<Arch[]>(LayerStacks);
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
bool Network<Arch, Transformer>::save(std::ostream& stream,
|
|
const std::string& name,
|
|
const std::string& netDescription) const {
|
|
if (name.empty() || name == "None")
|
|
return false;
|
|
|
|
return write_parameters(stream, netDescription);
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
std::optional<std::string> Network<Arch, Transformer>::load(std::istream& stream) {
|
|
initialize();
|
|
std::string description;
|
|
|
|
return read_parameters(stream, description) ? std::make_optional(description) : std::nullopt;
|
|
}
|
|
|
|
|
|
// Read network header
|
|
template<typename Arch, typename Transformer>
|
|
bool Network<Arch, Transformer>::read_header(std::istream& stream,
|
|
std::uint32_t* hashValue,
|
|
std::string* desc) const {
|
|
std::uint32_t version, size;
|
|
|
|
version = read_little_endian<std::uint32_t>(stream);
|
|
*hashValue = read_little_endian<std::uint32_t>(stream);
|
|
size = read_little_endian<std::uint32_t>(stream);
|
|
if (!stream || version != Version)
|
|
return false;
|
|
desc->resize(size);
|
|
stream.read(&(*desc)[0], size);
|
|
return !stream.fail();
|
|
}
|
|
|
|
|
|
// Write network header
|
|
template<typename Arch, typename Transformer>
|
|
bool Network<Arch, Transformer>::write_header(std::ostream& stream,
|
|
std::uint32_t hashValue,
|
|
const std::string& desc) const {
|
|
write_little_endian<std::uint32_t>(stream, Version);
|
|
write_little_endian<std::uint32_t>(stream, hashValue);
|
|
write_little_endian<std::uint32_t>(stream, std::uint32_t(desc.size()));
|
|
stream.write(&desc[0], desc.size());
|
|
return !stream.fail();
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
bool Network<Arch, Transformer>::read_parameters(std::istream& stream,
|
|
std::string& netDescription) const {
|
|
std::uint32_t hashValue;
|
|
if (!read_header(stream, &hashValue, &netDescription))
|
|
return false;
|
|
if (hashValue != Network::hash)
|
|
return false;
|
|
if (!Detail::read_parameters(stream, *featureTransformer))
|
|
return false;
|
|
for (std::size_t i = 0; i < LayerStacks; ++i)
|
|
{
|
|
if (!Detail::read_parameters(stream, network[i]))
|
|
return false;
|
|
}
|
|
return stream && stream.peek() == std::ios::traits_type::eof();
|
|
}
|
|
|
|
|
|
template<typename Arch, typename Transformer>
|
|
bool Network<Arch, Transformer>::write_parameters(std::ostream& stream,
|
|
const std::string& netDescription) const {
|
|
if (!write_header(stream, Network::hash, netDescription))
|
|
return false;
|
|
if (!Detail::write_parameters(stream, *featureTransformer))
|
|
return false;
|
|
for (std::size_t i = 0; i < LayerStacks; ++i)
|
|
{
|
|
if (!Detail::write_parameters(stream, network[i]))
|
|
return false;
|
|
}
|
|
return bool(stream);
|
|
}
|
|
|
|
// Explicit template instantiation
|
|
|
|
template class Network<
|
|
NetworkArchitecture<TransformedFeatureDimensionsBig, L2Big, L3Big>,
|
|
FeatureTransformer<TransformedFeatureDimensionsBig, &StateInfo::accumulatorBig>>;
|
|
|
|
template class Network<
|
|
NetworkArchitecture<TransformedFeatureDimensionsSmall, L2Small, L3Small>,
|
|
FeatureTransformer<TransformedFeatureDimensionsSmall, &StateInfo::accumulatorSmall>>;
|
|
|
|
} // namespace Stockfish::Eval::NNUE
|