1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-02 09:39:36 +00:00
BadFish/src/nnue/layers/affine_transform_sparse_input.h

247 lines
8.6 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of layer AffineTransformSparseInput of NNUE evaluation function
#ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED
#define NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED
#include <iostream>
#include <algorithm>
#include <array>
#include <type_traits>
#include "../nnue_common.h"
#include "affine_transform.h"
#include "simd.h"
/*
This file contains the definition for a fully connected layer (aka affine transform) with block sparse input.
*/
namespace Stockfish::Eval::NNUE::Layers {
#if defined(USE_SSSE3)
alignas(CacheLineSize) static inline const std::array<std::array<std::uint16_t, 8>, 256> lookup_indices = [](){
std::array<std::array<std::uint16_t, 8>, 256> v{};
for (unsigned i = 0; i < 256; ++i)
{
std::uint64_t j = i, k = 0;
while(j)
v[i][k++] = pop_lsb(j);
}
return v;
}();
// Find indices of nonzero numbers in an int32_t array
template<const IndexType InputDimensions>
void find_nnz(const std::int32_t* input, std::uint16_t* out, IndexType& count_out) {
#if defined (USE_AVX512)
using vec_t = __m512i;
#define vec_nnz(a) _mm512_cmpgt_epi32_mask(a, _mm512_setzero_si512())
#elif defined (USE_AVX2)
using vec_t = __m256i;
#if defined(USE_VNNI) && !defined(USE_AVXVNNI)
#define vec_nnz(a) _mm256_cmpgt_epi32_mask(a, _mm256_setzero_si256())
#else
#define vec_nnz(a) _mm256_movemask_ps(_mm256_castsi256_ps(_mm256_cmpgt_epi32(a, _mm256_setzero_si256())))
#endif
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_nnz(a) _mm_movemask_ps(_mm_castsi128_ps(_mm_cmpgt_epi32(a, _mm_setzero_si128())))
#endif
constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(std::int32_t);
// Inputs are processed InputSimdWidth at a time and outputs are processed 8 at a time so we process in chunks of max(InputSimdWidth, 8)
constexpr IndexType ChunkSize = std::max<IndexType>(InputSimdWidth, 8);
constexpr IndexType NumChunks = InputDimensions / ChunkSize;
constexpr IndexType InputsPerChunk = ChunkSize / InputSimdWidth;
constexpr IndexType OutputsPerChunk = ChunkSize / 8;
const auto inputVector = reinterpret_cast<const vec_t*>(input);
IndexType count = 0;
__m128i base = _mm_setzero_si128();
const __m128i increment = _mm_set1_epi16(8);
for (IndexType i = 0; i < NumChunks; ++i)
{
// bitmask of nonzero values in this chunk
unsigned nnz = 0;
for (IndexType j = 0; j < InputsPerChunk; ++j)
{
const vec_t inputChunk = inputVector[i * InputsPerChunk + j];
nnz |= (unsigned)vec_nnz(inputChunk) << (j * InputSimdWidth);
}
for (IndexType j = 0; j < OutputsPerChunk; ++j)
{
const auto lookup = (nnz >> (j * 8)) & 0xFF;
const auto offsets = _mm_loadu_si128(reinterpret_cast<const __m128i*>(&lookup_indices[lookup]));
_mm_storeu_si128(reinterpret_cast<__m128i*>(out + count), _mm_add_epi16(base, offsets));
count += popcount(lookup);
base = _mm_add_epi16(base, increment);
}
}
count_out = count;
}
# undef vec_nnz
#endif
// Sparse input implementation
template <IndexType InDims, IndexType OutDims>
class AffineTransformSparseInput {
public:
// Input/output type
// Input/output type
using InputType = std::uint8_t;
using OutputType = std::int32_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;
static_assert(OutputDimensions % 16 == 0, "Only implemented for OutputDimensions divisible by 16.");
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);
#if defined (USE_SSSE3)
static constexpr IndexType ChunkSize = 4;
#else
static constexpr IndexType ChunkSize = 1;
#endif
using OutputBuffer = OutputType[PaddedOutputDimensions];
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}
static IndexType get_weight_index_scrambled(IndexType i)
{
return
(i / ChunkSize) % (PaddedInputDimensions / ChunkSize) * OutputDimensions * ChunkSize +
i / PaddedInputDimensions * ChunkSize +
i % ChunkSize;
}
static IndexType get_weight_index(IndexType i)
{
#if defined (USE_SSSE3)
return get_weight_index_scrambled(i);
#else
return i;
#endif
}
// Read network parameters
bool read_parameters(std::istream& stream) {
read_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
return !stream.fail();
}
// Forward propagation
const OutputType* propagate(
const InputType* input, OutputType* output) const {
#if defined (USE_SSSE3)
#if defined (USE_AVX512)
using vec_t = __m512i;
#define vec_setzero _mm512_setzero_si512
#define vec_set_32 _mm512_set1_epi32
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32
#elif defined (USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#endif
static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType);
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / ChunkSize;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
std::uint16_t nnz[NumChunks];
IndexType count;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
// Find indices of nonzero 32bit blocks
find_nnz<NumChunks>(input32, nnz, count);
const vec_t* biasvec = reinterpret_cast<const vec_t*>(biases);
vec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasvec[k];
for (IndexType j = 0; j < count; ++j)
{
const auto i = nnz[j];
const vec_t in = vec_set_32(input32[i]);
const auto col = reinterpret_cast<const vec_t*>(&weights[i * OutputDimensions * ChunkSize]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32(acc[k], in, col[k]);
}
vec_t* outptr = reinterpret_cast<vec_t*>(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
# undef vec_setzero
# undef vec_set_32
# undef vec_add_dpbusd_32
#else
// Use dense implementation for the other architectures.
affine_transform_non_ssse3<
InputDimensions,
PaddedInputDimensions,
OutputDimensions>(output, weights, biases, input);
#endif
return output;
}
private:
using BiasType = OutputType;
using WeightType = std::int8_t;
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED