1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-07-12 03:59:15 +00:00
BadFish/src/eval/nnue/nnue_feature_transformer.h

347 lines
14 KiB
C++

// NNUE評価関数の入力特徴量の変換を行うクラス
#ifndef _NNUE_FEATURE_TRANSFORMER_H_
#define _NNUE_FEATURE_TRANSFORMER_H_
#if defined(EVAL_NNUE)
#include "nnue_common.h"
#include "nnue_architecture.h"
#include "features/index_list.h"
#include <cstring> // std::memset()
namespace Eval {
namespace NNUE {
// 入力特徴量変換器
class FeatureTransformer {
private:
// 片側分の出力の次元数
static constexpr IndexType kHalfDimensions = kTransformedFeatureDimensions;
public:
// 出力の型
using OutputType = TransformedFeatureType;
// 入出力の次元数
static constexpr IndexType kInputDimensions = RawFeatures::kDimensions;
static constexpr IndexType kOutputDimensions = kHalfDimensions * 2;
// 順伝播用バッファのサイズ
static constexpr std::size_t kBufferSize =
kOutputDimensions * sizeof(OutputType);
// 評価関数ファイルに埋め込むハッシュ値
static constexpr std::uint32_t GetHashValue() {
return RawFeatures::kHashValue ^ kOutputDimensions;
}
// 構造を表す文字列
static std::string GetStructureString() {
return RawFeatures::GetName() + "[" +
std::to_string(kInputDimensions) + "->" +
std::to_string(kHalfDimensions) + "x2]";
}
// パラメータを読み込む
bool ReadParameters(std::istream& stream) {
stream.read(reinterpret_cast<char*>(biases_),
kHalfDimensions * sizeof(BiasType));
stream.read(reinterpret_cast<char*>(weights_),
kHalfDimensions * kInputDimensions * sizeof(WeightType));
return !stream.fail();
}
// パラメータを書き込む
bool WriteParameters(std::ostream& stream) const {
stream.write(reinterpret_cast<const char*>(biases_),
kHalfDimensions * sizeof(BiasType));
stream.write(reinterpret_cast<const char*>(weights_),
kHalfDimensions * kInputDimensions * sizeof(WeightType));
return !stream.fail();
}
// 可能なら差分計算を進める
bool UpdateAccumulatorIfPossible(const Position& pos) const {
const auto now = pos.state();
if (now->accumulator.computed_accumulation) {
return true;
}
const auto prev = now->previous;
if (prev && prev->accumulator.computed_accumulation) {
UpdateAccumulator(pos);
return true;
}
return false;
}
// 入力特徴量を変換する
void Transform(const Position& pos, OutputType* output, bool refresh) const {
if (refresh || !UpdateAccumulatorIfPossible(pos)) {
RefreshAccumulator(pos);
}
const auto& accumulation = pos.state()->accumulator.accumulation;
#if defined(USE_AVX2)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
constexpr int kControl = 0b11011000;
const __m256i kZero = _mm256_setzero_si256();
#elif defined(USE_SSE41)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
const __m128i kZero = _mm_setzero_si128();
#elif defined(IS_ARM)
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
#endif
const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()};
for (IndexType p = 0; p < 2; ++p) {
const IndexType offset = kHalfDimensions * p;
#if defined(USE_AVX2)
auto out = reinterpret_cast<__m256i*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m256i sum0 =
#if defined(__MINGW32__) || defined(__MINGW64__)
// HACK: Use _mm256_loadu_si256() instead of _mm256_load_si256. Because the binary
// compiled with g++ in MSYS2 crashes here because the output memory is not aligned
// even though alignas is specified.
_mm256_loadu_si256
#else
_mm256_load_si256
#endif
(&reinterpret_cast<const __m256i*>(
accumulation[perspectives[p]][0])[j * 2 + 0]);
__m256i sum1 =
#if defined(__MINGW32__) || defined(__MINGW64__)
_mm256_loadu_si256
#else
_mm256_load_si256
#endif
(&reinterpret_cast<const __m256i*>(
accumulation[perspectives[p]][0])[j * 2 + 1]);
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum0 = _mm256_add_epi16(sum0, reinterpret_cast<const __m256i*>(
accumulation[perspectives[p]][i])[j * 2 + 0]);
sum1 = _mm256_add_epi16(sum1, reinterpret_cast<const __m256i*>(
accumulation[perspectives[p]][i])[j * 2 + 1]);
}
#if defined(__MINGW32__) || defined(__MINGW64__)
_mm256_storeu_si256
#else
_mm256_store_si256
#endif
(&out[j], _mm256_permute4x64_epi64(_mm256_max_epi8(
_mm256_packs_epi16(sum0, sum1), kZero), kControl));
}
#elif defined(USE_SSE41)
auto out = reinterpret_cast<__m128i*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m128i sum0 = _mm_load_si128(&reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][0])[j * 2 + 0]);
__m128i sum1 = _mm_load_si128(&reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][0])[j * 2 + 1]);
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum0 = _mm_add_epi16(sum0, reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][i])[j * 2 + 0]);
sum1 = _mm_add_epi16(sum1, reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][i])[j * 2 + 1]);
}
_mm_store_si128(&out[j], _mm_max_epi8(
_mm_packs_epi16(sum0, sum1), kZero));
}
#elif defined(IS_ARM)
const auto out = reinterpret_cast<int8x8_t*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t sum = reinterpret_cast<const int16x8_t*>(
accumulation[perspectives[p]][0])[j];
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum = vaddq_s16(sum, reinterpret_cast<const int16x8_t*>(
accumulation[perspectives[p]][i])[j]);
}
out[j] = vmax_s8(vqmovn_s16(sum), kZero);
}
#else
for (IndexType j = 0; j < kHalfDimensions; ++j) {
BiasType sum = accumulation[static_cast<int>(perspectives[p])][0][j];
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum += accumulation[static_cast<int>(perspectives[p])][i][j];
}
output[offset + j] = static_cast<OutputType>(
std::max<int>(0, std::min<int>(127, sum)));
}
#endif
}
}
private:
// 差分計算を用いずに累積値を計算する
void RefreshAccumulator(const Position& pos) const {
auto& accumulator = pos.state()->accumulator;
for (IndexType i = 0; i < kRefreshTriggers.size(); ++i) {
Features::IndexList active_indices[2];
RawFeatures::AppendActiveIndices(pos, kRefreshTriggers[i],
active_indices);
for (const auto perspective : Colors) {
if (i == 0) {
std::memcpy(accumulator.accumulation[perspective][i], biases_,
kHalfDimensions * sizeof(BiasType));
} else {
std::memset(accumulator.accumulation[perspective][i], 0,
kHalfDimensions * sizeof(BiasType));
}
for (const auto index : active_indices[perspective]) {
const IndexType offset = kHalfDimensions * index;
#if defined(USE_AVX2)
auto accumulation = reinterpret_cast<__m256i*>(
&accumulator.accumulation[perspective][i][0]);
auto column = reinterpret_cast<const __m256i*>(&weights_[offset]);
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
for (IndexType j = 0; j < kNumChunks; ++j) {
#if defined(__MINGW32__) || defined(__MINGW64__)
_mm256_storeu_si256(&accumulation[j], _mm256_add_epi16(_mm256_loadu_si256(&accumulation[j]), column[j]));
#else
accumulation[j] = _mm256_add_epi16(accumulation[j], column[j]);
#endif
}
#elif defined(USE_SSE2)
auto accumulation = reinterpret_cast<__m128i*>(
&accumulator.accumulation[perspective][i][0]);
auto column = reinterpret_cast<const __m128i*>(&weights_[offset]);
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = _mm_add_epi16(accumulation[j], column[j]);
}
#elif defined(IS_ARM)
auto accumulation = reinterpret_cast<int16x8_t*>(
&accumulator.accumulation[perspective][i][0]);
auto column = reinterpret_cast<const int16x8_t*>(&weights_[offset]);
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = vaddq_s16(accumulation[j], column[j]);
}
#else
for (IndexType j = 0; j < kHalfDimensions; ++j) {
accumulator.accumulation[perspective][i][j] += weights_[offset + j];
}
#endif
}
}
}
accumulator.computed_accumulation = true;
accumulator.computed_score = false;
}
// 差分計算を用いて累積値を計算する
void UpdateAccumulator(const Position& pos) const {
const auto prev_accumulator = pos.state()->previous->accumulator;
auto& accumulator = pos.state()->accumulator;
for (IndexType i = 0; i < kRefreshTriggers.size(); ++i) {
Features::IndexList removed_indices[2], added_indices[2];
bool reset[2];
RawFeatures::AppendChangedIndices(pos, kRefreshTriggers[i],
removed_indices, added_indices, reset);
for (const auto perspective : Colors) {
#if defined(USE_AVX2)
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
auto accumulation = reinterpret_cast<__m256i*>(
&accumulator.accumulation[perspective][i][0]);
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
auto accumulation = reinterpret_cast<__m128i*>(
&accumulator.accumulation[perspective][i][0]);
#elif defined(IS_ARM)
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
auto accumulation = reinterpret_cast<int16x8_t*>(
&accumulator.accumulation[perspective][i][0]);
#endif
if (reset[perspective]) {
if (i == 0) {
std::memcpy(accumulator.accumulation[perspective][i], biases_,
kHalfDimensions * sizeof(BiasType));
} else {
std::memset(accumulator.accumulation[perspective][i], 0,
kHalfDimensions * sizeof(BiasType));
}
} else { // 1から0に変化した特徴量に関する差分計算
std::memcpy(accumulator.accumulation[perspective][i],
prev_accumulator.accumulation[perspective][i],
kHalfDimensions * sizeof(BiasType));
for (const auto index : removed_indices[perspective]) {
const IndexType offset = kHalfDimensions * index;
#if defined(USE_AVX2)
auto column = reinterpret_cast<const __m256i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = _mm256_sub_epi16(accumulation[j], column[j]);
}
#elif defined(USE_SSE2)
auto column = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = _mm_sub_epi16(accumulation[j], column[j]);
}
#elif defined(IS_ARM)
auto column = reinterpret_cast<const int16x8_t*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = vsubq_s16(accumulation[j], column[j]);
}
#else
for (IndexType j = 0; j < kHalfDimensions; ++j) {
accumulator.accumulation[perspective][i][j] -=
weights_[offset + j];
}
#endif
}
}
{ // 0から1に変化した特徴量に関する差分計算
for (const auto index : added_indices[perspective]) {
const IndexType offset = kHalfDimensions * index;
#if defined(USE_AVX2)
auto column = reinterpret_cast<const __m256i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = _mm256_add_epi16(accumulation[j], column[j]);
}
#elif defined(USE_SSE2)
auto column = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = _mm_add_epi16(accumulation[j], column[j]);
}
#elif defined(IS_ARM)
auto column = reinterpret_cast<const int16x8_t*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = vaddq_s16(accumulation[j], column[j]);
}
#else
for (IndexType j = 0; j < kHalfDimensions; ++j) {
accumulator.accumulation[perspective][i][j] +=
weights_[offset + j];
}
#endif
}
}
}
}
accumulator.computed_accumulation = true;
accumulator.computed_score = false;
}
// パラメータの型
using BiasType = std::int16_t;
using WeightType = std::int16_t;
// 学習用クラスをfriendにする
friend class Trainer<FeatureTransformer>;
// パラメータ
alignas(kCacheLineSize) BiasType biases_[kHalfDimensions];
alignas(kCacheLineSize)
WeightType weights_[kHalfDimensions * kInputDimensions];
};
} // namespace NNUE
} // namespace Eval
#endif // defined(EVAL_NNUE)
#endif