mirror of
https://github.com/sockspls/badfish
synced 2025-04-29 16:23:09 +00:00

Tests used to derive some Elo worth comments: https://tests.stockfishchess.org/tests/view/656a7f4e136acbc573555a31 https://tests.stockfishchess.org/tests/view/6585fb455457644dc984620f closes https://github.com/official-stockfish/Stockfish/pull/4945 No functional change
284 lines
8.4 KiB
C++
284 lines
8.4 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Constants used in NNUE evaluation function
|
|
|
|
#ifndef NNUE_COMMON_H_INCLUDED
|
|
#define NNUE_COMMON_H_INCLUDED
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <type_traits>
|
|
|
|
#include "../misc.h"
|
|
|
|
#if defined(USE_AVX2)
|
|
#include <immintrin.h>
|
|
|
|
#elif defined(USE_SSE41)
|
|
#include <smmintrin.h>
|
|
|
|
#elif defined(USE_SSSE3)
|
|
#include <tmmintrin.h>
|
|
|
|
#elif defined(USE_SSE2)
|
|
#include <emmintrin.h>
|
|
|
|
#elif defined(USE_NEON)
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
namespace Stockfish::Eval::NNUE {
|
|
|
|
// Version of the evaluation file
|
|
constexpr std::uint32_t Version = 0x7AF32F20u;
|
|
|
|
// Constant used in evaluation value calculation
|
|
constexpr int OutputScale = 16;
|
|
constexpr int WeightScaleBits = 6;
|
|
|
|
// Size of cache line (in bytes)
|
|
constexpr std::size_t CacheLineSize = 64;
|
|
|
|
constexpr const char Leb128MagicString[] = "COMPRESSED_LEB128";
|
|
constexpr const std::size_t Leb128MagicStringSize = sizeof(Leb128MagicString) - 1;
|
|
|
|
// SIMD width (in bytes)
|
|
#if defined(USE_AVX2)
|
|
constexpr std::size_t SimdWidth = 32;
|
|
|
|
#elif defined(USE_SSE2)
|
|
constexpr std::size_t SimdWidth = 16;
|
|
|
|
#elif defined(USE_NEON)
|
|
constexpr std::size_t SimdWidth = 16;
|
|
#endif
|
|
|
|
constexpr std::size_t MaxSimdWidth = 32;
|
|
|
|
// Type of input feature after conversion
|
|
using TransformedFeatureType = std::uint8_t;
|
|
using IndexType = std::uint32_t;
|
|
|
|
// Round n up to be a multiple of base
|
|
template<typename IntType>
|
|
constexpr IntType ceil_to_multiple(IntType n, IntType base) {
|
|
return (n + base - 1) / base * base;
|
|
}
|
|
|
|
|
|
// Utility to read an integer (signed or unsigned, any size)
|
|
// from a stream in little-endian order. We swap the byte order after the read if
|
|
// necessary to return a result with the byte ordering of the compiling machine.
|
|
template<typename IntType>
|
|
inline IntType read_little_endian(std::istream& stream) {
|
|
IntType result;
|
|
|
|
if (IsLittleEndian)
|
|
stream.read(reinterpret_cast<char*>(&result), sizeof(IntType));
|
|
else
|
|
{
|
|
std::uint8_t u[sizeof(IntType)];
|
|
std::make_unsigned_t<IntType> v = 0;
|
|
|
|
stream.read(reinterpret_cast<char*>(u), sizeof(IntType));
|
|
for (std::size_t i = 0; i < sizeof(IntType); ++i)
|
|
v = (v << 8) | u[sizeof(IntType) - i - 1];
|
|
|
|
std::memcpy(&result, &v, sizeof(IntType));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
// Utility to write an integer (signed or unsigned, any size)
|
|
// to a stream in little-endian order. We swap the byte order before the write if
|
|
// necessary to always write in little-endian order, independently of the byte
|
|
// ordering of the compiling machine.
|
|
template<typename IntType>
|
|
inline void write_little_endian(std::ostream& stream, IntType value) {
|
|
|
|
if (IsLittleEndian)
|
|
stream.write(reinterpret_cast<const char*>(&value), sizeof(IntType));
|
|
else
|
|
{
|
|
std::uint8_t u[sizeof(IntType)];
|
|
std::make_unsigned_t<IntType> v = value;
|
|
|
|
std::size_t i = 0;
|
|
// if constexpr to silence the warning about shift by 8
|
|
if constexpr (sizeof(IntType) > 1)
|
|
{
|
|
for (; i + 1 < sizeof(IntType); ++i)
|
|
{
|
|
u[i] = std::uint8_t(v);
|
|
v >>= 8;
|
|
}
|
|
}
|
|
u[i] = std::uint8_t(v);
|
|
|
|
stream.write(reinterpret_cast<char*>(u), sizeof(IntType));
|
|
}
|
|
}
|
|
|
|
|
|
// Read integers in bulk from a little-endian stream.
|
|
// This reads N integers from stream s and puts them in array out.
|
|
template<typename IntType>
|
|
inline void read_little_endian(std::istream& stream, IntType* out, std::size_t count) {
|
|
if (IsLittleEndian)
|
|
stream.read(reinterpret_cast<char*>(out), sizeof(IntType) * count);
|
|
else
|
|
for (std::size_t i = 0; i < count; ++i)
|
|
out[i] = read_little_endian<IntType>(stream);
|
|
}
|
|
|
|
|
|
// Write integers in bulk to a little-endian stream.
|
|
// This takes N integers from array values and writes them on stream s.
|
|
template<typename IntType>
|
|
inline void write_little_endian(std::ostream& stream, const IntType* values, std::size_t count) {
|
|
if (IsLittleEndian)
|
|
stream.write(reinterpret_cast<const char*>(values), sizeof(IntType) * count);
|
|
else
|
|
for (std::size_t i = 0; i < count; ++i)
|
|
write_little_endian<IntType>(stream, values[i]);
|
|
}
|
|
|
|
|
|
// Read N signed integers from the stream s, putting them in the array out.
|
|
// The stream is assumed to be compressed using the signed LEB128 format.
|
|
// See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme.
|
|
template<typename IntType>
|
|
inline void read_leb_128(std::istream& stream, IntType* out, std::size_t count) {
|
|
|
|
// Check the presence of our LEB128 magic string
|
|
char leb128MagicString[Leb128MagicStringSize];
|
|
stream.read(leb128MagicString, Leb128MagicStringSize);
|
|
assert(strncmp(Leb128MagicString, leb128MagicString, Leb128MagicStringSize) == 0);
|
|
|
|
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
|
|
|
|
const std::uint32_t BUF_SIZE = 4096;
|
|
std::uint8_t buf[BUF_SIZE];
|
|
|
|
auto bytes_left = read_little_endian<std::uint32_t>(stream);
|
|
|
|
std::uint32_t buf_pos = BUF_SIZE;
|
|
for (std::size_t i = 0; i < count; ++i)
|
|
{
|
|
IntType result = 0;
|
|
size_t shift = 0;
|
|
do
|
|
{
|
|
if (buf_pos == BUF_SIZE)
|
|
{
|
|
stream.read(reinterpret_cast<char*>(buf), std::min(bytes_left, BUF_SIZE));
|
|
buf_pos = 0;
|
|
}
|
|
|
|
std::uint8_t byte = buf[buf_pos++];
|
|
--bytes_left;
|
|
result |= (byte & 0x7f) << shift;
|
|
shift += 7;
|
|
|
|
if ((byte & 0x80) == 0)
|
|
{
|
|
out[i] = (sizeof(IntType) * 8 <= shift || (byte & 0x40) == 0)
|
|
? result
|
|
: result | ~((1 << shift) - 1);
|
|
break;
|
|
}
|
|
} while (shift < sizeof(IntType) * 8);
|
|
}
|
|
|
|
assert(bytes_left == 0);
|
|
}
|
|
|
|
|
|
// Write signed integers to a stream with LEB128 compression.
|
|
// This takes N integers from array values, compresses them with
|
|
// the LEB128 algorithm and writes the result on the stream s.
|
|
// See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme.
|
|
template<typename IntType>
|
|
inline void write_leb_128(std::ostream& stream, const IntType* values, std::size_t count) {
|
|
|
|
// Write our LEB128 magic string
|
|
stream.write(Leb128MagicString, Leb128MagicStringSize);
|
|
|
|
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
|
|
|
|
std::uint32_t byte_count = 0;
|
|
for (std::size_t i = 0; i < count; ++i)
|
|
{
|
|
IntType value = values[i];
|
|
std::uint8_t byte;
|
|
do
|
|
{
|
|
byte = value & 0x7f;
|
|
value >>= 7;
|
|
++byte_count;
|
|
} while ((byte & 0x40) == 0 ? value != 0 : value != -1);
|
|
}
|
|
|
|
write_little_endian(stream, byte_count);
|
|
|
|
const std::uint32_t BUF_SIZE = 4096;
|
|
std::uint8_t buf[BUF_SIZE];
|
|
std::uint32_t buf_pos = 0;
|
|
|
|
auto flush = [&]() {
|
|
if (buf_pos > 0)
|
|
{
|
|
stream.write(reinterpret_cast<char*>(buf), buf_pos);
|
|
buf_pos = 0;
|
|
}
|
|
};
|
|
|
|
auto write = [&](std::uint8_t byte) {
|
|
buf[buf_pos++] = byte;
|
|
if (buf_pos == BUF_SIZE)
|
|
flush();
|
|
};
|
|
|
|
for (std::size_t i = 0; i < count; ++i)
|
|
{
|
|
IntType value = values[i];
|
|
while (true)
|
|
{
|
|
std::uint8_t byte = value & 0x7f;
|
|
value >>= 7;
|
|
if ((byte & 0x40) == 0 ? value == 0 : value == -1)
|
|
{
|
|
write(byte);
|
|
break;
|
|
}
|
|
write(byte | 0x80);
|
|
}
|
|
}
|
|
|
|
flush();
|
|
}
|
|
|
|
} // namespace Stockfish::Eval::NNUE
|
|
|
|
#endif // #ifndef NNUE_COMMON_H_INCLUDED
|