mirror of
https://github.com/sockspls/badfish
synced 2025-05-01 17:19:36 +00:00
204 lines
5.3 KiB
C++
204 lines
5.3 KiB
C++
#ifndef TYPES_H_INCLUDED
|
|
#define TYPES_H_INCLUDED
|
|
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <climits>
|
|
#include <cstdlib>
|
|
|
|
#include <inttypes.h>
|
|
const bool HasPopCnt = true;
|
|
|
|
#define unlikely(x) (x) // For code annotation purposes
|
|
|
|
#define CACHE_LINE_SIZE 64
|
|
|
|
const bool Is64Bit = true;
|
|
typedef uint64_t Key;
|
|
typedef uint64_t Bitboard;
|
|
|
|
/// A move needs 16 bits to be stored
|
|
///
|
|
/// bit 0- 5: destination square (from 0 to 63)
|
|
/// bit 6-11: origin square (from 0 to 63)
|
|
/// bit 12-13: promotion piece type - 2 (from KNIGHT-2 to QUEEN-2)
|
|
/// bit 14-15: special move flag: promotion (1), en passant (2), castling (3)
|
|
/// NOTE: EN-PASSANT bit is set only when a pawn can be captured
|
|
///
|
|
/// Special cases are MOVE_NONE and MOVE_NULL. We can sneak these in because in
|
|
/// any normal move destination square is always different from origin square
|
|
/// while MOVE_NONE and MOVE_NULL have the same origin and destination square.
|
|
|
|
enum Move {
|
|
MOVE_NONE,
|
|
MOVE_NULL = 65
|
|
};
|
|
|
|
enum MoveType {
|
|
NORMAL,
|
|
PROMOTION = 1 << 14,
|
|
ENPASSANT = 2 << 14,
|
|
CASTLING = 3 << 14
|
|
};
|
|
|
|
enum Color {
|
|
WHITE, BLACK, NO_COLOR, COLOR_NB = 2
|
|
};
|
|
|
|
enum CastlingSide {
|
|
KING_SIDE, QUEEN_SIDE, CASTLING_SIDE_NB = 2
|
|
};
|
|
|
|
enum CastlingRight {
|
|
NO_CASTLING,
|
|
WHITE_OO,
|
|
WHITE_OOO = WHITE_OO << 1,
|
|
BLACK_OO = WHITE_OO << 2,
|
|
BLACK_OOO = WHITE_OO << 3,
|
|
ANY_CASTLING = WHITE_OO | WHITE_OOO | BLACK_OO | BLACK_OOO,
|
|
CASTLING_RIGHT_NB = 16
|
|
};
|
|
|
|
template<Color C, CastlingSide S> struct MakeCastling {
|
|
static const CastlingRight
|
|
right = C == WHITE ? S == QUEEN_SIDE ? WHITE_OOO : WHITE_OO
|
|
: S == QUEEN_SIDE ? BLACK_OOO : BLACK_OO;
|
|
};
|
|
|
|
enum PieceType {
|
|
NO_PIECE_TYPE, PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING,
|
|
ALL_PIECES = 0,
|
|
PIECE_TYPE_NB = 8
|
|
};
|
|
|
|
enum Piece {
|
|
NO_PIECE,
|
|
W_PAWN = 1, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING,
|
|
B_PAWN = 9, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING,
|
|
PIECE_NB = 16
|
|
};
|
|
|
|
enum Square {
|
|
SQ_A1, SQ_B1, SQ_C1, SQ_D1, SQ_E1, SQ_F1, SQ_G1, SQ_H1,
|
|
SQ_A2, SQ_B2, SQ_C2, SQ_D2, SQ_E2, SQ_F2, SQ_G2, SQ_H2,
|
|
SQ_A3, SQ_B3, SQ_C3, SQ_D3, SQ_E3, SQ_F3, SQ_G3, SQ_H3,
|
|
SQ_A4, SQ_B4, SQ_C4, SQ_D4, SQ_E4, SQ_F4, SQ_G4, SQ_H4,
|
|
SQ_A5, SQ_B5, SQ_C5, SQ_D5, SQ_E5, SQ_F5, SQ_G5, SQ_H5,
|
|
SQ_A6, SQ_B6, SQ_C6, SQ_D6, SQ_E6, SQ_F6, SQ_G6, SQ_H6,
|
|
SQ_A7, SQ_B7, SQ_C7, SQ_D7, SQ_E7, SQ_F7, SQ_G7, SQ_H7,
|
|
SQ_A8, SQ_B8, SQ_C8, SQ_D8, SQ_E8, SQ_F8, SQ_G8, SQ_H8,
|
|
SQ_NONE,
|
|
|
|
SQUARE_NB = 64,
|
|
|
|
DELTA_N = 8,
|
|
DELTA_E = 1,
|
|
DELTA_S = -8,
|
|
DELTA_W = -1,
|
|
|
|
DELTA_NN = DELTA_N + DELTA_N,
|
|
DELTA_NE = DELTA_N + DELTA_E,
|
|
DELTA_SE = DELTA_S + DELTA_E,
|
|
DELTA_SS = DELTA_S + DELTA_S,
|
|
DELTA_SW = DELTA_S + DELTA_W,
|
|
DELTA_NW = DELTA_N + DELTA_W
|
|
};
|
|
|
|
enum File {
|
|
FILE_A, FILE_B, FILE_C, FILE_D, FILE_E, FILE_F, FILE_G, FILE_H, FILE_NB
|
|
};
|
|
|
|
enum Rank {
|
|
RANK_1, RANK_2, RANK_3, RANK_4, RANK_5, RANK_6, RANK_7, RANK_8, RANK_NB
|
|
};
|
|
|
|
#define ENABLE_BASE_OPERATORS_ON(T) \
|
|
inline T operator+(T d1, T d2) { return T(int(d1) + int(d2)); } \
|
|
inline T operator-(T d1, T d2) { return T(int(d1) - int(d2)); } \
|
|
inline T operator*(int i, T d) { return T(i * int(d)); } \
|
|
inline T operator*(T d, int i) { return T(int(d) * i); } \
|
|
inline T operator-(T d) { return T(-int(d)); } \
|
|
inline T& operator+=(T& d1, T d2) { return d1 = d1 + d2; } \
|
|
inline T& operator-=(T& d1, T d2) { return d1 = d1 - d2; } \
|
|
inline T& operator*=(T& d, int i) { return d = T(int(d) * i); }
|
|
|
|
#define ENABLE_FULL_OPERATORS_ON(T) \
|
|
ENABLE_BASE_OPERATORS_ON(T) \
|
|
inline T& operator++(T& d) { return d = T(int(d) + 1); } \
|
|
inline T& operator--(T& d) { return d = T(int(d) - 1); } \
|
|
inline T operator/(T d, int i) { return T(int(d) / i); } \
|
|
inline int operator/(T d1, T d2) { return int(d1) / int(d2); } \
|
|
inline T& operator/=(T& d, int i) { return d = T(int(d) / i); }
|
|
|
|
ENABLE_FULL_OPERATORS_ON(PieceType)
|
|
ENABLE_FULL_OPERATORS_ON(Piece)
|
|
ENABLE_FULL_OPERATORS_ON(Color)
|
|
ENABLE_FULL_OPERATORS_ON(Square)
|
|
ENABLE_FULL_OPERATORS_ON(File)
|
|
ENABLE_FULL_OPERATORS_ON(Rank)
|
|
|
|
#undef ENABLE_FULL_OPERATORS_ON
|
|
#undef ENABLE_BASE_OPERATORS_ON
|
|
|
|
struct ExtMove {
|
|
Move move;
|
|
int value;
|
|
};
|
|
|
|
inline bool operator<(const ExtMove& f, const ExtMove& s) {
|
|
return f.value < s.value;
|
|
}
|
|
|
|
inline Color operator~(Color c) {
|
|
return Color(c ^ BLACK);
|
|
}
|
|
|
|
inline Square operator~(Square s) {
|
|
return Square(s ^ SQ_A8); // Vertical flip SQ_A1 -> SQ_A8
|
|
}
|
|
|
|
inline CastlingRight operator|(Color c, CastlingSide s) {
|
|
return CastlingRight(WHITE_OO << ((s == QUEEN_SIDE) + 2 * c));
|
|
}
|
|
|
|
inline Square make_square(File f, Rank r) {
|
|
return Square((r << 3) | f);
|
|
}
|
|
|
|
inline Piece make_piece(Color c, PieceType pt) {
|
|
return Piece((c << 3) | pt);
|
|
}
|
|
|
|
inline PieceType type_of(Piece pc) {
|
|
return PieceType(pc & 7);
|
|
}
|
|
|
|
inline Color color_of(Piece pc) {
|
|
assert(pc != NO_PIECE);
|
|
return Color(pc >> 3);
|
|
}
|
|
|
|
inline bool is_ok(Square s) {
|
|
return s >= SQ_A1 && s <= SQ_H8;
|
|
}
|
|
|
|
inline File file_of(Square s) {
|
|
return File(s & 7);
|
|
}
|
|
|
|
inline Rank rank_of(Square s) {
|
|
return Rank(s >> 3);
|
|
}
|
|
|
|
inline Square relative_square(Color c, Square s) {
|
|
return Square(s ^ (c * 56));
|
|
}
|
|
|
|
inline Rank relative_rank(Color c, Rank r) {
|
|
return Rank(r ^ (c * 7));
|
|
}
|
|
|
|
inline Rank relative_rank(Color c, Square s) {
|
|
return relative_rank(c, rank_of(s));
|
|
}
|
|
#endif // #ifndef TYPES_H_INCLUDED
|