1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-07-11 19:49:14 +00:00
BadFish/src/material.cpp
Marco Costalba 152f3b13b7 Yet another small touch to endgame functions handling
It is like a never finished painting. Everyday a little touch
more.

But this time it is very little ;-)

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
2009-07-26 17:42:48 +01:00

422 lines
14 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2009 Marco Costalba
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <sstream>
#include <map>
#include "material.h"
using namespace std;
////
//// Local definitions
////
namespace {
// Values modified by Joona Kiiski
const Value BishopPairMidgameBonus = Value(109);
const Value BishopPairEndgameBonus = Value(97);
// Polynomial material balance parameters
const Value RedundantQueenPenalty = Value(358);
const Value RedundantRookPenalty = Value(536);
const int LinearCoefficients[6] = { 1740, -146, -1246, -197, 206, -7 };
const int QuadraticCoefficientsSameColor[][6] = {
{ 0, 0, 0, 0, 0, 0 }, { 31, -4, 0, 0, 0, 0 }, { 14, 267, -21, 0, 0, 0 },
{ 0, 7, -26, 0, 0, 0 }, { -3, -1, 69, 162, 80, 0 }, { 40, 27, 119, 174, -64, -49 } };
const int QuadraticCoefficientsOppositeColor[][6] = {
{ 0, 0, 0, 0, 0, 0 }, { -9, 0, 0, 0, 0, 0 }, { 49, 32, 0, 0, 0, 0 },
{ -25, 19, -5, 0, 0, 0 }, { 97, -6, 39, -88, 0, 0 }, { 77, 69, -42, 104, 116, 0 } };
// Unmapped endgame evaluation and scaling functions, these
// are accessed direcly and not through the function maps.
EvaluationFunction<KmmKm> EvaluateKmmKm(WHITE);
EvaluationFunction<KXK> EvaluateKXK(WHITE), EvaluateKKX(BLACK);
ScalingFunction<KBPK> ScaleKBPK(WHITE), ScaleKKBP(BLACK);
ScalingFunction<KQKRP> ScaleKQKRP(WHITE), ScaleKRPKQ(BLACK);
ScalingFunction<KPsK> ScaleKPsK(WHITE), ScaleKKPs(BLACK);
ScalingFunction<KPKP> ScaleKPKPw(WHITE), ScaleKPKPb(BLACK);
Key KNNKMaterialKey, KKNNMaterialKey;
}
////
//// Classes
////
typedef EndgameEvaluationFunctionBase EF;
typedef EndgameScalingFunctionBase SF;
/// See header for a class description. It is declared here to avoid
/// to include <map> in the header file.
class EndgameFunctions {
public:
EndgameFunctions();
~EndgameFunctions();
template<class T> T* get(Key key) const;
private:
template<class T> void add(const string& keyCode);
static Key buildKey(const string& keyCode);
static const string swapColors(const string& keyCode);
// Here we store two maps, one for evaluate and one for scaling
pair<map<Key, EF*>, map<Key, SF*> > maps;
// Maps accessing functions for const and non-const references
template<typename T> const map<Key, T*>& get() const { return maps.first; }
template<typename T> map<Key, T*>& get() { return maps.first; }
};
// Explicit specializations of a member function shall be declared in
// the namespace of which the class template is a member.
template<> const map<Key, SF*>&
EndgameFunctions::get<SF>() const { return maps.second; }
template<> map<Key, SF*>&
EndgameFunctions::get<SF>() { return maps.second; }
////
//// Functions
////
/// Constructor for the MaterialInfoTable class
MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) {
size = numOfEntries;
entries = new MaterialInfo[size];
funcs = new EndgameFunctions();
if (!entries || !funcs)
{
cerr << "Failed to allocate " << (numOfEntries * sizeof(MaterialInfo))
<< " bytes for material hash table." << endl;
Application::exit_with_failure();
}
}
/// Destructor for the MaterialInfoTable class
MaterialInfoTable::~MaterialInfoTable() {
delete funcs;
delete [] entries;
}
/// MaterialInfoTable::get_material_info() takes a position object as input,
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
/// If the material configuration is not already present in the table, it
/// is stored there, so we don't have to recompute everything when the
/// same material configuration occurs again.
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
Key key = pos.get_material_key();
int index = key & (size - 1);
MaterialInfo* mi = entries + index;
// If mi->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (mi->key == key)
return mi;
// Clear the MaterialInfo object, and set its key
mi->clear();
mi->key = key;
// A special case before looking for a specialized evaluation function
// KNN vs K is a draw.
if (key == KNNKMaterialKey || key == KKNNMaterialKey)
{
mi->factor[WHITE] = mi->factor[BLACK] = 0;
return mi;
}
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
// configuration one, then a generic one if previous search failed.
if ((mi->evaluationFunction = funcs->get<EF>(key)) != NULL)
return mi;
else if ( pos.non_pawn_material(BLACK) == Value(0)
&& pos.piece_count(BLACK, PAWN) == 0
&& pos.non_pawn_material(WHITE) >= RookValueMidgame)
{
mi->evaluationFunction = &EvaluateKXK;
return mi;
}
else if ( pos.non_pawn_material(WHITE) == Value(0)
&& pos.piece_count(WHITE, PAWN) == 0
&& pos.non_pawn_material(BLACK) >= RookValueMidgame)
{
mi->evaluationFunction = &EvaluateKKX;
return mi;
}
else if ( pos.pawns() == EmptyBoardBB
&& pos.rooks() == EmptyBoardBB
&& pos.queens() == EmptyBoardBB)
{
// Minor piece endgame with at least one minor piece per side,
// and no pawns.
assert(pos.knights(WHITE) | pos.bishops(WHITE));
assert(pos.knights(BLACK) | pos.bishops(BLACK));
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
{
mi->evaluationFunction = &EvaluateKmmKm;
return mi;
}
}
// OK, we didn't find any special evaluation function for the current
// material configuration. Is there a suitable scaling function?
//
// The code below is rather messy, and it could easily get worse later,
// if we decide to add more special cases. We face problems when there
// are several conflicting applicable scaling functions and we need to
// decide which one to use.
SF* sf;
if ((sf = funcs->get<SF>(key)) != NULL)
{
mi->scalingFunction[sf->color()] = sf;
return mi;
}
if ( pos.non_pawn_material(WHITE) == BishopValueMidgame
&& pos.piece_count(WHITE, BISHOP) == 1
&& pos.piece_count(WHITE, PAWN) >= 1)
mi->scalingFunction[WHITE] = &ScaleKBPK;
if ( pos.non_pawn_material(BLACK) == BishopValueMidgame
&& pos.piece_count(BLACK, BISHOP) == 1
&& pos.piece_count(BLACK, PAWN) >= 1)
mi->scalingFunction[BLACK] = &ScaleKKBP;
if ( pos.piece_count(WHITE, PAWN) == 0
&& pos.non_pawn_material(WHITE) == QueenValueMidgame
&& pos.piece_count(WHITE, QUEEN) == 1
&& pos.piece_count(BLACK, ROOK) == 1
&& pos.piece_count(BLACK, PAWN) >= 1)
mi->scalingFunction[WHITE] = &ScaleKQKRP;
else if ( pos.piece_count(BLACK, PAWN) == 0
&& pos.non_pawn_material(BLACK) == QueenValueMidgame
&& pos.piece_count(BLACK, QUEEN) == 1
&& pos.piece_count(WHITE, ROOK) == 1
&& pos.piece_count(WHITE, PAWN) >= 1)
mi->scalingFunction[BLACK] = &ScaleKRPKQ;
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0))
{
if (pos.piece_count(BLACK, PAWN) == 0)
{
assert(pos.piece_count(WHITE, PAWN) >= 2);
mi->scalingFunction[WHITE] = &ScaleKPsK;
}
else if (pos.piece_count(WHITE, PAWN) == 0)
{
assert(pos.piece_count(BLACK, PAWN) >= 2);
mi->scalingFunction[BLACK] = &ScaleKKPs;
}
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
{
mi->scalingFunction[WHITE] = &ScaleKPKPw;
mi->scalingFunction[BLACK] = &ScaleKPKPb;
}
}
// Compute the space weight
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >=
2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame)
{
int minorPieceCount = pos.piece_count(WHITE, KNIGHT)
+ pos.piece_count(BLACK, KNIGHT)
+ pos.piece_count(WHITE, BISHOP)
+ pos.piece_count(BLACK, BISHOP);
mi->spaceWeight = minorPieceCount * minorPieceCount;
}
// Evaluate the material balance
const int bishopsPair_count[2] = { pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(BLACK, BISHOP) > 1 };
Color c, them;
int sign;
int matValue = 0;
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
{
// No pawns makes it difficult to win, even with a material advantage
if ( pos.piece_count(c, PAWN) == 0
&& pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame)
{
if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c))
|| pos.non_pawn_material(c) < RookValueMidgame)
mi->factor[c] = 0;
else
{
switch (pos.piece_count(c, BISHOP)) {
case 2:
mi->factor[c] = 32;
break;
case 1:
mi->factor[c] = 12;
break;
case 0:
mi->factor[c] = 6;
break;
}
}
}
// Redundancy of major pieces, formula based on Kaufman's paper
// "The Evaluation of Material Imbalances in Chess"
// http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm
if (pos.piece_count(c, ROOK) >= 1)
matValue -= sign * ((pos.piece_count(c, ROOK) - 1) * RedundantRookPenalty + pos.piece_count(c, QUEEN) * RedundantQueenPenalty);
// Second-degree polynomial material imbalance by Tord Romstad
//
// We use NO_PIECE_TYPE as a place holder for the bishop pair "extended piece",
// this allow us to be more flexible in defining bishop pair bonuses.
them = opposite_color(c);
for (PieceType pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
{
int c1, c2, c3;
c1 = sign * (pt1 != NO_PIECE_TYPE ? pos.piece_count(c, pt1) : bishopsPair_count[c]);
if (!c1)
continue;
matValue += c1 * LinearCoefficients[pt1];
for (PieceType pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
{
c2 = (pt2 != NO_PIECE_TYPE ? pos.piece_count(c, pt2) : bishopsPair_count[c]);
c3 = (pt2 != NO_PIECE_TYPE ? pos.piece_count(them, pt2) : bishopsPair_count[them]);
matValue += c1 * c2 * QuadraticCoefficientsSameColor[pt1][pt2];
matValue += c1 * c3 * QuadraticCoefficientsOppositeColor[pt1][pt2];
}
}
}
mi->value = int16_t(matValue / 16);
return mi;
}
/// EndgameFunctions member definitions. This class is used to store the maps
/// of end game and scaling functions that MaterialInfoTable will query for
/// each key. The maps are constant and are populated only at construction,
/// but are per-thread instead of globals to avoid expensive locks needed
/// because std::map is not guaranteed to be thread-safe even if accessed
/// only for a lookup.
EndgameFunctions::EndgameFunctions() {
KNNKMaterialKey = buildKey("KNNK");
KKNNMaterialKey = buildKey("KKNN");
add<EvaluationFunction<KPK> >("KPK");
add<EvaluationFunction<KBNK> >("KBNK");
add<EvaluationFunction<KRKP> >("KRKP");
add<EvaluationFunction<KRKB> >("KRKB");
add<EvaluationFunction<KRKN> >("KRKN");
add<EvaluationFunction<KQKR> >("KQKR");
add<EvaluationFunction<KBBKN> >("KBBKN");
add<ScalingFunction<KNPK> >("KNPK");
add<ScalingFunction<KRPKR> >("KRPKR");
add<ScalingFunction<KBPKB> >("KBPKB");
add<ScalingFunction<KBPPKB> >("KBPPKB");
add<ScalingFunction<KBPKN> >("KBPKN");
add<ScalingFunction<KRPPKRP> >("KRPPKRP");
add<ScalingFunction<KRPPKRP> >("KRPPKRP");
}
EndgameFunctions::~EndgameFunctions() {
for (map<Key, EF*>::iterator it = maps.first.begin(); it != maps.first.end(); ++it)
delete (*it).second;
for (map<Key, SF*>::iterator it = maps.second.begin(); it != maps.second.end(); ++it)
delete (*it).second;
}
Key EndgameFunctions::buildKey(const string& keyCode) {
assert(keyCode.length() > 0 && keyCode[0] == 'K');
assert(keyCode.length() < 8);
stringstream s;
bool upcase = false;
// Build up a fen substring with the given pieces, note
// that the fen string could be of an illegal position.
for (size_t i = 0; i < keyCode.length(); i++)
{
if (keyCode[i] == 'K')
upcase = !upcase;
s << char(upcase? toupper(keyCode[i]) : tolower(keyCode[i]));
}
s << 8 - keyCode.length() << "/8/8/8/8/8/8/8 w -";
return Position(s.str()).get_material_key();
}
const string EndgameFunctions::swapColors(const string& keyCode) {
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
size_t idx = keyCode.find("K", 1);
return keyCode.substr(idx) + keyCode.substr(0, idx);
}
template<class T>
void EndgameFunctions::add(const string& keyCode) {
typedef typename T::Base F;
get<F>().insert(pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
get<F>().insert(pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
}
template<class T>
T* EndgameFunctions::get(Key key) const {
typename map<Key, T*>::const_iterator it(get<T>().find(key));
return (it != get<T>().end() ? it->second : NULL);
}