The UCI protocol is rather technical and has little value in our README. Instead
it should be explained in our wiki. "Contributing" is moved above "Compiling
Stockfish" to make it more prominent.
Also move the CONTRIBUTING.md into the root directory and include it in the
distributed artifacts/releases.
closes https://github.com/official-stockfish/Stockfish/pull/4766
No functional change
Explicitly describe the architecture as deprecated,
it remains available as its current alias x86-64-sse41-popcnt
CPUs that support just this instruction set are now years old,
any few years old Intel or AMD CPU supports x86-64-avx2. However,
naming things 'modern' doesn't age well, so instead use explicit names.
Adjust CI accordingly. Wiki, fishtest, downloader done as well.
closes https://github.com/official-stockfish/Stockfish/pull/4691
No functional change.
This patch removes the UCI option for setting Contempt in classical evaluation.
It is exactly equivalent to using Contempt=0 for the UCI contempt value and keeping
the dynamic part in the algo (renaming this dynamic part `trend` to better describe
what it does). We have tried quite hard to implement a working Contempt feature for
NNUE but nothing really worked, so it is probably time to give up.
Interested chess fans wishing to keep playing with the UCI option for Contempt and
use it with the classical eval are urged to download the version tagged "SF_Classical"
of Stockfish (dated 31 July 2020), as it was the last version where our search
algorithm was tuned for the classical eval and is probably our strongest classical
player ever: https://github.com/official-stockfish/Stockfish/tags
Passed STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 72904 W: 6228 L: 6175 D: 60501
Ptnml(0-2): 221, 5006, 25971, 5007, 247
https://tests.stockfishchess.org/tests/view/60c98bf9457376eb8bcab18d
Passed LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 45168 W: 1601 L: 1547 D: 42020
Ptnml(0-2): 38, 1331, 19786, 1397, 32
https://tests.stockfishchess.org/tests/view/60c9c7fa457376eb8bcab1bb
closes https://github.com/official-stockfish/Stockfish/pull/3575
Bench: 4947716
move to github actions to replace travis CI.
First version, testing on linux using gcc and clang.
gcc build with sanitizers and valgrind.
No functional change
This PR adds an ability to export any currently loaded network.
The export_net command now takes an optional filename parameter.
If the loaded net is not the embedded net the filename parameter is required.
Two changes were required to support this:
* the "architecture" string, which is really just a some kind of description in the net, is now saved into netDescription on load and correctly saved on export.
* the AffineTransform scrambles weights for some architectures and sparsifies them, such that retrieving the index is hard. This is solved by having a temporary scrambled<->unscrambled index lookup table when loading the network, and the actual index is saved for each individual weight that makes it to canSaturate16. This increases the size of the canSaturate16 entries by 6 bytes.
closes https://github.com/official-stockfish/Stockfish/pull/3456
No functional change
• reorder some sections of the README file
• add reference to the AUTHORS file
• rename Syzygybases to Syzygy tablebases
• add pointer to the Discord channel
• more precise info about the GPLv3 licence
No functional change
Use TT memory functions to allocate memory for the NNUE weights. This
should provide a small speed-up on systems where large pages are not
automatically used, including Windows and some Linux distributions.
Further, since we now have a wrapper for std::aligned_alloc(), we can
simplify the TT memory management a bit:
- We no longer need to store separate pointers to the hash table and
its underlying memory allocation.
- We also get to merge the Linux-specific and default implementations
of aligned_ttmem_alloc().
Finally, we'll enable the VirtualAlloc code path with large page
support also for Win32.
STC: https://tests.stockfishchess.org/tests/view/5f66595823a84a47b9036fba
LLR: 2.94 (-2.94,2.94) {-0.25,1.25}
Total: 14896 W: 1854 L: 1686 D: 11356
Ptnml(0-2): 65, 1224, 4742, 1312, 105
closes https://github.com/official-stockfish/Stockfish/pull/3081
No functional change.
covers the most important cases from the user perspective:
It embeds the default net in the binary, so a download of that binary will result
in a working engine with the default net. The engine will be functional in the default mode
without any additional user action.
It allows non-default nets to be used, which will be looked for in up to
three directories (working directory, location of the binary, and optionally a specific default directory).
This mechanism is also kept for those developers that use MSVC,
the one compiler that doesn't have an easy mechanism for embedding data.
It is possible to disable embedding, and instead specify a specific directory, e.g. linux distros might want to use
CXXFLAGS="-DNNUE_EMBEDDING_OFF -DDEFAULT_NNUE_DIRECTORY=/usr/share/games/stockfish/" make -j ARCH=x86-64 profile-build
passed STC non-regression:
https://tests.stockfishchess.org/tests/view/5f4a581c150f0aef5f8ae03a
LLR: 2.95 (-2.94,2.94) {-1.25,-0.25}
Total: 66928 W: 7202 L: 7147 D: 52579
Ptnml(0-2): 291, 5309, 22211, 5360, 293
closes https://github.com/official-stockfish/Stockfish/pull/3070
fixes https://github.com/official-stockfish/Stockfish/issues/3030
No functional change.
This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish.
Both the NNUE and the classical evaluations are available, and can be used to
assign a value to a position that is later used in alpha-beta (PVS) search to find the
best move. The classical evaluation computes this value as a function of various chess
concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation
computes this value with a neural network based on basic inputs. The network is optimized
and trained on the evalutions of millions of positions at moderate search depth.
The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward.
It can be evaluated efficiently on CPUs, and exploits the fact that only parts
of the neural network need to be updated after a typical chess move.
[The nodchip repository](https://github.com/nodchip/Stockfish) provides additional
tools to train and develop the NNUE networks.
This patch is the result of contributions of various authors, from various communities,
including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather,
rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler,
dorzechowski, and vondele.
This new evaluation needed various changes to fishtest and the corresponding infrastructure,
for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged.
The first networks have been provided by gekkehenker and sergiovieri, with the latter
net (nn-97f742aaefcd.nnue) being the current default.
The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option,
provided the `EvalFile` option points the the network file (depending on the GUI, with full path).
The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on
the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest:
60000 @ 10+0.1 th 1
https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c
ELO: 92.77 +-2.1 (95%) LOS: 100.0%
Total: 60000 W: 24193 L: 8543 D: 27264
Ptnml(0-2): 609, 3850, 9708, 10948, 4885
40000 @ 20+0.2 th 8
https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58
ELO: 89.47 +-2.0 (95%) LOS: 100.0%
Total: 40000 W: 12756 L: 2677 D: 24567
Ptnml(0-2): 74, 1583, 8550, 7776, 2017
At the same time, the impact on the classical evaluation remains minimal, causing no significant
regression:
sprt @ 10+0.1 th 1
https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b
LLR: 2.94 (-2.94,2.94) {-6.00,-4.00}
Total: 34936 W: 6502 L: 6825 D: 21609
Ptnml(0-2): 571, 4082, 8434, 3861, 520
sprt @ 60+0.6 th 1
https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d
LLR: 2.93 (-2.94,2.94) {-6.00,-4.00}
Total: 10088 W: 1232 L: 1265 D: 7591
Ptnml(0-2): 49, 914, 3170, 843, 68
The needed networks can be found at https://tests.stockfishchess.org/nns
It is recommended to use the default one as indicated by the `EvalFile` UCI option.
Guidelines for testing new nets can be found at
https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests
Integration has been discussed in various issues:
https://github.com/official-stockfish/Stockfish/issues/2823https://github.com/official-stockfish/Stockfish/issues/2728
The integration branch will be closed after the merge:
https://github.com/official-stockfish/Stockfish/pull/2825https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip
closes https://github.com/official-stockfish/Stockfish/pull/2912
This will be an exciting time for computer chess, looking forward to seeing the evolution of
this approach.
Bench: 4746616