The codebase contains multiple functions returning by const-value.
This patch is a small cleanup making those function returns
by value instead, removing the const specifier.
closes https://github.com/official-stockfish/Stockfish/pull/3328
No functional change
This patch give a small bonus to incite the attacking side to keep more
pawns on the board.
A consequence of this bonus is that Stockfish will tend to play positions
slightly more closed on average than master, especially when it believes
that it has an advantage.
To lower the risk of blockades where Stockfish start shuffling without
progress, we also implement a progressive decrease of the evaluation
value with the 50 moves counter (along with the necessary aging of the
transposition table to reduce the impact of the Graph History Interaction
problem): since the evaluation decreases during shuffling phases, the
engine will tend to examine the consequences of pawn breaks faster during
the search.
Passed STC:
LLR: 2.96 (-2.94,2.94) {-0.25,1.25}
Total: 26184 W: 2406 L: 2252 D: 21526
Ptnml(0-2): 85, 1784, 9223, 1892, 108
https://tests.stockfishchess.org/tests/view/600cc08b735dd7f0f0352c06
Passed LCT:
LLR: 2.95 (-2.94,2.94) {0.25,1.25}
Total: 199768 W: 7695 L: 7191 D: 184882
Ptnml(0-2): 85, 6478, 86269, 6952, 100
https://tests.stockfishchess.org/tests/view/600ccd28735dd7f0f0352c10
Closes https://github.com/official-stockfish/Stockfish/pull/3321
Bench: 3988915
- "discovered check" (instead of "discovery check")
- "en passant" (instead of "en-passant")
- "pseudo-legal" before a noun (instead of "pseudo legal")
- "3-fold" (instead of "3fold")
closes https://github.com/official-stockfish/Stockfish/pull/3294
No functional change.
This patch removes the incrementally updated piece lists from the Position object.
This has been tried before but always failed. My reasons for trying again are:
* 32-bit systems (including phones) are now much less important than they were some years ago (and are absent from fishtest);
* NNUE may have made SF less finely tuned to the order in which moves were generated.
STC:
LLR: 2.94 (-2.94,2.94) {-1.25,0.25}
Total: 55272 W: 5260 L: 5216 D: 44796
Ptnml(0-2): 208, 4147, 18898, 4159, 224
https://tests.stockfishchess.org/tests/view/5fc2986a42a050a89f02c926
LTC:
LLR: 2.96 (-2.94,2.94) {-0.75,0.25}
Total: 16600 W: 673 L: 608 D: 15319
Ptnml(0-2): 14, 533, 7138, 604, 11
https://tests.stockfishchess.org/tests/view/5fc2f98342a050a89f02c95c
closes https://github.com/official-stockfish/Stockfish/pull/3247
Bench: 3940967
This patch removes the EvalList structure from the Position object and generally simplifies the interface between do_move() and the NNUE code.
The NNUE evaluation function first calculates the "accumulator". The accumulator consists of two halves: one for white's perspective, one for black's perspective.
If the "friendly king" has moved or the accumulator for the parent position is not available, the accumulator for this half has to be calculated from scratch. To do this, the NNUE node needs to know the positions and types of all non-king pieces and the position of the friendly king. This information can easily be obtained from the Position object.
If the "friendly king" has not moved, its half of the accumulator can be calculated by incrementally updating the accumulator for the previous position. For this, the NNUE code needs to know which pieces have been added to which squares and which pieces have been removed from which squares. In principle this information can be derived from the Position object and StateInfo struct (in the same way as undo_move() does this). However, it is probably a bit faster to prepare this information in do_move(), so I have kept the DirtyPiece struct. Since the DirtyPiece struct now stores the squares rather than "PieceSquare" indices, there are now at most three "dirty pieces" (previously two). A promotion move that captures a piece removes the capturing pawn and the captured piece from the board (to SQ_NONE) and moves the promoted piece to the promotion square (from SQ_NONE).
An STC test has confirmed a small speedup:
https://tests.stockfishchess.org/tests/view/5f43f06b5089a564a10d850a
LLR: 2.94 (-2.94,2.94) {-0.25,1.25}
Total: 87704 W: 9763 L: 9500 D: 68441
Ptnml(0-2): 426, 6950, 28845, 7197, 434
closes https://github.com/official-stockfish/Stockfish/pull/3068
No functional change
This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish.
Both the NNUE and the classical evaluations are available, and can be used to
assign a value to a position that is later used in alpha-beta (PVS) search to find the
best move. The classical evaluation computes this value as a function of various chess
concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation
computes this value with a neural network based on basic inputs. The network is optimized
and trained on the evalutions of millions of positions at moderate search depth.
The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward.
It can be evaluated efficiently on CPUs, and exploits the fact that only parts
of the neural network need to be updated after a typical chess move.
[The nodchip repository](https://github.com/nodchip/Stockfish) provides additional
tools to train and develop the NNUE networks.
This patch is the result of contributions of various authors, from various communities,
including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather,
rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler,
dorzechowski, and vondele.
This new evaluation needed various changes to fishtest and the corresponding infrastructure,
for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged.
The first networks have been provided by gekkehenker and sergiovieri, with the latter
net (nn-97f742aaefcd.nnue) being the current default.
The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option,
provided the `EvalFile` option points the the network file (depending on the GUI, with full path).
The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on
the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest:
60000 @ 10+0.1 th 1
https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c
ELO: 92.77 +-2.1 (95%) LOS: 100.0%
Total: 60000 W: 24193 L: 8543 D: 27264
Ptnml(0-2): 609, 3850, 9708, 10948, 4885
40000 @ 20+0.2 th 8
https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58
ELO: 89.47 +-2.0 (95%) LOS: 100.0%
Total: 40000 W: 12756 L: 2677 D: 24567
Ptnml(0-2): 74, 1583, 8550, 7776, 2017
At the same time, the impact on the classical evaluation remains minimal, causing no significant
regression:
sprt @ 10+0.1 th 1
https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b
LLR: 2.94 (-2.94,2.94) {-6.00,-4.00}
Total: 34936 W: 6502 L: 6825 D: 21609
Ptnml(0-2): 571, 4082, 8434, 3861, 520
sprt @ 60+0.6 th 1
https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d
LLR: 2.93 (-2.94,2.94) {-6.00,-4.00}
Total: 10088 W: 1232 L: 1265 D: 7591
Ptnml(0-2): 49, 914, 3170, 843, 68
The needed networks can be found at https://tests.stockfishchess.org/nns
It is recommended to use the default one as indicated by the `EvalFile` UCI option.
Guidelines for testing new nets can be found at
https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests
Integration has been discussed in various issues:
https://github.com/official-stockfish/Stockfish/issues/2823https://github.com/official-stockfish/Stockfish/issues/2728
The integration branch will be closed after the merge:
https://github.com/official-stockfish/Stockfish/pull/2825https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip
closes https://github.com/official-stockfish/Stockfish/pull/2912
This will be an exciting time for computer chess, looking forward to seeing the evolution of
this approach.
Bench: 4746616
This is a non-functional simplification. Instead of passing the piece type
for remove_piece, we can rely on the board. The only exception is en-passant
which must be explicitly set because the destination square for the capture
is not the same as the piece to remove.
Verified also in the Chess960 castling case by running a couple of perft, see
the pull request discussion: https://github.com/official-stockfish/Stockfish/pull/2460
STC
LLR: 2.94 (-2.94,2.94) [-3.00,1.00]
Total: 18624 W: 4147 L: 4070 D: 10407
Ptnml(0-2): 223, 1933, 4945, 1938, 260
http://tests.stockfishchess.org/tests/view/5dfeaa93e70446e17e451163
No functional change
As Stockfish developers, we aim to make our code as legible and as close
to simple English as possible. However, one of the more notable exceptions
to this rule concerns operations between Squares and Bitboards.
Prior to this pull request, AND, OR, and XOR were only defined when the
Bitboard was the first operand, and the Square the second. For example,
for a Bitboard b and Square s, "b & s" would be valid but "s & b" would not.
This conflicts with natural reasoning about logical operators, both
mathematically and intuitively, which says that logical operators should
commute.
More dangerously, however, both Square and Bitboard are defined as integers
"under the hood." As a result, code like "s & b" would still compile and give
reasonable bench values. This trap occasionally ensnares even experienced
Stockfish developers, but it is especially dangerous for new developers not
aware of this peculiarity. Because there is no compilation or runtime error,
and a reasonable bench, only a close review by approvers can spot this error
when a test has been submitted--and many times, these bugs have slipped past
review. This is by far the most common logical error on Fishtest, and has
wasted uncountable STC games over the years.
However, it can be fixed by adding three non-functional lines of code. In this
patch, we define the operators when the operands are provided in the opposite
order, i.e., we make AND, OR, and XOR commutative for Bitboards and Squares.
Because these are inline methods and implemented identically, the executable
does not change at all.
This patch has the small side-effect of requiring Squares to be explicitly
cast to integers before AND, OR, or XOR with integers. This is only performed
twice in Stockfish's source code, and again does not change the executable at
all (since Square is an enum defined as an integer anyway).
For demonstration purposes, this pull request also inverts the order of one AND
and one OR, to show that neither the bench nor the executable change. (This
change can be removed before merging, if preferred.)
I hope that this pull request significantly lowers the barrier-of-entry for new
developer to join the Stockfish project. I also hope that this change will improve
our efficiency in using our generous CPU donors' machines, since it will remove
one of the most common causes of buggy tests.
Following helpful review and comments by Michael Stembera (@mstembera), we add
a further clean-up by implementing OR for two Squares, to anticipate additional
traps developers may encounter and handle them cleanly.
Closes https://github.com/official-stockfish/Stockfish/pull/2387
No functional change.
- Cleanups by Alain
- Group king attacks and king defenses
- Signature of futility_move_count()
- Use is_discovery_check_on_king()
- Simplify backward definition
- Use static asserts in move generator
- Factor a statement in move generator
No functional change
This is a non-functional simplification. Since our file_bb handles either Files or Squares, using Square here removes some code. Not likely any performance difference despite the test.
STC
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 6081 W: 1444 L: 1291 D: 3346
http://tests.stockfishchess.org/tests/view/5ceb3e2e0ebc5925cf07ab03
Non functional change.
Store repetition info in StateInfo instead of recomputing it in
three different places. This saves some work in has_game_cycle()
where this info is needed for positions before the root.
Tested for non-regression at STC:
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 34104 W: 7586 L: 7489 D: 19029
http://tests.stockfishchess.org/tests/view/5cd0676e0ebc5925cf044b56
No functional change.
We can remove the values in Pawns if we just use the piece arrays in Position. This reduces the size of a pawn entry. This simplification passed individually, and in concert with ps_passedcount100 (removes passedCount storage in pawns.).
STC
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 19957 W: 4529 L: 4404 D: 11024
http://tests.stockfishchess.org/tests/view/5cb3c2d00ebc5925cf016f0d
Combo STC
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 17368 W: 3925 L: 3795 D: 9648
http://tests.stockfishchess.org/tests/view/5cb3d3510ebc5925cf01709a
This is a non-functional simplification.
This is a non-functional code style change.
If we add an accessor function for SquareBB we can consolidate all of the asserts. This is also a bit cleaner because all SquareBB accesses go through this method making future changes easier to manage.
STC
LLR: 2.96 (-2.94,2.94) [-3.00,1.00]
Total: 63406 W: 14084 L: 14045 D: 35277
http://tests.stockfishchess.org/tests/view/5c9ea6100ebc5925cfffc9af
No functional change.
Delay legality check of castling moves at search time,
just before making the move, as is the standard with all
the other move types.
This should avoid an useless and not trivial legality check
when the castling is then not tried later. For instance due
to a previous cut-off.
The patch is also a big simplification and allows to entirely
remove generate_castling()
Bench changes due to a different move sequence out of MovePicker.
STC:
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 45073 W: 9918 L: 9843 D: 25312
http://tests.stockfishchess.org/tests/view/5c2f176f0ebc596a450bdfb3
LTC:
LLR: 3.15 (-2.94,2.94) [-3.00,1.00]
Total: 10156 W: 1707 L: 1560 D: 6889
http://tests.stockfishchess.org/tests/view/5c2e7dfd0ebc596a450bcdf4
Verified with perft both in standard and Chess960 cases.
Closes https://github.com/official-stockfish/Stockfish/pull/1929
Bench: 3559104
I've gone through the RENAME/REFORMATTING thread and changed everything I could find, plus a few more. With this, let's close the previous issue and open another.
No functional change.
Preparation commit for the upcoming Stockfish 10 version, giving a chance to catch last minute feature bugs and evaluation regression during the one-week code freeze period. Also changing the copyright dates to include 2019.
No functional change
A position which has a move which draws by repetition, or which could have
been reached from an earlier position in the game tree, is considered to be
at least a draw for the side to move.
Cycle detection algorithm by Marcel van Kervink:
https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf
----------------------------
How does the algorithm work in practice? The algorithm is an efficient
method to detect if the side to move has a drawing move, without doing any
move generation, thus possibly giving a cheap cutoffThe most interesting
conditions are both on line 1195:
```
if ( originalKey == (progressKey ^ stp->key)
|| progressKey == Zobrist::side)
```
This uses the position keys as a sort-of Bloom filter, to avoid the expensive
checks which follow. For "upcoming repetition" consider the opening Nf3 Nf6 Ng1.
The XOR of this position's key with the starting position gives their difference,
which can be used to look up black's repeating move (Ng8). But that look-up is
expensive, so line 1195 checks that the white pieces are on their original squares.
This is the subtlest part of the algorithm, but the basic idea in the above game
is there are 4 positions (starting position and the one after each move). An XOR
of the first pair (startpos and after Nf3) gives a key matching Nf3. An XOR of
the second pair (after Nf6 and after Ng1) gives a key matching the move Ng1. But
since the difference in each pair is the location of the white knight those keys
are "identical" (not quite because while there are 4 keys the the side to move
changed 3 times, so the keys differ by Zobrist::side). The loop containing line
1195 does this pair-wise XOR-ing.
Continuing the example, after line 1195 determines that the white pieces are
back where they started we still need to make sure the changes in the black
pieces represents a legal move. This is done by looking up the "moveKey" to
see if it corresponds to possible move, and that there are no pieces blocking
its way. There is the additional complication that, to match the behavior of
is_draw(), if the repetition is not inside the search tree then there must be
an additional repetition in the game history. Since a position can have more
than one upcoming repetition a simple count does not suffice. So there is a
search loop ending on line 1215.
On the other hand, the "no-progress' is the same thing but offset by 1 ply.
I like the concept but think it currently has minimal or negative benefit,
and I'd be happy to remove it if that would get the patch accepted. This
will not, however, save many lines of code.
-----------------------------
STC:
LLR: 2.95 (-2.94,2.94) [0.00,5.00]
Total: 36430 W: 7446 L: 7150 D: 21834
http://tests.stockfishchess.org/tests/view/5afc123f0ebc591fdf408dfc
LTC:
LLR: 2.96 (-2.94,2.94) [0.00,5.00]
Total: 12998 W: 2045 L: 1876 D: 9077
http://tests.stockfishchess.org/tests/view/5afc2c630ebc591fdf408e0c
How could we continue after the patch:
• The code in search() that checks for cycles has numerous possible variants.
Perhaps the check need could be done in qsearch() too.
• The biggest improvement would be to get "no progress" to be of actual benefit,
and it would be helpful understand why it (probably) isn't. Perhaps there is an
interaction with the transposition table or the (fantastically complex) tree
search. Perhaps this would be hard to fix, but there may be a simple oversight.
Closes https://github.com/official-stockfish/Stockfish/pull/1575
Bench: 4550412
This patch corrects both MultiPV behaviour and "go searchmoves" behaviour
for tablebases.
We change the logic of table base probing at root positions from filtering
to ranking. The ranking code is much more straightforward than the current
filtering code (this is a simplification), and also more versatile.
If the root is a TB position, each root move is probed and assigned a TB score
and a TB rank. The TB score is the Value to be displayed to the user for that
move (unless the search finds a mate score), while the TB rank determines which
moves should appear higher in a multi-pv search. In game play, the engine will
always pick a move with the highest rank.
Ranks run from -1000 to +1000:
901 to 1000 : TB win
900 : normally a TB win, in rare cases this could be a draw
1 to 899 : cursed TB wins
0 : draw
-1 to -899 : blessed TB losses
-900 : normally a TB loss, in rare cases this could be a draw
-901 to -1000 : TB loss
Normally all winning moves get rank 1000 (to let the search pick the best
among them). The exception is if there has been a first repetition. In that
case, moves are ranked strictly by DTZ so that the engine will play a move
that lowers DTZ (and therefore cannot repeat the position a second time).
Losing moves get rank -1000 unless they have relatively high DTZ, meaning
they have some drawing chances. Those get ranks towards -901 (when they
cross -900 the draw is certain).
Closes https://github.com/official-stockfish/Stockfish/pull/1467
No functional change (without tablebases).
Implements renaming suggestions by Marco Costalba, Günther Demetz,
Gontran Lemaire, Ronald de Man, Stéphane Nicolet, Alain Savard,
Joost VandeVondele, Jerry Donald Watson, Mike Whiteley, xoto10,
and I hope that I haven't forgotten anybody.
Perpetual renaming thread for suggestions:
https://github.com/official-stockfish/Stockfish/issues/1426
No functional change.
To compute dicovered check or pinned pieces we use some bitwise
operators that are not really needed because already accounted for
at the caller site.
For instance in evaluation we compute:
pos.pinned_pieces(Us) & s
Where pinned_pieces() is:
st->blockersForKing[c] & pieces(c)
So in this case the & operator with pieces(c) is useless,
given the outer '& s'.
There are many places where we can use the naked blockersForKing[]
instead of the full pinned_pieces() or discovered_check_candidates().
This path is simpler than original and gives around 1% speed up for me.
Also tested for speed by mstembera and snicolet (neutral in both cases).
No functional change.
Where variable names are explicitly incorrect, I feel morally obligated to at least
suggest an alternative. There are many, but these two are especially egregious.
No functional change.
For some reason, although game phase is used
only in material, it is computed in Position.
Move computation to material, where it belongs,
and remove the useless call chain.
No functional change.
The main change of the patch is that now time check
is done only by main thread. In the past, before lazy
SMP, we needed all the threds to check for available
time because main thread could have been blocked on
a split point, now this is no more the case and main
thread can do the job alone, greatly simplifying the logic.
Verified for regression testing on STC with 7 threads:
LLR: 2.96 (-2.94,2.94) [-3.00,1.00]
Total: 11895 W: 1741 L: 1608 D: 8546
No functional change.
Closes#1152