This patch results in search values for a TB win/loss to be reported in a way that does not change with normalization, i.e. will be consistent over time.
A value of 200.00 pawns is now reported upon entering a TB won position. Values smaller than 200.00 relate to the distance in plies from the root to the probed position position,
with 1 cp being 1 ply distance.
closes https://github.com/official-stockfish/Stockfish/pull/4353
No functional change
Created by retraining the master net with Leela T78 data from Aug+Sep 2022 added to the previous best dataset. Trained with end lambda 0.7 and started with max epoch 800. All positions with ply <= 28 were skipped:
```
python easy_train.py \
--experiment-name leela95-dfrc96-filt-only-T80octnov-T60novdecT78augsepT79aprmay-12tb7p-sk28-lambda7 \
--training-dataset /data/leela95-dfrc96-filt-only-T80octnov-T60novdecT78augsepT79aprmay-12tb7p.binpack \
--nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-skip-ply-lteq-28 \
--start-from-engine-test-net True \
--gpus "0," \
--start-lambda 1.0 \
--end-lambda 0.7 \
--gamma 0.995 \
--lr 4.375e-4 \
--tui False \
--seed $RANDOM \
--max_epoch 800
```
Around epoch 750, training was manually paused and max epoch increased to 950 before resuming. The additional Leela training data from T78 was prepared in the same way as the previous best dataset.
The exact training data used can be found at:
https://robotmoon.com/nnue-training-data/
While the local elo ratings during this experiment were much lower than in recent master nets, several later epochs had a consistent elo above zero, and this was hypothesized to represent potential strength at slower time controls.
Local elo at 25k nodes per move
leela95-dfrc96-filt-only-T80octnov-T60novdecT78augsepT79aprmay-12tb7p-sk28-lambda7
nn-epoch819.nnue : 0.4 +/- 1.1 (nn-bc24c101ada0.nnue)
nn-epoch799.nnue : 0.3 +/- 1.2
nn-epoch759.nnue : 0.3 +/- 1.1
nn-epoch839.nnue : 0.2 +/- 1.4
Passed STC
https://tests.stockfishchess.org/tests/view/63cabf6f0eefe8694a0c6013
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 41608 W: 11161 L: 10848 D: 19599
Ptnml(0-2): 116, 4496, 11281, 4781, 130
Passed LTC
https://tests.stockfishchess.org/tests/view/63cb1856344bb01c191af263
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 76760 W: 20517 L: 20137 D: 36106
Ptnml(0-2): 34, 7435, 23070, 7799, 42
closes https://github.com/official-stockfish/Stockfish/pull/4351
bench 3941848
Bit-shifting is a single instruction, and should be faster than an array lookup
on supported architectures. Besides (ever so slightly) speeding up the
conversion of a square into a bitboard, we may see minor general performance
improvements due to preserving more of the CPU's existing cache.
passed STC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 47280 W: 12469 L: 12271 D: 22540
Ptnml(0-2): 128, 4893, 13402, 5087, 130
https://tests.stockfishchess.org/tests/view/63c5cfe618c20f4929c5fe46
Small speedup locally:
```
Result of 20 runs
==================
base (./stockfish.master ) = 1752135 +/- 10943
test (./stockfish.patch ) = 1763939 +/- 10818
diff = +11804 +/- 4731
speedup = +0.0067
P(speedup > 0) = 1.0000
CPU: 16 x AMD Ryzen 9 3950X 16-Core Processor
```
Closes https://github.com/official-stockfish/Stockfish/pull/4343
Bench: 4106793
The accumulator should be an earlyclobber because it is written before
all input operands are read. Otherwise, the asm code computes a wrong
result if the accumulator shares a register with one of the other input
operands (which happens if we pass in the same expression for the
accumulator and the operand).
Closes https://github.com/official-stockfish/Stockfish/pull/4339
No functional change
Created by retraining the master net on a dataset composed of:
* The Leela-dfrc_n5000.binpack dataset filtered with depth6 multipv2 search to remove positions with only one good move, in addition to removing positions where either of the two best moves are captures
* The same Leela T80 oct+nov 2022 training data used in recent best datasets
* Additional Leela training data from T60 nov+dec 2021 and T79 apr+may 2022
Trained with end lambda 0.7 and started with max epoch 800. All positions with ply <= 28 were skipped:
```
python easy_train.py \
--experiment-name leela95-dfrc96-mpv-eval-fonly-T80octnov-T79aprmayT60novdec-12tb7p-sk28-lambda7 \
--training-dataset /data/leela95-dfrc96-mpv-eval-fonly-T80octnov-T79aprmayT60novdec-12tb7p.binpack \
--nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-skip-ply-lteq-28 \
--start-from-engine-test-net True \
--gpus "0," \
--start-lambda 1.0 \
--end-lambda 0.7 \
--gamma 0.995 \
--lr 4.375e-4 \
--tui False \
--seed $RANDOM \
--max_epoch 800
```
Around epoch 780, training was manually paused and max epoch increased to 920 before resuming.
During depth6 multipv2 data filtering, positions were considered to have only one good move if the score of the best move was significantly better than the 2nd best move in a way that changes the outcome of the game:
* the best move leads to a significant advantage while the 2nd best move equalizes or loses
* the best move is about equal while the 2nd best move loses
The modified stockfish branch and exact score thresholds used for filtering are at:
https://github.com/linrock/Stockfish/tree/tools-filter-multipv2-eval-diff/src/filter
About 95% of the Leela portion and 96% of the DFRC portion of the Leela-dfrc_n5000.binpack dataset was filtered. Unfiltered parts of the dataset were left out.
The additional Leela training data from T60 nov+dec 2021 and T79 apr+may 2022 was WDL-rescored with about 12TB of syzygy 7-piece tablebases where the material difference is less than around 6 pawns. Best moves were exported to .plain data files during data conversion with the lc0 rescorer.
The exact training data can be found at:
https://robotmoon.com/nnue-training-data/
Local elo at 25k nodes per move
experiment_leela95-dfrc96-mpv-eval-fonly-T80octnov-T79aprmayT60novdec-12tb7p-sk28-lambda7
run_0/nn-epoch899.nnue : 3.8 +/- 1.6
Passed STC
https://tests.stockfishchess.org/tests/view/63bed1f540aa064159b9c89b
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 103344 W: 27392 L: 26991 D: 48961
Ptnml(0-2): 333, 11223, 28099, 11744, 273
Passed LTC
https://tests.stockfishchess.org/tests/view/63c010415705810de2deb3ec
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 21712 W: 5891 L: 5619 D: 10202
Ptnml(0-2): 12, 2022, 6511, 2304, 7
closes https://github.com/official-stockfish/Stockfish/pull/4338
bench 4106793
Removed sprintf() which generated a warning, because of security reasons.
Replace NULL with nullptr
Replace typedef with using
Do not inherit from std::vector. Use composition instead.
optimize mutex-unlocking
closes https://github.com/official-stockfish/Stockfish/pull/4327
No functional change
If a global function has no previous declaration, either the declaration
is missing in the corresponding header file or the function should be
declared static. Static functions are local to the translation unit,
which allows the compiler to apply some optimizations earlier (when
compiling the translation unit rather than during link-time
optimization).
The commit enables the warning for gcc, clang, and mingw. It also fixes
the reported warnings by declaring the functions static or by adding a
header file (benchmark.h).
closes https://github.com/official-stockfish/Stockfish/pull/4325
No functional change
This is a later epoch (epoch 859) from the same experiment run that trained yesterday's master net nn-60fa44e376d9.nnue (epoch 779). The experiment was manually paused around epoch 790 and unpaused with max epoch increased to 900 mainly to get more local elo data without letting the GPU idle.
nn-60fa44e376d9.nnue is from #4314
nn-335a9b2d8a80.nnue is from #4295
Local elo vs. nn-335a9b2d8a80.nnue at 25k nodes per move:
experiment_leela93-dfrc99-filt-only-T80-oct-nov-skip28
run_0/nn-epoch779.nnue (nn-60fa44e376d9.nnue) : 5.0 +/- 1.2
run_0/nn-epoch859.nnue (nn-a3dc078bafc7.nnue) : 5.6 +/- 1.6
Passed STC vs. nn-335a9b2d8a80.nnue
https://tests.stockfishchess.org/tests/view/63ae10495bd1e5f27f13d94f
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 37536 W: 10088 L: 9781 D: 17667
Ptnml(0-2): 110, 4006, 10223, 4325, 104
An LTC test vs. nn-335a9b2d8a80.nnue was paused due to nn-60fa44e376d9.nnue passing LTC first:
https://tests.stockfishchess.org/tests/view/63ae5d34331d5fca5113703b
Passed LTC vs. nn-60fa44e376d9.nnue
https://tests.stockfishchess.org/tests/view/63af1e41465d2b022dbce4e7
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 148704 W: 39672 L: 39155 D: 69877
Ptnml(0-2): 59, 14443, 44843, 14936, 71
closes https://github.com/official-stockfish/Stockfish/pull/4319
bench 3984365
Created by retraining the master net on the previous best dataset with additional filtering. No new data was added.
More of the Leela-dfrc_n5000.binpack part of the dataset was pre-filtered with depth6 multipv2 search to remove bestmove captures. About 93% of the previous Leela/SF data and 99% of the SF dfrc data was filtered. Unfiltered parts of the dataset were left out. The new Leela T80 oct+nov data is the same as before. All early game positions with ply count <= 28 were skipped during training by modifying the training data loader in nnue-pytorch.
Trained in a similar way as recent master nets, with a different nnue-pytorch branch for early ply skipping:
python3 easy_train.py \
--experiment-name=leela93-dfrc99-filt-only-T80-oct-nov-skip28 \
--training-dataset=/data/leela93-dfrc99-filt-only-T80-oct-nov.binpack \
--start-from-engine-test-net True \
--nnue-pytorch-branch=linrock/nnue-pytorch/misc-fixes-skip-ply-lteq-28 \
--gpus="0," \
--start-lambda=1.0 \
--end-lambda=0.75 \
--gamma=0.995 \
--lr=4.375e-4 \
--tui=False \
--seed=$RANDOM \
--max_epoch=800 \
--network-testing-threads 20 \
--num-workers 6
For the exact training data used: https://robotmoon.com/nnue-training-data/
Details about the previous best dataset: #4295
Local testing at a fixed 25k nodes:
experiment_leela93-dfrc99-filt-only-T80-oct-nov-skip28
Local Elo: run_0/nn-epoch779.nnue : 5.1 +/- 1.5
Passed STC
https://tests.stockfishchess.org/tests/view/63adb3acae97a464904fd4e8
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 36504 W: 9847 L: 9538 D: 17119
Ptnml(0-2): 108, 3981, 9784, 4252, 127
Passed LTC
https://tests.stockfishchess.org/tests/view/63ae0ae25bd1e5f27f13d884
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 36592 W: 10017 L: 9717 D: 16858
Ptnml(0-2): 17, 3461, 11037, 3767, 14
closes https://github.com/official-stockfish/Stockfish/pull/4314
bench 4015511
In both modified methods, the variable 'result' is checked to detect
whether the probe operation failed. However, the variable is not
initialized on all paths, so the check might test an uninitialized
value.
A test position (with TB) is given by:
position fen 3K1k2/R7/8/8/8/8/8/R6Q w - - 0 1 moves a1b1 f8g8 b1a1 g8f8 a1b1 f8g8 b1a1
This is now fixed by always initializing the variable.
closes https://github.com/official-stockfish/Stockfish/pull/4309
No functional change
Created by retraining the master net with a combination of:
the previous best dataset (Leela-dfrc_n5000.binpack), with about half the dataset filtered using depth6 multipv2 search to throw away positions where either of the 2 best moves are captures
Leela T80 Oct and Nov training data rescored with best moves, adding ~9.5 billion positions
Trained effectively the same way as the previous master net:
python3 easy_train.py \
--experiment-name=leela-dfrc-filtered-T80-oct-nov \
--training-dataset=/data/leela-dfrc-filtered-T80-oct-nov.binpack \
--start-from-engine-test-net True \
--gpus="0," \
--start-lambda=1.0 \
--end-lambda=0.75 \
--gamma=0.995 \
--lr=4.375e-4 \
--tui=False \
--seed=$RANDOM \
--max_epoch=800 \
--auto-exit-timeout-on-training-finished=900 \
--network-testing-threads 20 \
--num-workers 6
Local testing at a fixed 25k nodes:
experiments/experiment_leela-dfrc-filtered-T80-oct-nov/training/run_0/nn-epoch779.nnue
localElo: run_0/nn-epoch779.nnue : 4.7 +/- 3.1
The new Leela T80 part of the dataset was prepared by downloading test80 training data from all of Oct 2022 and Nov 2022, rescoring with syzygy 6-piece tablebases and ~600 GB of 7-piece tablebases, saving best moves to exported .plain files, removing all positions with castling flags, then converting to binpacks and using interleave_binpacks.py to merge them together. Scripts used in this data conversion process are available at:
https://github.com/linrock/lc0-data-converter
Filtering binpack data using depth6 multipv2 search was done by modifying transform.cpp in the tools branch:
https://github.com/linrock/Stockfish/tree/tools-filter-multipv2-no-rescore
Links for downloading the training data (total size: 338 GB) are available at:
https://robotmoon.com/nnue-training-data/
Passed STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 30544 W: 8244 L: 7947 D: 14353
Ptnml(0-2): 93, 3243, 8302, 3542, 92
https://tests.stockfishchess.org/tests/view/63a0d377264a0cf18f86f82b
Passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 32464 W: 8866 L: 8573 D: 15025
Ptnml(0-2): 19, 3054, 9794, 3345, 20
https://tests.stockfishchess.org/tests/view/63a10bc9fb452d3c44b1e016
closes https://github.com/official-stockfish/Stockfish/pull/4295
Bench 3554904
Instead of allowing .depend for specific build-related targets, filter
non-build-related targets (i.e. help, clean) so that other targets can
normally execute .depend target.
closes https://github.com/official-stockfish/Stockfish/pull/4293
No functional change
If ttMove is doubly extended, we allow a depth growth of the remaining moves.
The idea is to get a more realistic score comparison, because of the depth
difference. We take some care to avoid this extension for high depths,
in order to avoid the cost, since the search result is supposed
to be more accurate in this case.
This pull request includes some small cleanups.
STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 60256 W: 16189 L: 15848 D: 28219
Ptnml(0-2): 182, 6546, 16330, 6889, 181
https://tests.stockfishchess.org/tests/view/639109a1792a529ae8f27777
LTC:
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 106232 W: 28487 L: 28053 D: 49692
Ptnml(0-2): 46, 10224, 32145, 10652, 49
https://tests.stockfishchess.org/tests/view/63914cba792a529ae8f282ee
closes https://github.com/official-stockfish/Stockfish/pull/4271
Bench: 3622368
Add a constraint so that the dependency build only occurs when users
actually run build tasks.
This fixes a bug on some systems where gcc/g++ is not available.
closes https://github.com/official-stockfish/Stockfish/pull/4255
No functional change
fixes the lowerbound/upperbound output by avoiding
scores outside the alpha,beta bracket. Since SF search
uses fail-soft we can't simply take the returned value
as score.
closes https://github.com/official-stockfish/Stockfish/pull/4259
No functional change