But this time correctly set Threads.ponder
We avoid using 'limits' for passing pondering
flag because we don't want to have 2 ponder
variables in search scope: Search::Limits.ponder
and Threads.ponder. This would be confusing also
because limits.ponder is set at the beginning of
the search and never changes, instead Threads.ponder
can change value asynchronously during search.
No functional change.
This reverts commit 5410424e3d.
After the commit pondering is broken, so revert for now. I will
resubmit with a proper fix.
The issue is mine, Joost original code is correct.
No functional change.
Limits::ponder was used as a signal between uci and search threads,
but is not an atomic variable, leading to the following race as
flagged by a sanitized binary.
Expect input:
```
spawn ./stockfish
send "uci\n"
expect "uciok"
send "setoption name Ponder value true\n"
send "go wtime 4000 btime 4000\n"
expect "bestmove"
send "position startpos e2e4 d7d5\n"
send "go wtime 4000 btime 4000 ponder\n"
sleep 0.01
send "ponderhit\n"
expect "bestmove"
send "quit\n"
expect eof
```
Race:
```
WARNING: ThreadSanitizer: data race (pid=7191)
Read of size 4 at 0x0000005c2260 by thread T1:
Previous write of size 4 at 0x0000005c2260 by main thread:
Location is global 'Search::Limits' of size 88 at 0x0000005c2220 (stockfish+0x0000005c2260)
```
The reason of teh race is that ponder is not just set in UCI go()
assignment but also is signaled by an async ponderhit in uci.cpp:
else if (token == "ponderhit")
Search::Limits.ponder = 0; // Switch to normal search
The fix is to add an atomic bool to the threads structure to
signal the ponder status, letting Search::Limits to reflect just
what was passed to 'go'.
No functional change.
as a lower level routine, movepicker should not depend on the
search stack or the thread class, removing a circular dependency.
Instead of copying the search stack into the movepicker object,
as well as accessing the thread class for one of the histories,
pass the required fields explicitly to the constructor (removing
the need for thread.h and implicitly search.h in movepick.cpp).
The signature is thus longer, but more explicit:
Also some renaming of histories structures while there.
passed STC [-3,1], suggesting a small elo impact:
LLR: 3.13 (-2.94,2.94) [-3.00,1.00]
Total: 381053 W: 68071 L: 68551 D: 244431
elo = -0.438 +- 0.660 LOS: 9.7%
No functional change.
Instead of having Signals in the search namespace,
make the stop variables part of the Threads structure.
This moves more of the shared (atomic) variables towards
the thread-related structures, making their role more clear.
No functional change
Closes#1149
It is not needed becuase the only case is a real special
one (bench on depth with many threads) and can be easily
rewritten to avoid sharing rootDepth.
Verified with ThreadSanitizer.
No functional change.
Closes#1159
The main change of the patch is that now time check
is done only by main thread. In the past, before lazy
SMP, we needed all the threds to check for available
time because main thread could have been blocked on
a split point, now this is no more the case and main
thread can do the job alone, greatly simplifying the logic.
Verified for regression testing on STC with 7 threads:
LLR: 2.96 (-2.94,2.94) [-3.00,1.00]
Total: 11895 W: 1741 L: 1608 D: 8546
No functional change.
Closes#1152
the nodes, tbHits, rootDepth and lastInfoTime variables are read by multiple threads, but not declared atomic, leading to data races as found by -fsanitize=thread. This patch fixes this issue. It is based on top of the CI-threading branch (PR #1129), and should fix the corresponding CI error messages.
The patch passed an STC check for no regression:
http://tests.stockfishchess.org/tests/view/5925d5590ebc59035df34b9f
LLR: 2.96 (-2.94,2.94) [-3.00,1.00]
Total: 169597 W: 29938 L: 30066 D: 109593
Whereas rootDepth and lastInfoTime are not performance critical, nodes and tbHits are. Indeed, an earlier version using relaxed atomic updates on the latter two variables failed STC testing (http://tests.stockfishchess.org/tests/view/592001700ebc59035df34924), which can be shown to be due to x86-32 (http://tests.stockfishchess.org/tests/view/592330ac0ebc59035df34a89). Indeed, the latter have no instruction to atomically update a 64bit variable. The proposed solution thus uses a variable in Position that is accessed only by one thread, which is copied every few thousand nodes to the shared variable in Thread.
No functional change.
Closes#1130Closes#1129
Rearrange and rename all history heuristic code. Naming
is now based on chessprogramming.wikispaces.com conventions
and the relations among the various heuristics are now more
clear and consistent.
No functional change.
Previously, we had duplicated History:
- one with (piece,to) called History
- one with (from,to) called FromTo
Now that we have only one, rename it to History, which is the generally accepted
name in the chess programming litterature for this technique.
Also correct some comments that had not been updated since the introduction of CMH.
No functional change.
Restore original behaviour to reset
the counter before a new move search.
Also fixed some warnings and added const
qualifier to a couple of functions, as
suggested by m_stembera.
Thanks to Werner Bergmans for reporting
the regression.
No functional change.
Use a per-thread counter to reduce contention
with many cores and endgame positions.
Measured around 1% speed-up on a 12 core and 8%
on 28 cores with 6-men, searching on:
7R/1p3k2/2p2P2/3nR1P1/8/3b1P2/7K/r7 b - - 3 38
Also retire the unused set_nodes_searched() and fix
a couple of return types and naming conventions.
No functional change.
Drops a scalability bottleneck due to memory contention
of a single shared table across threads. The effect starts
to be sensible with a high number of threads. Specifically
we have a small regression with 7 threads both at 60 and
180 seconds TC:
10000 @ 60+0.6 th 7
ELO: -2.46 +-3.2 (95%) LOS: 6.5%
Total: 9896 W: 1037 L: 1107 D: 7752
5000 @ 180+0.6 th 7
ELO: -1.95 +-4.1 (95%) LOS: 17.7%
Total: 5000 W: 444 L: 472 D: 4084
We have a regression because counterMoveHistory table is
quite big and it takes time for a single thread to fill it.
Sharing the table yields to a higher fill rate and better
quality of moves and up to 7 threads the benefits of sharing
more then compensate the loss in speed due to contention.
Interestingly even with a 3X longer TC, so with more time
for the single thread to catch up, the improvment is quite
limited and below noise level. It seems we really need much
longer TC to saturate the table.
When we move to high threads number it's another story:
5000 @ 60+0.6 th 22
ELO: 3.49 +-4.3 (95%) LOS: 94.6%
Total: 4880 W: 490 L: 441 D: 3949
2000 @ 60+0.6 th 32
ELO: 8.34 +-6.9 (95%) LOS: 99.1%
Total: 2000 W: 229 L: 181 D: 1590
As expected the speed-up more than compensates the filling
rate, and we expect that with tournament TC, where single
thread is able to saturate the table, the difference will
be even stronger. For instance for TCEC 9 super-final time
control will be 180 minutes + 15 seconds and this scalability
improvement seems definitely the way to go.
So, summarizing:
GOOD:
Measured big improvement in high core scenario
Suitable for TCEC 9 superfinal (big hardware, very long TC)
Consistent and natural patch that extends to counterMoveHistory
what we already do for remaining history tables, that are all per-thread
Non functional change for the common case of a single core
Very simple (just 6 lines modified, no added ones)
BAD:
Small regression (within 2-3 ELO) with few threads and short TC
bench: 5341477
Currently root moves are copied to all teh threads
but are DTZ filtered only in main thread at the
beginning of teh search.
This patch moves the TB filtering before the
copy of root moves fixing issue #679https://github.com/official-stockfish/Stockfish/issues/679
No bench change.
And passed in do_move(), this ensures maximum efficiency and
speed and at the same time unlimited move numbers.
The draw back is that to handle Position init we need to
reserve a StateInfo inside Position itself and use at
init time and when copying from another Position.
After lazy SMP we don't need anymore this gimmick and we can
get rid of this special case and always pass an external
StateInfo to Position object.
Also rewritten and simplified Position constructors.
Verified it does not regress with a 3 threads SMP test:
ELO: -0.00 +-12.7 (95%) LOS: 50.0%
Total: 1000 W: 173 L: 173 D: 654
No functional change.
Make it explicit that those variables are not globals, but
are used only by main thread. I think it is a sensible
clarification because easy move is already tricky enough
and current patch makes the involved actors explicit.
No functional change.
Resolves#537
Instead of creating a running std::thread and
returning, wait in Thread c'tor that the native
thread of execution goes to sleep in idle_loop().
In this way we can simplify how search is started,
because when main thread is idle we are sure also
all other threads will be idle, in any case, even
at thread creation and startup.
After lazy smp went in, we can simpify and rewrite
a lot of logic that is now no more needed. This is
hopefully the final big cleanup.
Tested for no regression at 5+0.1 with 3 threads:
LLR: 2.95 (-2.94,2.94) [-5.00,0.00]
Total: 17411 W: 3248 L: 3198 D: 10965
No functional change.
Now that we don't have anymore TimerThread, there is
no need of this long class hierarchy.
Also assorted reformatting while there.
To verify no regression, passed at STC with 7 threads:
LLR: 2.97 (-2.94,2.94) [-5.00,0.00]
Total: 30990 W: 4945 L: 4942 D: 21103
No functional change.
Unfortunately std::condition_variable::wait_for()
is not accurate in general case and the timer thread
can wake up also after tens or even hundreds of
millisecs after time has elapsded. CPU load, process
priorities, number of concurrent threads, even from
other processes, will have effect upon it.
Even official documentation says: "This function may
block for longer than timeout_duration due to scheduling
or resource contention delays."
So retire timer and use a polling scheme based on a
local thread counter that counts search() calls and
a small trick to keep polling frequency constant,
independently from the number of threads.
Tested for no regression at very fast TC 2+0.05 th 7:
LLR: 2.96 (-2.94,2.94) [-3.00,1.00]
Total: 32969 W: 6720 L: 6620 D: 19629
TC 2+0.05 th 1:
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 7765 W: 1917 L: 1765 D: 4083
And at STC TC, both single thread
LLR: 2.96 (-2.94,2.94) [-3.00,1.00]
Total: 15587 W: 3036 L: 2905 D: 9646
And with 7 threads
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 8149 W: 1367 L: 1227 D: 5555
bench: 8639247
The only interesting change is the moving of
stack[MAX_PLY+4] back to its original position
in id_loop (now renamed Thread::search).
No functional change.
Rely on well defined behaviour for message passing, instead of volatile. Three
versions have been tested, to make sure this wouldn't cause a slowdown on any
platform.
v1: Sequentially consistent atomics
No mesurable regression, despite the extra memory barriers on x86. Even with 15
threads and extreme time pressure, both acting as a magnifying glass:
threads=15, tc=2+0.02
ELO: 2.59 +-3.4 (95%) LOS: 93.3%
Total: 18132 W: 4113 L: 3978 D: 10041
threads=7, tc=2+0.02
ELO: -1.64 +-3.6 (95%) LOS: 18.8%
Total: 16914 W: 4053 L: 4133 D: 8728
v2: Acquire/Release semantics
This version generates no extra barriers for x86 (on the hot path). As expected,
no regression either, under the same conditions:
threads=15, tc=2+0.02
ELO: 2.85 +-3.3 (95%) LOS: 95.4%
Total: 19661 W: 4640 L: 4479 D: 10542
threads=7, tc=2+0.02
ELO: 0.23 +-3.5 (95%) LOS: 55.1%
Total: 18108 W: 4326 L: 4314 D: 9468
As suggested by Joona, another test at LTC:
threads=15, tc=20+0.05
ELO: 0.64 +-2.6 (95%) LOS: 68.3%
Total: 20000 W: 3053 L: 3016 D: 13931
v3: Final version: SeqCst/Relaxed
threads=15, tc=10+0.1
ELO: 0.87 +-3.9 (95%) LOS: 67.1%
Total: 9541 W: 1478 L: 1454 D: 6609
Resolves#474
Start all threads searching on root position and
use only the shared TT table as synching scheme.
It seems this scheme scales better than YBWC for
high number of threads.
Verified for nor regression at STC 3 threads
LLR: -2.95 (-2.94,2.94) [-3.00,1.00]
Total: 40232 W: 6908 L: 7130 D: 26194
Verified for nor regression at LTC 3 threads
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 28186 W: 3908 L: 3798 D: 20480
Verified for nor regression at STC 7 threads
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 3607 W: 674 L: 526 D: 2407
Verified for nor regression at LTC 7 threads
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 4235 W: 671 L: 528 D: 3036
Tested with fixed games at LTC with 20 threads
ELO: 44.75 +-7.6 (95%) LOS: 100.0%
Total: 2069 W: 407 L: 142 D: 1520
Tested with fixed games at XLTC (120secs) with 20 threads
ELO: 28.01 +-6.7 (95%) LOS: 100.0%
Total: 2275 W: 349 L: 166 D: 1760
Original patch of mbootsector, with additional work
from Ivan Ivec (log formula), Joerg Oster (id loop
simplification) and Marco Costalba (assorted formatting
and rework).
Bench: 8116244
To sync UI with main thread it is enough a single
condition variable because here we have a single
producer / single consumer design pattern.
Two condition variables are strictly needed just for
many producers / many consumers case.
Note that this is possible because now we don't send to
sleep idle threads anymore while searching, so that now
only UI can wake up the main thread and we can use the
same ConditionVariable for both threads.
The natural consequence is to retire wait_for_think_finished()
and move all the logic under MainThread class, yielding the
rename of teh function to join()
No functional change.
Idea and original implementation by Stephane Nicolet
7 threads 15+0.05
ELO: 3.54 +-2.9 (95%) LOS: 99.2%
Total: 17971 W: 2976 L: 2793 D: 12202
There is no functional change in single thread mode
Use Mutex instead.
This is in preparaation for merging with master branch,
where we stilll don't have spinlocks.
Eventually spinlocks will be readded in some future
patch, once c++11 has been merged.
No functional change.
And use mutex instead. You may never want to do this.
It is a workaround to run c++11 on fishtest where many
machiens have HTenabled and this can be a problem when
number of cores set is higher than number of physical cores.
To disable spinlocks, just compile with -DNO_SPINLOCK flag
No functional change.
Calling lock.test_and_set() in a tight loop creates expensive
memory synchronizations among processors and penalize other
running threads. So syncronize only only once at the beginning
with fetch_sub() and then loop on a simple load() that puts much
less pressure on the system.
Reported about 2-3% speed up on various systems.
Patch by Ronald de Man.
No functional change.