1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00
Commit graph

5765 commits

Author SHA1 Message Date
peregrineshahin
fa143922ae Fix pruning to (in TB loss) in Null move pruning.
Current logic can apply Null move pruning
on a dead-lost position returning an unproven loss
(i.e. in TB loss score or mated in losing score) on nonPv nodes.

on a default bench, this can be observed by adding this debugging line:
```
if (nullValue >= beta)
{
    // Do not return unproven mate or TB scores
    nullValue = std::min(nullValue, VALUE_TB_WIN_IN_MAX_PLY-1);
    dbg_hit_on(nullValue <= VALUE_TB_LOSS_IN_MAX_PLY); // Hit #0: Total 73983 Hits 1 Hit Rate (%) 0.00135166
    if (thisThread->nmpMinPly || depth < 14)
        return nullValue;
```

This fixes this very rare issue (happens at ~0.00135166% of the time) by
eliminating the need to try Null Move Pruning with dead-lost positions
and leaving it to be determined by a normal searching flow.

The previous try to fix was not as safe enough because it was capping
the returned value to (out of TB range) thus reviving the dead-lost position
based on an artificial clamp (i.e. the in TB score/mate score can be lost on that nonPv node):
https://tests.stockfishchess.org/tests/view/649756d5dc7002ce609cd794

Final fix:
Passed STC:
https://tests.stockfishchess.org/tests/view/649a5446dc7002ce609d1049
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 577280 W: 153613 L: 153965 D: 269702
Ptnml(0-2): 1320, 60594, 165190, 60190, 1346

Passed LTC:
https://tests.stockfishchess.org/tests/view/649cd048dc7002ce609d4801
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 246432 W: 66769 L: 66778 D: 112885
Ptnml(0-2): 83, 22105, 78847, 22100, 81

closes https://github.com/official-stockfish/Stockfish/pull/4649

Bench: 2425978
2023-07-03 18:24:41 +02:00
mstembera
80564bcfcd Simplify lookup_count and clean up pieces().
https://github.com/official-stockfish/Stockfish/pull/4656

No functional change
2023-07-03 18:20:10 +02:00
disservin
8634717c64 Add bmi2 to CI generated binaries
verify bench for avx2 and bmi2 as well

closes https://github.com/official-stockfish/Stockfish/pull/4658

No functional change
2023-07-03 18:17:20 +02:00
ppigazzini
9a2d50eccc Make posix and msys2 shells consistent in CI
In CI, it is typical for the process to halt immediately when an error
is encountered. However, with our `shell: bash {0}` configuration,
the process continues despite errors for posix shells.
This commit updates the behavior of posix and msys2 shells to ensure
consistency in terms of pipeline exit codes and stop conditions.
We adopt the most appropriate default behavior as recommended
by the GitHub documentation.

Update the code that searches for the bench value in the git log:
- to be compatible with the new shell settings
- to retry the value from the first line that contains
  only the template and spaces/tabs/newlines

see also

https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsshell
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#exit-codes-and-error-action-preference
https://github.com/msys2/setup-msys2/blob/main/main.js

closes https://github.com/official-stockfish/Stockfish/pull/4653

No functional change
2023-07-02 10:32:36 +02:00
Linmiao Xu
915532181f Update NNUE architecture to SFNNv7 with larger L1 size of 2048
Creating this net involved:
- a 5-step training process from scratch
- greedy permuting L1 weights with https://github.com/official-stockfish/Stockfish/pull/4620
- leb128 compression with https://github.com/glinscott/nnue-pytorch/pull/251
- greedy 2- and 3- cycle permuting with https://github.com/official-stockfish/Stockfish/pull/4640

The 5 training steps were:

1. 400 epochs, lambda 1.0, lr 9.75e-4
   UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9.binpack (178G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack
     large_gensfen_multipvdiff_100_d9.binpack
   ep399 chosen as start model for step2

2. 800 epochs, end-lambda 0.75, skip 16
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack
   ep559 chosen as start model for step3

3. 800 epochs, end-lambda 0.725, skip 20
   leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr.binpack (223G)
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-eval-filt-v2.min.binpack
     test80-dec2022-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-jan2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-feb2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-mar2023-2tb7p-filter-v6.min.binpack
     test77-dec2021-16tb7p.no-db.min.binpack
     test78-janfeb2022-16tb7p.no-db.min.binpack
     test79-apr2022-16tb7p.no-db.min.binpack
   ep499 chosen as start model for step4

4. 800 epochs, end-lambda 0.7, skip 24
   0dd1cebea57 dataset https://github.com/official-stockfish/Stockfish/pull/4606
   ep599 chosen as start model for step5

5. 800 epochs, end-lambda 0.7, skip 28
   same dataset as step4
   ep619 became nn-1b951f8b449d.nnue

For the final step5 training:

python3 easy_train.py \
  --experiment-name L1-2048-S5-sameData-sk28-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --early-fen-skipping 28 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-2048 \
  --engine-test-branch linrock/Stockfish/L1-2048 \
  --start-from-engine-test-net False \
  --start-from-model /data/experiments/experiment_L1-2048-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9/training/run_0/nn-epoch599.nnue
  --max_epoch 800 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

SF training data components for the step1 dataset:
https://drive.google.com/drive/folders/1yLCEmioC3Xx9KQr4T7uB6GnLm5icAYGU

Leela training data for steps 2-5 can be found at:
https://robotmoon.com/nnue-training-data/

Due to larger L1 size and slower inference, the speed penalty loses elo
at STC. Measurements from 100 bench runs at depth 13 with x86-64-modern
on Intel Core i5-1038NG7 2.00GHz:

sf_base =  1240730  +/-   3443 (95%)
sf_test =  1153341  +/-   2832 (95%)
diff    =   -87388  +/-   1616 (95%)
speedup = -7.04330% +/- 0.130% (95%)

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch619.nnue : 21.1 +/- 3.2

Failed STC:
https://tests.stockfishchess.org/tests/view/6498ee93dc7002ce609cf979
LLR: -2.95 (-2.94,2.94) <0.00,2.00>
Total: 11680 W: 3058 L: 3299 D: 5323
Ptnml(0-2): 44, 1422, 3149, 1181, 44

LTC:
https://tests.stockfishchess.org/tests/view/649b32f5dc7002ce609d20cf
Elo: 0.68 ± 1.5 (95%) LOS: 80.5%
Total: 40000 W: 10887 L: 10809 D: 18304
Ptnml(0-2): 36, 3938, 11958, 4048, 20
nElo: 1.50 ± 3.4 (95%) PairsRatio: 1.02

Passed VLTC 180+1.8:
https://tests.stockfishchess.org/tests/view/64992b43dc7002ce609cfd20
LLR: 3.06 (-2.94,2.94) <0.00,2.00>
Total: 38086 W: 10612 L: 10338 D: 17136
Ptnml(0-2): 9, 3316, 12115, 3598, 5

Passed VLTC SMP 60+0.6 th 8:
https://tests.stockfishchess.org/tests/view/649a21fedc7002ce609d0c7d
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 38936 W: 11091 L: 10820 D: 17025
Ptnml(0-2): 1, 2948, 13305, 3207, 7

closes https://github.com/official-stockfish/Stockfish/pull/4646

Bench: 2505168
2023-07-01 13:34:30 +02:00
cj5716
e551964ef6 Negative extension on cutNodes based on depth
This patch was inspired by candirufish original attempt at negative extensions
here that failed yellow: https://tests.stockfishchess.org/tests/view/6486529065ffe077ca124f32

I tested some variations of the idea and tuned a depth condition for
a modified version of it here https://tests.stockfishchess.org/tests/view/648db80a91c58631ce31fe00
after noticing abnormal scaling (ie many passed STC but not LTC)
After some small tweaks I got the final version here

Passed STC:
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 122208 W: 32776 L: 32350 D: 57082
Ptnml(0-2): 310, 13250, 33553, 13686, 305
https://tests.stockfishchess.org/tests/view/64997934dc7002ce609d01e3

Passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 145092 W: 39617 L: 39115 D: 66360
Ptnml(0-2): 54, 13691, 44552, 14197, 52
https://tests.stockfishchess.org/tests/view/649a1c5ddc7002ce609d0bff

closes https://github.com/official-stockfish/Stockfish/pull/4644

Bench: 2637784
2023-07-01 13:06:49 +02:00
Stéphane Nicolet
e355c70594 Document the LEB128 patch
Add some comments and harmonize style for the LEB128 patch.

closes https://github.com/official-stockfish/Stockfish/pull/4642

No functional change
2023-07-01 13:01:28 +02:00
Daniel Monroe
ef94f77f8c Update default net to nn-a3d1bfca1672.nnue
faster permutation of master net weights

Activation data taken from https://drive.google.com/drive/folders/1Ec9YuuRx4N03GPnVPoQOW70eucOKngQe?usp=sharing
Permutation found using 836387a0e5/ftperm.py
See also https://github.com/glinscott/nnue-pytorch/pull/254

The algorithm greedily selects 2- and 3-cycles that can be permuted to increase the number of runs of zeroes. The percent of zero runs from the master net increased from 68.46 to 70.11 from 2-cycles and only increased to 70.32 when considering 3-cycles. Interestingly, allowing both halves of L1 to intermix when creating zero runs can give another 0.5% zero-run density increase with this method.

Measured speedup:

```
CPU: 16 x AMD Ryzen 9 3950X 16-Core Processor
Result of 50 runs

base (./stockfish.master ) = 1561556 +/- 5439
test (./stockfish.patch ) = 1575788 +/- 5427
diff = +14231 +/- 2636

speedup = +0.0091
P(speedup > 0) = 1.0000
```

closes https://github.com/official-stockfish/Stockfish/pull/4640

No functional change
2023-07-01 12:59:28 +02:00
Joost VandeVondele
0fd186fb28 Restore development
closes https://github.com/official-stockfish/Stockfish/pull/4651

No functional change
2023-07-01 12:52:31 +02:00
Joost VandeVondele
68e1e9b381 Stockfish 16
Official release version of Stockfish 16

Bench: 2593605

---

Stockfish 16

A new major release of Stockfish is now available at

https://stockfishchess.org/download/

*Quality of chess play*

Stockfish continues to demonstrate its ability to discover superior moves
with remarkable speed. In self-play against Stockfish 15, this new
release gains up to 50 Elo[1] and wins up to 12 times more game pairs[2]
than it loses. In major chess engine tournaments, Stockfish reliably tops
the rankings[3] winning the TCEC season 24 Superfinal, Swiss, Fischer
Random, and Double Random Chess tournaments and the CCC 19 Bullet,
20 Blitz, and 20 Rapid competitions. Leela Chess Zero[4] was the
challenger in most finals, putting top-engine chess now firmly in the
hands of teams embracing free and open-source software.

*Progress made*

This updated version of Stockfish introduces several enhancements,
including an upgraded neural net architecture (SFNNv6)[5], improved
implementation, and refined parameterization. The ongoing utilization
of Leela’s data combined with a novel inference approach exploiting
sparsity[6], and network compression[7] ensure a speedy evaluation and
modest binary sizes while allowing for more weights and higher accuracy.
The search has undergone more optimization, leading to improved
performance, particularly in longer analyses[8]. Additionally,
the Fishtest framework has been improved and is now able to run the
tests needed to validate new ideas with 10000s of CPU cores.

*Usability improvements*

Stockfish now comes with documentation, found in the wiki folder when
downloading it or on GitHub[9]. Additionally, Stockfish now includes
a clear and consistent forced tablebase win score, displaying a value
of 200 minus the number of plies required to reach a tablebase win[10].
Furthermore, the UCI_Elo option, to reduce its strength, has been
calibrated[11]. It is worth noting that the evaluation system remains
consistent with Stockfish 15.1[12], maintaining the choice that 100cp
means a 50% chance of winning the game against an equal opponent[13].
Finally, binaries of our latest development version are now provided
continuously as pre-releases on GitHub making it easier for
enthusiasts to download the latest and strongest version of
the program[14], we thank Roman Korba for having provided a similar
service for a long time.

*Thank you*

The success of the Stockfish project relies on the vibrant community
of passionate enthusiasts (we appreciate each and every one of you!)
who generously contribute their knowledge, time, and resources.
Together, this dedicated community works towards the common goal of
developing a powerful, freely accessible, and open-source chess engine.
We invite all chess enthusiasts to join the Fishtest testing framework
and contribute to the project[15].

The Stockfish team

[1] https://tests.stockfishchess.org/tests/view/649409f0dc7002ce609c99cc
[2] https://tests.stockfishchess.org/tests/view/649409d7dc7002ce609c99c6
[3] https://en.wikipedia.org/wiki/Stockfish_(chess)#Competition_results
[4] https://lczero.org/
[5] https://github.com/official-stockfish/Stockfish/commit/c1fff71
[6] https://github.com/official-stockfish/Stockfish/commit/38e6166
[7] https://github.com/official-stockfish/Stockfish/commit/a46087e
[8] https://github.com/official-stockfish/Stockfish/commit/472e726
[9] https://github.com/official-stockfish/Stockfish/wiki/
[10] https://github.com/official-stockfish/Stockfish/commit/def2966
[11] https://github.com/official-stockfish/Stockfish/commit/a08b8d4
[12] https://github.com/official-stockfish/Stockfish/commit/52e84e4
[13] https://github.com/official-stockfish/Stockfish/wiki/Stockfish-FAQ#interpretation-of-the-stockfish-evaluation
[14] https://github.com/official-stockfish/Stockfish/releases?q=prerelease%3Atrue
[15] https://stockfishchess.org/get-involved/
2023-06-29 08:00:10 +02:00
Linmiao Xu
a49b3ba7ed Update default net to nn-5af11540bbfe.nnue
Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
https://github.com/official-stockfish/Stockfish/pull/4620

LEB128 compression done with the new serialize.py param in:
https://github.com/glinscott/nnue-pytorch/pull/251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
  --experiment-name L1-1536-sparse-master-retrain \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
  --early-fen-skipping 27 \
  --start-from-engine-test-net True \
  --max_epoch 960 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
  leela96-filt-v2.min.binpack \
  dfrc99-16tb7p-eval-filt-v2.min.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
  test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
  test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
  /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927
Ptnml(0-2): 23, 5123, 16650, 5460, 20

closes https://github.com/official-stockfish/Stockfish/pull/4635

bench 2593605
2023-06-22 10:33:19 +02:00
peregrineshahin
48f7c74f15 Fix Potential in TB cutoffs for NMP.
Removes the second dependency on beta and caps the return value to VALUE_TB_WIN_IN_MAX_PLY - 1

Earlier tests:

STC:
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 193632 W: 51372 L: 51326 D: 90934
Ptnml(0-2): 447, 20111, 55687, 20091, 480
https://tests.stockfishchess.org/tests/view/6486ee4465ffe077ca125bc1

LTC:
LLR: 2.97 (-2.94,2.94) <-1.75,0.25>
Total: 331758 W: 89538 L: 89624 D: 152596
Ptnml(0-2): 114, 30121, 105516, 29993, 135
https://tests.stockfishchess.org/tests/view/6489401af42a44347ed7be42

updated constant:
LTC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 100260 W: 27143 L: 27017 D: 46100
Ptnml(0-2): 34, 8842, 32248, 8976, 30
https://tests.stockfishchess.org/tests/view/6492fcafdc7002ce609c818c

closes: https://github.com/official-stockfish/Stockfish/pull/4632
fixes: https://github.com/official-stockfish/Stockfish/issues/4598

bench: 2370027
2023-06-22 10:26:17 +02:00
Joost VandeVondele
52e84e4b46 Update winrate model with June data
Retained 748191776 scored positions for analysis

const int NormalizeToPawnValue = 328;
Corresponding spread = 60;
Corresponding normalized spread = 0.18337766691628035;
Draw rate at 0.0 eval at move 32 = 0.9914715947898592;

closes https://github.com/official-stockfish/Stockfish/pull/4636

No functional change
2023-06-22 10:17:44 +02:00
Joost VandeVondele
02728736ed Update top CPU contributors
closes https://github.com/official-stockfish/Stockfish/pull/4629

No functional change
2023-06-22 10:15:51 +02:00
disservin
aec8fb3fde Fix failing CI of pull requests
adds a guard to prevent pull requests from trying to delete the previous pre-release

closing https://github.com/official-stockfish/Stockfish/pull/4631

No functional change.
2023-06-20 18:50:12 +02:00
Joerg Oster
6eaa1c3ecd Fix indentation in qsearch.
https://github.com/official-stockfish/Stockfish/pull/4630

No functional change.
2023-06-20 10:47:07 +02:00
disservin
a68a1c1154 create prereleases upon push to master
using github actions, create a prerelease for the latest commit to master.
As such a development version will be available on github, in addition to the latest release.

closes https://github.com/official-stockfish/Stockfish/pull/4622

No functional change
2023-06-20 08:55:54 +02:00
maxim
a46087ee30 Compressed network parameters
Implemented LEB128 (de)compression for the feature transformer.
Reduces embedded network size from 70 MiB to 39 Mib.

The new nn-78bacfcee510.nnue corresponds to the master net compressed.

closes https://github.com/official-stockfish/Stockfish/pull/4617

No functional change
2023-06-19 21:37:23 +02:00
cj5716
0187546275 Small cleanup
This non-functional change keeps formatting consistent.

closes https://github.com/official-stockfish/Stockfish/pull/4623

Bench 2370027
2023-06-16 19:14:58 +02:00
AndrovT
32d3284df5 Permute master net weights to increase sparsity
Activation data collection using ac468039ab run as

bench 16 1 13 varied_1000.epd depth NNUE log.bin

on FENs from https://gist.github.com/AndrovT/7eae6918eb50764227e2bafe7938953c.

Permutation found using https://gist.github.com/AndrovT/359c831b7223c637e9156b01eb96949e.
Uses a greedy algorithm that goes sequentially through the output positions and
chooses a neuron for that position such that the number of nonzero quartets is the smallest.

Net weights permuted using https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.

Benchmark:

Result of 100 runs of 'bench 16 1 13 default depth NNUE'
========================================================
base (...kfish-master) =     885869  +/- 7395
test (./stockfish    ) =     895885  +/- 7368
diff                   =     +10016  +/- 2984

speedup        = +0.0113
P(speedup > 0) =  1.0000

Passed STC:
https://tests.stockfishchess.org/tests/view/648866c4713491385c804728
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 126784 W: 34003 L: 33586 D: 59195
Ptnml(0-2): 283, 13001, 36437, 13358, 313

closes https://github.com/official-stockfish/Stockfish/pull/4620

No functional change.
2023-06-14 18:36:39 +02:00
peregrineshahin
14bfec2a98 Consistent bench extraction with fishtest.
Consistent with recent fishtest commit c0d174396f

closes https://github.com/official-stockfish/Stockfish/pull/4619

No functional change
2023-06-14 18:34:57 +02:00
Viren6
887bbd8b3d Remove setting of static to none if in check in qsearch
Small simplification

Passed non-regression STC:
https://tests.stockfishchess.org/tests/view/6487924d713491385c8034ae
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 59616 W: 15885 L: 15703 D: 28028
Ptnml(0-2): 144, 6130, 17086, 6296, 152

closes https://github.com/official-stockfish/Stockfish/pull/4618

No functional change.
2023-06-14 18:33:56 +02:00
Andreas Matthies
7922e07af8 Fix for MSVC compilation.
MSVC needs two more explicit casts to compile new affine_transform_sparse_input.
See https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_ps
and https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps

closes https://github.com/official-stockfish/Stockfish/pull/4616

No functional change
2023-06-13 08:45:25 +02:00
Stéphane Nicolet
92c949e12e Clean-up code indentation in qsearch
closes https://github.com/official-stockfish/Stockfish/pull/4615

No functional change
2023-06-13 08:42:55 +02:00
Michael Chaly
ece90bca9c Improve comments
Fix comments for IIR, also document non-linear scaling in extensions.
Also add explicitly the bench, to fix an issue after the last commit.

closes https://github.com/official-stockfish/Stockfish/pull/4614

bench 2370027
2023-06-12 21:17:31 +02:00
AndrovT
38e61663d8 Use block sparse input for the first layer.
Use block sparse input for the first fully connected layer on architectures with at least SSSE3.

Depending on the CPU architecture, this yields a speedup of up to 10%, e.g.

```
Result of 100 runs of 'bench 16 1 13 default depth NNUE'

base (...ockfish-base) =     959345  +/- 7477
test (...ckfish-patch) =    1054340  +/- 9640
diff                   =     +94995  +/- 3999

speedup        = +0.0990
P(speedup > 0) =  1.0000

CPU: 8 x AMD Ryzen 7 5700U with Radeon Graphics
Hyperthreading: on
```

Passed STC:
https://tests.stockfishchess.org/tests/view/6485aa0965ffe077ca12409c
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 8864 W: 2479 L: 2223 D: 4162
Ptnml(0-2): 13, 829, 2504, 1061, 25

This commit includes a net with reordered weights, to increase the likelihood of block sparse inputs,
but otherwise equivalent to the previous master net (nn-ea57bea57e32.nnue).

Activation data collected with https://github.com/AndrovT/Stockfish/tree/log-activations, running bench 16 1 13 varied_1000.epd depth NNUE on this data. Net parameters permuted with https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.

closes https://github.com/official-stockfish/Stockfish/pull/4612

No functional change
2023-06-12 20:41:27 +02:00
Joost VandeVondele
b7ee7290b5 Add network export to CI
verify the network written by export_net matches the original

closes https://github.com/official-stockfish/Stockfish/pull/4613

No functional change
2023-06-12 20:35:44 +02:00
Linmiao Xu
932f5a2d65 Update default net to nn-ea57bea57e32.nnue
Created by retraining an earlier epoch (ep659) of the experiment that led to the first SFNNv6 net:
- First retrained on the nn-0dd1cebea573 dataset
- Then retrained with skip 20 on a smaller dataset containing unfiltered Leela data
- And then retrained again with skip 27 on the nn-0dd1cebea573 dataset

The equivalent 7-step training sequence from scratch that led here was:

1. max-epoch 400, lambda 1.0, constant LR 9.75e-4, T79T77-filter-v6-dd.min.binpack
   ep379 chosen for retraining in step2

2. max-epoch 800, end-lambda 0.75, T60T70wIsRightFarseerT60T74T75T76.binpack
   ep679 chosen for retraining in step3

3. max-epoch 800, end-lambda 0.75, skip 28, nn-e1fb1ade4432 dataset
   ep799 chosen for retraining in step4

4. max-epoch 800, end-lambda 0.7, skip 28, nn-e1fb1ade4432 dataset
   ep759 became nn-8d69132723e2.nnue (first SFNNv6 net)
   ep659 chosen for retraining in step5

5. max-epoch 800, end-lambda 0.7, skip 28, nn-0dd1cebea573 dataset
   ep759 chosen for retraining in step6

6. max-epoch 800, end-lambda 0.7, skip 20, leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack
   ep639 chosen for retraining in step7

7. max-epoch 800, end-lambda 0.7, skip 27, nn-0dd1cebea573 dataset
   ep619 became nn-ea57bea57e32.nnue

For the last retraining (step7):

python3 easy_train.py
  --experiment-name L1-1536-Re6-masterShuffled-ep639-sk27-Re5-leela-dfrc-v2-T77toT80small-Re4-masterShuffled-ep659-Re3-sameAs-Re2-leela96-dfrc99-16t-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-Re1-LeelaFarseer-new-T77T79 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --early-fen-skipping 27 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 800 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-Re5-leela-dfrc-v2-T77toT80small-epoch639.nnue \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --seed $RANDOM \
  --gpus "0,"

For preparing the step6 leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack dataset:

python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-16tb7p-eval-filt-v2.binpack \
  test77-dec2021-16tb7p.no-db.min-mar2023.binpack \
  test78-janfeb2022-16tb7p.no-db.min-mar2023.binpack \
  test79-apr2022-16tb7p-filter-v6-dd.binpack \
  test80-apr2022-16tb7p.no-db.min-mar2023.binpack \
  /data/leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack

The unfiltered Leela data used for the step6 dataset can be found at:
https://robotmoon.com/nnue-training-data

Local elo at 25k nodes per move:
nn-epoch619.nnue : 2.3 +/- 1.9

Passed STC:
https://tests.stockfishchess.org/tests/view/6480d43c6e6ce8d9fc6d7cc8
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 40992 W: 11017 L: 10706 D: 19269
Ptnml(0-2): 113, 4400, 11170, 4689, 124

Passed LTC:
https://tests.stockfishchess.org/tests/view/648119ac6e6ce8d9fc6d8208
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 129174 W: 35059 L: 34579 D: 59536
Ptnml(0-2): 66, 12548, 38868, 13050, 55

closes https://github.com/official-stockfish/Stockfish/pull/4611

bench: 2370027
2023-06-11 15:23:52 +02:00
Guenther Demetz
e1dd005583 Reintroduce SEE verification against discovered attacks
Reintroduces https://github.com/official-stockfish/Stockfish/pull/4453
along with https://github.com/official-stockfish/Stockfish/pull/4469

Leaving out
https://github.com/official-stockfish/Stockfish/pull/4533
https://github.com/official-stockfish/Stockfish/pull/4572

Passed STC:
https://tests.stockfishchess.org/tests/view/647d8c37726f6b400e408a0a
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 143168 W: 38346 L: 37892 D: 66930
Ptnml(0-2): 352, 15672, 39164, 15962, 434

Passed LTC:
https://tests.stockfishchess.org/tests/view/647ee8c528c4431bcb58e432
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 71538 W: 19560 L: 19190 D: 32788
Ptnml(0-2): 49, 6905, 21499, 7259, 57

closes https://github.com/official-stockfish/Stockfish/pull/4609

bench: 2595430
2023-06-11 15:13:57 +02:00
cj5716
a9a6915e08 Simplify multiplier for improvement
This simplifies a `* 99 / 1300` term into just `/ 13`.

Passed non-regression STC:
LLR: 2.92 (-2.94,2.94) <-1.75,0.25>
Total: 58816 W: 15727 L: 15540 D: 27549
Ptnml(0-2): 149, 6370, 16203, 6517, 169
https://tests.stockfishchess.org/tests/view/647d25e4726f6b400e408165

Passed non-regression LTC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 154386 W: 41749 L: 41669 D: 70968
Ptnml(0-2): 94, 14992, 46956, 15042, 109
https://tests.stockfishchess.org/tests/view/647d9b3c726f6b400e408b2a

closes https://github.com/official-stockfish/Stockfish/pull/4608

Bench:  2511327
2023-06-11 15:05:54 +02:00
Linmiao Xu
54ad986768 Remove optimism multiplier in nnue eval calculation
The same formula had passed SPRT against an earlier version of master.

Passed non-regression STC vs. d99942f:
https://tests.stockfishchess.org/tests/view/6478e76654dd118e1d98f72e
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 118720 W: 31402 L: 31277 D: 56041
Ptnml(0-2): 301, 13148, 32344, 13259, 308

Passed non-regression LTC vs. d99942f:
https://tests.stockfishchess.org/tests/view/647a22c154dd118e1d991146
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 74286 W: 20019 L: 19863 D: 34404
Ptnml(0-2): 31, 7189, 22540, 7359, 24

The earlier patch had conflicted with a faster SPRT passer, so this
was tested again after rebasing on latest master.

Passed non-regression STC:
https://tests.stockfishchess.org/tests/view/647d6e46726f6b400e408790
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 166176 W: 44309 L: 44234 D: 77633
Ptnml(0-2): 461, 18252, 45557, 18387, 431

Passed non-regression LTC:
https://tests.stockfishchess.org/tests/view/647eb00ba268d1bc11255e7b
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 28170 W: 7713 L: 7513 D: 12944
Ptnml(0-2): 14, 2609, 8635, 2817, 10

closes https://github.com/official-stockfish/Stockfish/pull/4607

bench 2503095
2023-06-06 21:21:56 +02:00
Linmiao Xu
373359b44d Update default net to nn-0dd1cebea573.nnue
Created by retraining an earlier epoch of the experiment leading to the first SFNNv6 net
on a more-randomized version of the nn-e1fb1ade4432.nnue dataset mixed with unfiltered
T80 apr2023 data. Trained using early-fen-skipping 28 and max-epoch 960.

The trainer settings and epochs used in the 5-step training sequence leading here were:
1. train from scratch for 400 epochs, lambda 1.0, constant LR 9.75e-4, T79T77-filter-v6-dd.min.binpack
2. retrain ep379, max-epoch 800, end-lambda 0.75, T60T70wIsRightFarseerT60T74T75T76.binpack
3. retrain ep679, max-epoch 800, end-lambda 0.75, skip 28, nn-e1fb1ade4432 dataset
4. retrain ep799, max-epoch 800, end-lambda 0.7, skip 28, nn-e1fb1ade4432 dataset
5. retrain ep439, max-epoch 960, end-lambda 0.7, skip 28, shuffled nn-e1fb1ade4432 + T80 apr2023

This net was epoch 559 of the final (step 5) retraining:

```bash
python3 easy_train.py \
  --experiment-name L1-1536-Re4-leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr-shuffled-sk28 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --early-fen-skipping 28 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 960 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-Re3-nn-epoch439.nnue \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --seed $RANDOM \
  --gpus "0,"
```

During data preparation, most binpacks were unminimized by removing positions with
score 32002 (`VALUE_NONE`). This makes the tradeoff of increasing dataset filesize
on disk to increase the randomness of positions in interleaved datasets.
The code used for unminimizing is at:
https://github.com/linrock/Stockfish/tree/tools-unminify

For preparing the dataset used in this experiment:

```bash
python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-16tb7p-eval-filt-v2.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd-min/test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
  test80-apr2023-2tb7p.binpack \
  /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack
```

T80 apr2023 data was converted using lc0-rescorer with ~2tb of tablebases and can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move vs. nn-e1fb1ade4432.nnue (L1 size 1024):
nn-epoch559.nnue : 25.7 +/- 1.6

Passed STC:
https://tests.stockfishchess.org/tests/view/647cd3b87cf638f0f53f9cbb
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 59200 W: 16000 L: 15660 D: 27540
Ptnml(0-2): 159, 6488, 15996, 6768, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/647d58de726f6b400e4085d8
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 58800 W: 16002 L: 15657 D: 27141
Ptnml(0-2): 44, 5607, 17748, 5962, 39

closes https://github.com/official-stockfish/Stockfish/pull/4606

bench 2141197
2023-06-06 21:17:36 +02:00
disservin
295f57829e Add binaries to releases with github actions
when a release is made with a tag matching sf_* the binaries will also be uploaded to the release as assets.

closes https://github.com/official-stockfish/Stockfish/pull/4596

No functional change.
2023-06-06 21:12:24 +02:00
peregrineshahin
b60738e01b Fix no previous moves on root.
guards against no previous move existing if qSearch is called on the root node (i.e. when razoring).

Passed Non-regression STC:
https://tests.stockfishchess.org/tests/view/647d242d726f6b400e408143
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 53120 W: 14167 L: 13976 D: 24977
Ptnml(0-2): 109, 5597, 14981, 5740, 133

closes https://github.com/official-stockfish/Stockfish/pull/4604

Bench: 2551691
2023-06-06 21:07:43 +02:00
Michael Chaly
8dea070538 Move internal iterative reduction before probcut
This patch moves IIR before probcut which allows probcut
to be produced at lower depths. Comments in IIR are also slightly updated.

Passed STC:
https://tests.stockfishchess.org/tests/view/6472d604d29264e4cfa749fd
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 387616 W: 103295 L: 102498 D: 181823
Ptnml(0-2): 976, 42322, 106381, 43187, 942

Passed LTC:
https://tests.stockfishchess.org/tests/view/6475eb8c4a36543c4c9f42e8
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 202836 W: 54901 L: 54281 D: 93654
Ptnml(0-2): 85, 19609, 61422, 20205, 97

closes https://github.com/official-stockfish/Stockfish/pull/4597

bench 2551691
2023-06-04 23:12:23 +02:00
Linmiao Xu
ced0311890 Remove static eval threshold for extensions when giving check
Passed non-regression STC:
https://tests.stockfishchess.org/tests/view/647685d54a36543c4c9f4f2a
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 114688 W: 30701 L: 30571 D: 53416
Ptnml(0-2): 336, 12708, 31136, 12818, 346

Passed non-regression LTC:
https://tests.stockfishchess.org/tests/view/64774b02b81f005b572de770
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 107310 W: 28920 L: 28796 D: 49594
Ptnml(0-2): 33, 10427, 32621, 10531, 43

closes https://github.com/official-stockfish/Stockfish/pull/4599

bench 2597974
2023-06-04 23:05:28 +02:00
Guenther Demetz
5930c0defb Simplify away SEE verification
After 4 simplificatons over PR#4453 the idea does not yield significant
improvement anymore. Maybe also
https://tests.stockfishchess.org/tests/view/640c88092644b62c3394c1c5 was
a fluke.

Passed non-regression bounds:

STC:
https://tests.stockfishchess.org/tests/view/64705389c079b6583146d873
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 131936 W: 35040 L: 34930 D: 61966
Ptnml(0-2): 336, 14559, 36035, 14735, 303

LTC:
https://tests.stockfishchess.org/tests/view/6471a2ade549d9cf2fb213cd
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 407700 W: 109999 L: 110164 D: 187537
Ptnml(0-2): 279, 39913, 123689, 39632, 337

closes https://github.com/official-stockfish/Stockfish/pull/4595

bench: 2675974
2023-06-04 23:01:14 +02:00
Linmiao Xu
6cf8d938c5 Simplify blending nnue complexity with optimism
Passed non-regression STC:
https://tests.stockfishchess.org/tests/view/6478a26d54dd118e1d98f21c
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 241248 W: 64058 L: 64063 D: 113127
Ptnml(0-2): 644, 26679, 65960, 26720, 621

Passed non-regression LTC:
https://tests.stockfishchess.org/tests/view/647b464854dd118e1d9928b2
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 24336 W: 6658 L: 6451 D: 11227
Ptnml(0-2): 8, 2316, 7312, 2525, 7

closes https://github.com/official-stockfish/Stockfish/pull/4602

bench 2425813
2023-06-04 22:56:44 +02:00
Muzhen Gaming
06186b786e Search tuning at very long time control with new net
The most significant change would be the singularBeta formula.
It was first tested by cj5716 (see https://tests.stockfishchess.org/tests/view/647317c9d29264e4cfa74ec7),
and I took much inspiration from that idea.

LTC (fixed games): https://tests.stockfishchess.org/tests/view/6479d8da54dd118e1d990b12
Elo: 0.61 ± 1.2 (95%) LOS: 83.4%
Total: 60000 W: 16278 L: 16172 D: 27550
Ptnml(0-2): 16, 5845, 18179, 5937, 23
nElo: 1.38 ± 2.8 (95%) PairsRatio: 1.02

VLTC 180+1.8: https://tests.stockfishchess.org/tests/view/6479da1454dd118e1d990b2b
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 33224 W: 9261 L: 8984 D: 14979
Ptnml(0-2): 5, 2809, 10710, 3080, 8

SMP VLTC 8-thread: https://tests.stockfishchess.org/tests/view/647b0fe354dd118e1d992425
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 61398 W: 17386 L: 17081 D: 26931
Ptnml(0-2): 7, 4571, 21232, 4888, 1

closes https://github.com/official-stockfish/Stockfish/pull/4603

Bench: 2805878
2023-06-04 22:54:13 +02:00
Michael Chaly
d99942f254 Small simplification for probcut in check
Remove depth condition from there as not longer needed.

Passed STC:
https://tests.stockfishchess.org/tests/view/647367cad29264e4cfa753e6
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 254336 W: 67830 L: 67847 D: 118659
Ptnml(0-2): 580, 28181, 69697, 28096, 614

Passed LTC:
https://tests.stockfishchess.org/tests/view/647576184a36543c4c9f3af7
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 80706 W: 22048 L: 21898 D: 36760
Ptnml(0-2): 28, 7721, 24712, 7857, 35

closes https://github.com/official-stockfish/Stockfish/pull/4594

bench 2381945
2023-05-31 09:06:30 +02:00
Linmiao Xu
07bd8adcbc Simplify nnue eval complexity calculation
Remove a multiplier when blending nnue complexity with semi-classical complexity.

Passed non-regression STC:
https://tests.stockfishchess.org/tests/view/6473a71dd29264e4cfa75839
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 124768 W: 33180 L: 33060 D: 58528
Ptnml(0-2): 314, 13797, 34030, 13941, 302

Passed non-regression LTC:
https://tests.stockfishchess.org/tests/view/6474af3dd29264e4cfa768f4
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 108180 W: 29008 L: 28884 D: 50288
Ptnml(0-2): 29, 10420, 33075, 10530, 36

closes https://github.com/official-stockfish/Stockfish/pull/4592

bench 2316827
2023-05-31 08:54:38 +02:00
Linmiao Xu
c1fff71650 Update NNUE architecture to SFNNv6 with larger L1 size of 1536
Created by training a new net from scratch with L1 size increased from 1024 to 1536.
Thanks to Vizvezdenec for the idea of exploring larger net sizes after recent
training data improvements.

A new net was first trained with lambda 1.0 and constant LR 8.75e-4. Then a strong net
from a later epoch in the training run was chosen for retraining with start-lambda 1.0
and initial LR 4.375e-4 decaying with gamma 0.995. Retraining was performed a total of
3 times, for this 4-step process:

1. 400 epochs, lambda 1.0 on filtered T77+T79 v6 deduplicated data
2. 800 epochs, end-lambda 0.75 on T60T70wIsRightFarseerT60T74T75T76.binpack
3. 800 epochs, end-lambda 0.75 and early-fen-skipping 28 on the master dataset
4. 800 epochs, end-lambda 0.7 and early-fen-skipping 28 on the master dataset

In the training sequence that reached the new nn-8d69132723e2.nnue net,
the epochs used for the 3x retraining runs were:

1. epoch 379 trained on T77T79-filter-v6-dd.min.binpack
2. epoch 679 trained on T60T70wIsRightFarseerT60T74T75T76.binpack
3. epoch 799 trained on the master dataset

For training from scratch:

python3 easy_train.py \
  --experiment-name new-L1-1536-T77T79-filter-v6dd \
  --training-dataset /data/T77T79-filter-v6-dd.min.binpack \
  --max_epoch 400 \
  --lambda 1.0 \
  --start-from-engine-test-net False \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --nnue-pytorch-branch linrock/Stockfish/misc-fixes-L1-1536 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM

Retraining commands were similar to each other. For the 3rd retraining run:

python3 easy_train.py \
  --experiment-name L1-1536-T77T79-v6dd-Re1-LeelaFarseer-Re2-masterDataset-Re3-sameData \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack \
  --early-fen-skipping 28 \
  --max_epoch 800 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-T77T79-v6dd-Re1-LeelaFarseer-Re2-masterDataset-nn-epoch799.nnue \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM

The T77+T79 data used is a subset of the master dataset available at:
https://robotmoon.com/nnue-training-data/

T60T70wIsRightFarseerT60T74T75T76.binpack is available at:
https://drive.google.com/drive/folders/1S9-ZiQa_3ApmjBtl2e8SyHxj4zG4V8gG

Local elo at 25k nodes per move vs. nn-e1fb1ade4432.nnue (L1 size 1024):
nn-epoch759.nnue : 26.9 +/- 1.6

Failed STC
https://tests.stockfishchess.org/tests/view/64742485d29264e4cfa75f97
LLR: -2.94 (-2.94,2.94) <0.00,2.00>
Total: 13728 W: 3588 L: 3829 D: 6311
Ptnml(0-2): 71, 1661, 3610, 1482, 40

Failing LTC
https://tests.stockfishchess.org/tests/view/64752d7c4a36543c4c9f3618
LLR: -1.91 (-2.94,2.94) <0.50,2.50>
Total: 35424 W: 9522 L: 9603 D: 16299
Ptnml(0-2): 24, 3579, 10585, 3502, 22

Passed VLTC 180+1.8
https://tests.stockfishchess.org/tests/view/64752df04a36543c4c9f3638
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 47616 W: 13174 L: 12863 D: 21579
Ptnml(0-2): 13, 4261, 14952, 4566, 16

Passed VLTC SMP 60+0.6 th 8
https://tests.stockfishchess.org/tests/view/647446ced29264e4cfa761e5
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 19942 W: 5694 L: 5451 D: 8797
Ptnml(0-2): 6, 1504, 6707, 1749, 5

closes https://github.com/official-stockfish/Stockfish/pull/4593

bench 2222567
2023-05-31 08:51:22 +02:00
windfishballad
7e9b131efb Removed quadratic term in optimism
Remove term which is quadratic in optimism in the eval.
Simplifies and should also remove the bias towards side to move making the eval better for analysis.

STC: https://tests.stockfishchess.org/tests/view/6470a9d8c29e0d4352b0bca5
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 154432 W: 41127 L: 41040 D: 72265
Ptnml(0-2): 380, 17094, 42190, 17163, 389

LTC: https://tests.stockfishchess.org/tests/view/6471e9b3e549d9cf2fb219ef
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 127926 W: 34474 L: 34369 D: 59083
Ptnml(0-2): 43, 12505, 38776, 12582, 57

closes https://github.com/official-stockfish/Stockfish/pull/4590

Bench: 2541211
2023-05-28 20:05:50 +02:00
Joost VandeVondele
7f0b19dedf Update CPU contributors list
update CPU contributors list, the previous update was a couple of months ago,
and unfortunately, was not quite accurate for the number of games played.

This version is based clean calculation from the DB and
an updated script that tracks things (see https://github.com/glinscott/fishtest/pull/1702).

closes https://github.com/official-stockfish/Stockfish/pull/4589

No functional change
2023-05-28 20:03:33 +02:00
cj5716
c701745cf2 Remove ss->ttHit condition where ttValue != VALUE_NONE
Simplification is done at 3 separate places in the code.
Thanks to peregrineshahin for helping me find 2 of such places.
(See original PR #4584)

Passed non-regression test
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 120256 W: 32204 L: 32085 D: 55967
Ptnml(0-2): 292, 12473, 34483, 12584, 296
https://tests.stockfishchess.org/tests/view/646f045968661bfd984325e3

closes https://github.com/official-stockfish/Stockfish/pull/4587

No functional change
2023-05-25 20:49:11 +02:00
FauziAkram
cedd73f4aa Simplify Futility pruning for captures
Passed STC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 412928 W: 109433 L: 109620 D: 193875
Ptnml(0-2): 1071, 45929, 112650, 45744, 1070
https://tests.stockfishchess.org/tests/view/6468eac40db5177f2b76ef4d

Passed LTC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 190200 W: 51465 L: 51420 D: 87315
Ptnml(0-2): 58, 18585, 57788, 18592, 77
https://tests.stockfishchess.org/tests/view/646b66520db5177f2b772a84

closes https://github.com/official-stockfish/Stockfish/pull/4583

bench: 2486604
2023-05-25 20:42:43 +02:00
FauziAkram
a989aa1825 Simplify Prune moves with negative SEE
Passed STC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 57760 W: 15472 L: 15286 D: 27002
Ptnml(0-2): 123, 6025, 16430, 6147, 155
https://tests.stockfishchess.org/tests/view/6468eb6b0db5177f2b76ef62

Passed LTC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 93966 W: 25274 L: 25141 D: 43551
Ptnml(0-2): 33, 8498, 29792, 8623, 37
https://tests.stockfishchess.org/tests/view/6469570b0db5177f2b76f81b

closes: https://github.com/official-stockfish/Stockfish/pull/4579

Bench: 2304063
2023-05-25 20:40:09 +02:00
Muzhen Gaming
b64c97825e Simplify delta calculation in aspiration window
Simplification STC: https://tests.stockfishchess.org/tests/view/6468cb200db5177f2b76ecbb
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 220416 W: 58503 L: 58487 D: 103426
Ptnml(0-2): 596, 24384, 60188, 24488, 552

Simplification LTC: https://tests.stockfishchess.org/tests/view/646a15840db5177f2b770704
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 177756 W: 47882 L: 47825 D: 82049
Ptnml(0-2): 55, 17430, 53858, 17473, 62

closes https://github.com/official-stockfish/Stockfish/pull/4581

Bench: 2304063
2023-05-25 20:37:53 +02:00
candirufish
d7e72d801f More Depth Reduction
Reduce more for depth > 3 and depth < 12

LTC: https://tests.stockfishchess.org/tests/view/646c5abbd1f14fd69a6f2fab
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 197280 W: 53405 L: 52797 D: 91078
Ptnml(0-2): 62, 19025, 59886, 19577, 90

STC: https://tests.stockfishchess.org/tests/view/646bee71d1f14fd69a6f259d
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 100832 W: 26861 L: 26466 D: 47505
Ptnml(0-2): 240, 10985, 27622, 11278, 291

https://github.com/official-stockfish/Stockfish/pull/4585

bench: 2276617
2023-05-25 20:35:13 +02:00
Michael Chaly
df0fb8471e Small simplification in low depth pruning
Uncap low depth pruning lmr depth.
It's anyway capped for most cases apart from futility pruning for captures - removes one std::min call.

Passed STC:
https://tests.stockfishchess.org/tests/view/645e8fa6d55cccb2e64225a1
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 184064 W: 49039 L: 48982 D: 86043
Ptnml(0-2): 462, 20353, 50349, 20402, 466

Passed LTC:
https://tests.stockfishchess.org/tests/view/645f4d48d55cccb2e6423335
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 83886 W: 22613 L: 22465 D: 38808
Ptnml(0-2): 31, 8090, 25546, 8252, 24

closes https://github.com/official-stockfish/Stockfish/pull/4566

bench 3201883
2023-05-20 10:19:03 +02:00