mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 16:53:09 +00:00

Passed STC 10+0.1 : LLR: 2.93 (-2.94,2.94) <-1.75,0.25> Total: 349760 W: 90112 L: 90231 D: 169417 Ptnml(0-2): 784, 37970, 97496, 37841, 789 https://tests.stockfishchess.org/tests/view/665aeee00223e235f05b7d21 Passed LTC 60+0.6 : LLR: 2.95 (-2.94,2.94) <-1.75,0.25> Total: 140082 W: 35463 L: 35370 D: 69249 Ptnml(0-2): 59, 13492, 42851, 13575, 64 https://tests.stockfishchess.org/tests/view/665b15e78da109e362924e5a closes https://github.com/official-stockfish/Stockfish/pull/5334 No functional change
140 lines
5.2 KiB
C++
140 lines
5.2 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "timeman.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
|
|
#include "search.h"
|
|
#include "ucioption.h"
|
|
|
|
namespace Stockfish {
|
|
|
|
TimePoint TimeManagement::optimum() const { return optimumTime; }
|
|
TimePoint TimeManagement::maximum() const { return maximumTime; }
|
|
|
|
void TimeManagement::clear() {
|
|
availableNodes = -1; // When in 'nodes as time' mode
|
|
}
|
|
|
|
void TimeManagement::advance_nodes_time(std::int64_t nodes) {
|
|
assert(useNodesTime);
|
|
availableNodes = std::max(int64_t(0), availableNodes - nodes);
|
|
}
|
|
|
|
// Called at the beginning of the search and calculates
|
|
// the bounds of time allowed for the current game ply. We currently support:
|
|
// 1) x basetime (+ z increment)
|
|
// 2) x moves in y seconds (+ z increment)
|
|
void TimeManagement::init(Search::LimitsType& limits,
|
|
Color us,
|
|
int ply,
|
|
const OptionsMap& options,
|
|
double& originalTimeAdjust) {
|
|
TimePoint npmsec = TimePoint(options["nodestime"]);
|
|
|
|
// If we have no time, we don't need to fully initialize TM.
|
|
// startTime is used by movetime and useNodesTime is used in elapsed calls.
|
|
startTime = limits.startTime;
|
|
useNodesTime = npmsec != 0;
|
|
|
|
if (limits.time[us] == 0)
|
|
return;
|
|
|
|
TimePoint moveOverhead = TimePoint(options["Move Overhead"]);
|
|
|
|
// optScale is a percentage of available time to use for the current move.
|
|
// maxScale is a multiplier applied to optimumTime.
|
|
double optScale, maxScale;
|
|
|
|
// If we have to play in 'nodes as time' mode, then convert from time
|
|
// to nodes, and use resulting values in time management formulas.
|
|
// WARNING: to avoid time losses, the given npmsec (nodes per millisecond)
|
|
// must be much lower than the real engine speed.
|
|
if (useNodesTime)
|
|
{
|
|
if (availableNodes == -1) // Only once at game start
|
|
availableNodes = npmsec * limits.time[us]; // Time is in msec
|
|
|
|
// Convert from milliseconds to nodes
|
|
limits.time[us] = TimePoint(availableNodes);
|
|
limits.inc[us] *= npmsec;
|
|
limits.npmsec = npmsec;
|
|
moveOverhead *= npmsec;
|
|
}
|
|
|
|
// These numbers are used where multiplications, divisions or comparisons
|
|
// with constants are involved.
|
|
const int64_t scaleFactor = useNodesTime ? npmsec : 1;
|
|
const TimePoint scaledTime = limits.time[us] / scaleFactor;
|
|
const TimePoint scaledInc = limits.inc[us] / scaleFactor;
|
|
|
|
// Maximum move horizon of 50 moves
|
|
int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50;
|
|
|
|
// If less than one second, gradually reduce mtg
|
|
if (scaledTime < 1000 && double(mtg) / scaledInc > 0.05)
|
|
{
|
|
mtg = scaledTime * 0.05;
|
|
}
|
|
|
|
// Make sure timeLeft is > 0 since we may use it as a divisor
|
|
TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1)
|
|
- moveOverhead * (2 + mtg));
|
|
|
|
// x basetime (+ z increment)
|
|
// If there is a healthy increment, timeLeft can exceed the actual available
|
|
// game time for the current move, so also cap to a percentage of available game time.
|
|
if (limits.movestogo == 0)
|
|
{
|
|
// Extra time according to timeLeft
|
|
if (originalTimeAdjust < 0)
|
|
originalTimeAdjust = 0.3285 * std::log10(timeLeft) - 0.4830;
|
|
|
|
// Calculate time constants based on current time left.
|
|
double logTimeInSec = std::log10(scaledTime / 1000.0);
|
|
double optConstant = std::min(0.00308 + 0.000319 * logTimeInSec, 0.00506);
|
|
double maxConstant = std::max(3.39 + 3.01 * logTimeInSec, 2.93);
|
|
|
|
optScale = std::min(0.0122 + std::pow(ply + 2.95, 0.462) * optConstant,
|
|
0.213 * limits.time[us] / timeLeft)
|
|
* originalTimeAdjust;
|
|
|
|
maxScale = std::min(6.64, maxConstant + ply / 12.0);
|
|
}
|
|
|
|
// x moves in y seconds (+ z increment)
|
|
else
|
|
{
|
|
optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / timeLeft);
|
|
maxScale = std::min(6.3, 1.5 + 0.11 * mtg);
|
|
}
|
|
|
|
// Limit the maximum possible time for this move
|
|
optimumTime = TimePoint(optScale * timeLeft);
|
|
maximumTime =
|
|
TimePoint(std::min(0.825 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10;
|
|
|
|
if (options["Ponder"])
|
|
optimumTime += optimumTime / 4;
|
|
}
|
|
|
|
} // namespace Stockfish
|