Rename shift_bb() to shift(), and DELTA_S to SOUTH, etc.
to improve code readability, especially in evaluate.cpp
when they are used together:
old b = shift_bb<DELTA_S>(pos.pieces(PAWN))
new b = shift<SOUTH>(pos.pieces(PAWN))
While there fix some small code style issues.
No functional change.
Just use _mm_popcnt_u64() that is available
both for MSVC abd Intel compiler.
Verified on MSVC that the produced assembly
has the hardware 'popcnt' instruction.
No functional change.
It seems that icc used our fallback version of popcount.
Now use intrinsics.
icc version 16.0.2 (gcc version 5.3.0 compatibility)
bmi2 compile
uname -r 4.5.1-1-ARCH
20xbench gives a nice speedup
./stockfish-icc-master 2161515 +- 34462
./stockfish-icc-sse42 2260857 +- 50349
Also a speedup(about 1%) on 64-bit w/o hardware popcnt
Retire Max15 and Full template parameters
(Contributed by Marco Costalba)
Now that we have just SW and HW versions, use
template default parameter to get rid of explicit
template parameters.
Retire bitcount.h and move the only defined
function to bitboard.h
No functional change
Resolves#620
lsb(b) and msb(b) are undefined when b == 0. This can lead to subtle bugs, where
the resulting code behaves differently on different configurations:
- It can be the home grown software LSB/MSB
- It can be the compiler generated software LSB/MSB (when using compiler
intrinsics without the right compiler flags to allow compiler to use hardware
LSB/MSB). Which of course depends on the compiler.
- It can be hardware LSB/MSB generated by the compiler.
- Not to mention that hardware LSB/MSB can return different value on different
hardware when b == 0.
No functional change
Resolves#610
Use compiler intrinsics when possible to
avoid writing platform specific asm code.
Tested on Windows 7 with MSVC 2013 and mingw 4.8.3 (32 and 64 bit)
and on Linux Mint with g++ 4.8.4 and clang 3.4 (32 and 64 bit).
No functional change
Resolves#609
Error is:
a value of type "int" cannot be assigned to an entity of type "Value"
Also retire the now unused squares_of_color() function.
No functional change.
This intrinsic to call BMI2 PEXT instruction is
defined in immintrin.h. This header should be
included only when USE_PEXT is defined, otherwise
we define _pext_u64 as 0 forcing a nop.
But under some mingw platforms, even if we don't
include the header, immintrin.h gets included
anyhow through an include chain that starts with
STL <algorithm> header. So we end up both defining
_pext_u64 function and at the same time defining
_pext_u64 as 0 leading to a compile error.
The correct solution is of not using _pext_u64 directly.
This patch fixes a compile error with some mingw64
package when compiling with x86-64.
No functional change.
Clang 3.5 issues warning on constructs like: abs(f1 - f2). The thing is that
f1 and f2 are enum types, and the range given (all positive) allows the
compiler to choose an unsigned type (efficiency being one reason to prefer
unsigned arithmetic). If f1 < f2 are unsigned, then f1 - f2 wraps around zero
and the abs() becomes a no-op. It's the reinterpretation of the unsigned
result (large value) as a signed int that happens to give the correct result,
thanks to 2's complement. This is all tricky and dangerous!
In the spirit of the standard, we assume nothing on the signedness of enums,
and simply calculate the rank and file distances as:
- rank_dist(r1, r2) = r1 < r2 ? r2 - r1 : r1 - r2
- file_dist(f1, f2) = f1 < f2 ? f2 - f1 : f1 - f2
this logic can in fact be applied to any enum we may use, so for better
generality and to avoid code duplication, we use a template function diff()
here.
No functional change.
Resolves#95
Where they better belong.
Also, this removes '#include <string>' from types.h, which reduces the amount of code to compile (every
translation unit includes types.h).
No functional change.
Retire software pext and introduce hardware
call when USE_PEXT is defined during compilation.
This is a full complete implementation of sliding
attacks using PEXT.
No functional change.
We avoid to use an ad-hoc table at the cost of a
relative_rank() call in advanced_pawn_push().
On my 32 bit system it is even slightly faster (on 64bit
may be different). This is the speed in nps alternating
old and new bench runs:
new
368890
368825
369972
old
367798
367635
368026
No functional change.
Instead of a passed pawn now we just require the pawn to
be in the opponent camp to be considered a dangerous
move. Added some renaming to reflect the change.
Passed both short TC test
LLR: 2.95 (-2.94,2.94) [-1.50,4.50]
Total: 10358 W: 2033 L: 1900 D: 6425
And long TC
LLR: 2.95 (-2.94,2.94) [0.00,6.00]
Total: 21459 W: 3486 L: 3286 D: 14687
bench: 8322172
To align to same named Position function and
avoid using std::cout directly.
Also remove some stale <iostream> include while
there.
No functional change.
Previously some squares could be "incorrectly" awarded
to a pinned piece.
e.g. in 3k4/1q6/3b4/3Q4/8/5K2/B7/8 b - - 0 1 the black
bishop get 4 squares too many and the white queen gets 6.
Passed both short TC.
LLR: 2.97 (-2.94,2.94) [-1.50,4.50]
Total: 4871 W: 934 L: 817 D: 3120
And long TC:
LLR: 2.96 (-2.94,2.94) [0.00,6.00]
Total: 38968 W: 6113 L: 5837 D: 27018
bench: 9282549
And #ifdef instead of #if defined
This is more standard form (see for example iostream file).
No functional change.
Signed-off-by: Marco Costalba <mcostalba@gmail.com>