1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-01 01:03:09 +00:00
Commit graph

1012 commits

Author SHA1 Message Date
Joost VandeVondele
85f8ee6199 Update default net to nn-3c0054ea9860.nnu
First things first...

this PR is being made from court. Today, Tord and Stéphane, with broad support
of the developer community are defending their complaint, filed in Munich, against ChessBase.
With their products Houdini 6 and Fat Fritz 2, both Stockfish derivatives,
ChessBase violated repeatedly the Stockfish GPLv3 license. Tord and Stéphane have terminated
their license with ChessBase permanently. Today we have the opportunity to present
our evidence to the judge and enforce that termination. To read up, have a look at our blog post
https://stockfishchess.org/blog/2022/public-court-hearing-soon/ and
https://stockfishchess.org/blog/2021/our-lawsuit-against-chessbase/

This PR introduces a net trained with an enhanced data set and a modified loss function in the trainer.
A slight adjustment for the scaling was needed to get a pass on standard chess.

passed STC:
https://tests.stockfishchess.org/tests/view/62c0527a49b62510394bd610
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 135008 W: 36614 L: 36152 D: 62242
Ptnml(0-2): 640, 15184, 35407, 15620, 653

passed LTC:
https://tests.stockfishchess.org/tests/view/62c17e459e7d9997a12d458e
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 28864 W: 8007 L: 7749 D: 13108
Ptnml(0-2): 47, 2810, 8466, 3056, 53

Local testing at a fixed 25k nodes resulted in
Test run1026/easy_train_data/experiments/experiment_2/training/run_0/nn-epoch799.nnue
localElo: 4.2  +-      1.6

The real strength of the net is in FRC and DFRC chess where it gains significantly.

Tested at STC with slightly different scaling:
FRC:
https://tests.stockfishchess.org/tests/view/62c13a4002ba5d0a774d20d4
Elo: 29.78 +-3.4 (95%) LOS: 100.0%
Total: 10000 W: 2007 L: 1152 D: 6841
Ptnml(0-2): 31, 686, 2804, 1355, 124
nElo: 59.24 +-6.9 (95%) PairsRatio: 2.06

DFRC:
https://tests.stockfishchess.org/tests/view/62c13a5702ba5d0a774d20d9
Elo: 55.25 +-3.9 (95%) LOS: 100.0%
Total: 10000 W: 2984 L: 1407 D: 5609
Ptnml(0-2): 51, 636, 2266, 1779, 268
nElo: 96.95 +-7.2 (95%) PairsRatio: 2.98

Tested at LTC with identical scaling:
FRC:
https://tests.stockfishchess.org/tests/view/62c26a3c9e7d9997a12d6caf
Elo: 16.20 +-2.5 (95%) LOS: 100.0%
Total: 10000 W: 1192 L: 726 D: 8082
Ptnml(0-2): 10, 403, 3727, 831, 29
nElo: 44.12 +-6.7 (95%) PairsRatio: 2.08

DFRC:
https://tests.stockfishchess.org/tests/view/62c26a539e7d9997a12d6cb2
Elo: 40.94 +-3.0 (95%) LOS: 100.0%
Total: 10000 W: 2215 L: 1042 D: 6743
Ptnml(0-2): 10, 410, 3053, 1451, 76
nElo: 92.77 +-6.9 (95%) PairsRatio: 3.64

This is due to the mixing in a significant fraction of DFRC training data in the final training round. The net is
trained using the easy_train.py script in the following way:

```
python easy_train.py \
     --training-dataset=../Leela-dfrc_n5000.binpack \
     --experiment-name=2 \
     --nnue-pytorch-branch=vondele/nnue-pytorch/lossScan4 \
     --additional-training-arg=--param-index=2 \
     --start-lambda=1.0 \
     --end-lambda=0.75 \
     --gamma=0.995 \
     --lr=4.375e-4 \
     --start-from-engine-test-net True \
     --tui=False \
     --seed=$RANDOM \
     --max_epoch=800 \
     --auto-exit-timeout-on-training-finished=900 \
     --network-testing-threads 8  \
     --num-workers 12
```

where the data set used (Leela-dfrc_n5000.binpack) is a combination of our previous best data set (mix of Leela and some SF data) and DFRC data, interleaved to form:
The data is available in https://drive.google.com/drive/folders/1S9-ZiQa_3ApmjBtl2e8SyHxj4zG4V8gG?usp=sharing
Leela mix: https://drive.google.com/file/d/1JUkMhHSfgIYCjfDNKZUMYZt6L5I7Ra6G/view?usp=sharing
DFRC: https://drive.google.com/file/d/17vDaff9LAsVo_1OfsgWAIYqJtqR8aHlm/view?usp=sharing

The training branch used is
https://github.com/vondele/nnue-pytorch/commits/lossScan4
A PR to the main trainer repo will be made later. This contains a revised loss function, now computing the loss from the score based on the win rate model, which is a more accurate representation than what we had before. Scaling constants are tweaked there as well.

closes https://github.com/official-stockfish/Stockfish/pull/4100

Bench: 5186781
2022-07-04 15:42:34 +02:00
Dubslow
442c40b43d Use NNUE complexity in search, retune related parameters
This builds on ideas of xoto10 and mstembera to use more output from NNUE in the search algorithm.

passed STC:
https://tests.stockfishchess.org/tests/view/62ae454fe7ee5525ef88a957
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 89208 W: 24127 L: 23753 D: 41328
Ptnml(0-2): 400, 9886, 23642, 10292, 384

passed LTC:
https://tests.stockfishchess.org/tests/view/62acc6ddd89eb6cf1e0750a1
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 56352 W: 15430 L: 15115 D: 25807
Ptnml(0-2): 44, 5501, 16782, 5794, 55

closes https://github.com/official-stockfish/Stockfish/pull/4088

bench 5332964
2022-06-20 08:30:57 +02:00
xoto10
7f1333ccf8 Blend nnue complexity with classical.
Following mstembera's test of the complexity value derived from nnue values,
this change blends that idea with the old complexity calculation.

STC 10+0.1:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 42320 W: 11436 L: 11148 D: 19736
Ptnml(0-2): 209, 4585, 11263, 4915, 188
https://tests.stockfishchess.org/tests/live_elo/6295c9239c8c2fcb2bad7fd9

LTC 60+0.6:
LLR: 2.98 (-2.94,2.94) <0.50,3.00>
Total: 34600 W: 9393 L: 9125 D: 16082
Ptnml(0-2): 32, 3323, 10319, 3597, 29
https://tests.stockfishchess.org/tests/view/6295fd5d9c8c2fcb2bad88cf

closes https://github.com/official-stockfish/Stockfish/pull/4046

Bench 6078140
2022-06-02 07:47:23 +02:00
xoto10
4c7de9e8ab Adjust scale param higher
xoto10's scaleopt tune resulted in a yellow LTC, but the main parameter shift looked almost exactly like the tune rate reduction schedule,
so further increases of that param were tried. Joint work xoto10 and dubslow.

passed LTC:
https://tests.stockfishchess.org/tests/view/628c709372775f382300f03e
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 70112 W: 18932 L: 18584 D: 32596
Ptnml(0-2): 66, 6904, 20757, 7274, 55

failed STC:
https://tests.stockfishchess.org/tests/view/6290e4441e7cd5f29966bdc8
LLR: -2.96 (-2.94,2.94) <0.00,2.50>
Total: 59976 W: 15919 L: 16018 D: 28039
Ptnml(0-2): 250, 6791, 15974, 6754, 219

similar LTC's were yellow
first yellow LTC: https://tests.stockfishchess.org/tests/view/6288a33f817227d3e5c5b05d
double exaggerate yellow: https://tests.stockfishchess.org/tests/live_elo/628e140372775f38230129a6
triple exaggerate yellow: https://tests.stockfishchess.org/tests/live_elo/628e2caf72775f3823012d45

closes https://github.com/official-stockfish/Stockfish/pull/4036

bench 6410652
2022-05-29 19:14:20 +02:00
Giacomo Lorenzetti
f7d1491b3d Assorted small cleanups
closes https://github.com/official-stockfish/Stockfish/pull/3973

No functional change
2022-05-29 18:42:48 +02:00
xoto10
22b7909809 Tune scale and optimism.
Tune scale and optimism in effort to make stockfish play more aggressively.

STC @ 10+0.1 th 1:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 27896 W: 7506 L: 7248 D: 13142
Ptnml(0-2): 103, 3047, 7388, 3309, 101
https://tests.stockfishchess.org/tests/live_elo/627fd0cfab44257388ab1f13

LTC @ 60+0.6 th 1:
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 65576 W: 17512 L: 17178 D: 30886
Ptnml(0-2): 37, 6397, 19587, 6729, 38
https://tests.stockfishchess.org/tests/live_elo/627ff666ab44257388ab256d

closes https://github.com/official-stockfish/Stockfish/pull/4025

Bench 6407734
2022-05-15 20:20:37 +02:00
FauziAkram
c25d4c4887 Tuning classical and NNUE scaling terms
changes to parameters in both classical and NNUE scaling, following up from an earlier successful #3958

passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 23936 W: 6490 L: 6234 D: 11212
Ptnml(0-2): 107, 2610, 6306, 2810, 135
https://tests.stockfishchess.org/tests/view/625820aa33c40bb9d964e6ae

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 50376 W: 13629 L: 13327 D: 23420
Ptnml(0-2): 20, 4979, 14920, 5217, 52
https://tests.stockfishchess.org/tests/view/62584592c1d7f5008a33a4d1

closes https://github.com/official-stockfish/Stockfish/pull/3982

Bench: 6964954
2022-04-16 08:41:51 +02:00
Topologist
19a90b45bc Use NNUE in low piece endgames close to the root.
This patch enforces that NNUE evaluation is used for endgame positions at shallow depth (depth <= 9).
Classic evaluation will still be used for high imbalance positions when the depth is high or there are many pieces.

Passed STC:
https://tests.stockfishchess.org/tests/view/624c193b3a8a6ac93892dc27
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 255840 W: 68024 L: 67362 D: 120454
Ptnml(0-2): 1074, 27089, 70926, 27763, 1068

Passed LTC:
https://tests.stockfishchess.org/tests/view/624e8675e9e7821808467f77
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 67088 W: 17784 L: 17454 D: 31850
Ptnml(0-2): 45, 6209, 20715, 6521, 54

closes https://github.com/official-stockfish/Stockfish/pull/3978

bench: 6602222
2022-04-12 17:43:50 +02:00
FauziAkram
45f2416db4 Improvements in Evaluation
adjust parameters in classical evaluation and NNUE scaling.

STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 37104 W: 9983 L: 9701 D: 17420
Ptnml(0-2): 154, 4187, 9651, 4343, 217
https://tests.stockfishchess.org/tests/view/6228cb13a9d47c8160e885ba

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 266792 W: 71101 L: 70295 D: 125396
Ptnml(0-2): 214, 26928, 78353, 27640, 261
https://tests.stockfishchess.org/tests/view/6228d3c4a9d47c8160e887b0

closes https://github.com/official-stockfish/Stockfish/pull/3958

Bench: 6739741
2022-03-12 09:25:58 +01:00
Joost VandeVondele
abef3e86f4 Fix clang warning on unused variable
mark variable as used.

fixes https://github.com/official-stockfish/Stockfish/issues/3900
closes https://github.com/official-stockfish/Stockfish/pull/3941

No functional change
2022-02-20 22:59:19 +01:00
Joost VandeVondele
c5a280c012 Tune FRC trapped Bishop patch
now that fishtest can deal with FRC, retune this correction.

Add an additional fen to bench with cornered B and N.

passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 49672 W: 7358 L: 7082 D: 35232
Ptnml(0-2): 241, 4329, 15458, 4529, 279
https://tests.stockfishchess.org/tests/view/61d8b7bf9fea7913d9c63cb7

passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 86688 W: 8308 L: 8007 D: 70373
Ptnml(0-2): 92, 4943, 32989, 5212, 108
https://tests.stockfishchess.org/tests/view/61d92dcb9fea7913d9c650ad

closes https://github.com/official-stockfish/Stockfish/pull/3884

Bench: 4326560
2022-01-09 15:49:19 +01:00
Joost VandeVondele
9ad0ea7382 Tune a few parameters related to evaluation
based on a SPSA tune (using Autoselect)
https://tests.stockfishchess.org/tests/view/61d5aa63a314fed318a57046

passed STC:
LLR: 2.93 (-2.94,2.94) <0.00,2.50>
Total: 61960 W: 16640 L: 16316 D: 29004
Ptnml(0-2): 278, 6934, 16204, 7314, 250
https://tests.stockfishchess.org/tests/view/61d7fe4af5fd40f357469a8d

passed LTC:
LLR: 2.97 (-2.94,2.94) <0.50,3.00>
Total: 79408 W: 21994 L: 21618 D: 35796
Ptnml(0-2): 106, 7887, 23331, 8285, 95
https://tests.stockfishchess.org/tests/view/61d836b7f5fd40f35746a3d5

closes https://github.com/official-stockfish/Stockfish/pull/3883

Bench: 4266621
2022-01-08 08:44:49 +01:00
Brad Knox
ad926d34c0 Update copyright years
Happy New Year!

closes https://github.com/official-stockfish/Stockfish/pull/3881

No functional change
2022-01-06 15:45:45 +01:00
Stéphane Nicolet
1066119083 Tweak optimism with complexity
This patch increases the optimism bonus for "complex positions", where the
complexity is measured as the absolute value of the difference between material
and the sophisticated NNUE evaluation (idea by Joost VandeVondele).

Also rename some variables in evaluate() while there.

passed STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 88392 W: 23150 L: 22781 D: 42461
Ptnml(0-2): 318, 9961, 23257, 10354, 306
https://tests.stockfishchess.org/tests/view/61cbbedee68b2a714b6eb110

passed LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 37848 W: 10043 L: 9766 D: 18039
Ptnml(0-2): 26, 3815, 10961, 4100, 22
https://tests.stockfishchess.org/tests/view/61cc0cc3e68b2a714b6ec28c

Closes https://github.com/official-stockfish/Stockfish/pull/3875
Follow-up from a5a89b27c8

Bench: 4125221
2021-12-30 11:59:23 +01:00
Michael Chaly
0a6168089d Fall back to NNUE if classical evaluation is much lower than threshold
The idea is that if classical eval returns a value much lower than the threshold of
its usage it most likely means that position isn't that simple
so we need the more precise NNUE evaluation.

passed STC:
https://tests.stockfishchess.org/tests/view/61bf3e7557a0d0f327c3c47a
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 108072 W: 28007 L: 27604 D: 52461
Ptnml(0-2): 352, 12147, 28650, 12520, 367

passed LTC:
https://tests.stockfishchess.org/tests/view/61c0581657a0d0f327c3fa0c
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 155096 W: 40392 L: 39841 D: 74863
Ptnml(0-2): 88, 15983, 44843, 16558, 76

closes https://github.com/official-stockfish/Stockfish/pull/3869

bench 4310422
2021-12-22 08:18:35 +01:00
bmc4
88f17a814d Update Elo estimates for terms in search
This updates estimates from 2yr ago #2401, and adds missing terms.
All tests run at 10+0.1 (STC), 20000 games, error bars +- 1.8 Elo, book 8moves_v3.png.

A table of Elo values with the links to the corresponding tests can be found at the PR

closes https://github.com/official-stockfish/Stockfish/pull/3868

Non-functional Change
2021-12-21 13:47:57 +01:00
Joost VandeVondele
c6edf33f53 Remove NNUE scaling term
remove pawns scaling, probably correlated with piece scaling, and might be less useful with the recent improved nets. Might allow for another tune of the scaling params.

passed STC
https://tests.stockfishchess.org/tests/view/61afdb2e56fcf33bce7df31a
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 280864 W: 72198 L: 72399 D: 136267
Ptnml(0-2): 854, 32356, 74346, 31889, 987

passed LTC
https://tests.stockfishchess.org/tests/view/61b233a606b4c2dcb1b16140
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 400136 W: 102669 L: 103012 D: 194455
Ptnml(0-2): 212, 42005, 116047, 41522, 282

closes https://github.com/official-stockfish/Stockfish/pull/3851

Bench: 4735679
2021-12-14 13:41:12 +01:00
Joost VandeVondele
4bb11e823f Tune NNUE scaling params
passed STC:
https://tests.stockfishchess.org/tests/view/61a156f89e83391467a2b2cc
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 22816 W: 5896 L: 5646 D: 11274
Ptnml(0-2): 55, 2567, 5961, 2723, 102

passed LTC:
https://tests.stockfishchess.org/tests/view/61a1cf3d9e83391467a2b30b
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 17904 W: 4658 L: 4424 D: 8822
Ptnml(0-2): 6, 1821, 5079, 2025, 21

closes https://github.com/official-stockfish/Stockfish/pull/3811

Bench: 7218806
2021-11-27 14:26:35 +01:00
Stéphane Nicolet
a5a89b27c8 Introduce Optimism
Current master implements a scaling of the raw NNUE output value with a formula
equivalent to 'eval = alpha * NNUE_output', where the scale factor alpha varies
between 1.8 (for early middle game) and 0.9 (for pure endgames). This feature
allows Stockfish to keep material on the board when she thinks she has the advantage,
and to seek exchanges and simplifications when she thinks she has to defend.

This patch slightly offsets the turning point between these two strategies, by adding
to Stockfish's evaluation a small "optimism" value before actually doing the scaling.
The effect is that SF will play a little bit more risky, trying to keep the tension a
little bit longer when she is defending, and keeping even more material on the board
when she has an advantage.

We note that this patch is similar in spirit to the old "Contempt" idea we used to have
in classical Stockfish, but this implementation differs in two key points:

  a) it has been tested as an Elo-gainer against master;

  b) the values output by the search are not changed on average by the implementation
     (in other words, the optimism value changes the tension/exchange strategy, but a
     displayed value of 1.0 pawn has the same signification before and after the patch).

See the old comment https://github.com/official-stockfish/Stockfish/pull/1361#issuecomment-359165141
for some images illustrating the ideas.

-------

finished yellow at STC:
LLR: -2.94 (-2.94,2.94) <0.00,2.50>
Total: 165048 W: 41705 L: 41611 D: 81732
Ptnml(0-2): 565, 18959, 43245, 19327, 428
https://tests.stockfishchess.org/tests/view/61942a3dcd645dc8291c876b

passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 121656 W: 30762 L: 30287 D: 60607
Ptnml(0-2): 87, 12558, 35032, 13095, 56
https://tests.stockfishchess.org/tests/view/61962c58cd645dc8291c8877

-------

How to continue from there?

a) the shape (slope and amplitude) of the sigmoid used to compute the optimism value
   could be tweaked to try to gain more Elo, so the parameters of the sigmoid function
   in line 391 of search.cpp could be tuned with SPSA. Manual tweaking is also possible
   using this Desmos page: https://www.desmos.com/calculator/jhh83sqq92

b) in a similar vein, with two recents patches affecting the scaling of the NNUE
   evaluation in evaluate.cpp, now could be a good time to try a round of SPSA tuning
   of the NNUE network;

c) this patch will tend to keep tension in middlegame a little bit longer, so any
   patch improving the defensive aspect of play via search extensions in risky,
   tactical positions would be welcome.

-------

closes https://github.com/official-stockfish/Stockfish/pull/3797

Bench: 6184852
2021-11-21 21:18:08 +01:00
Joost VandeVondele
1a5c21dc56 Tune a few NNUE related scaling parameters
passed STC
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 102480 W: 26099 L: 25708 D: 50673
Ptnml(0-2): 282, 11637, 27003, 12044, 274
https://tests.stockfishchess.org/tests/view/618820e3d7a085ad008ef1dd

passed LTC
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 165512 W: 41689 L: 41112 D: 82711
Ptnml(0-2): 82, 17255, 47510, 17822, 87
https://tests.stockfishchess.org/tests/view/6188b470d7a085ad008ef239

closes https://github.com/official-stockfish/Stockfish/pull/3784

Bench: 6339548
2021-11-11 00:56:57 +01:00
Joost VandeVondele
7b278aab9f Reduce use of lazyEval
In case the evaluation at root is large, discourage the use of lazyEval.

This fixes https://github.com/official-stockfish/Stockfish/issues/3772
or at least improves it significantly. In this case, poor play with large
odds can be observed, in extreme cases leading to a loss despite large
advantage:

r1bq1b1r/ppp3p1/3p1nkp/n3p3/2B1P2N/2NPB3/PPP2PPP/R3K2R b KQ - 5 9

With this patch the poor move is only considered up to depth 13, in master
up to depth 28.

The patch did not pass at LTC with Elo gainer bounds, but with slightly
positive Elo nevertheless (95% LOS).

STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 40368 W: 10318 L: 10041 D: 20009
Ptnml(0-2): 103, 4493, 10725, 4750, 113
https://tests.stockfishchess.org/tests/view/61800ad259e71df00dcc420d

LTC:
LLR: -2.94 (-2.94,2.94) <0.50,3.00>
Total: 212288 W: 52997 L: 52692 D: 106599
Ptnml(0-2): 112, 22038, 61549, 22323, 122
https://tests.stockfishchess.org/tests/view/618050d959e71df00dcc426d

closes https://github.com/official-stockfish/Stockfish/pull/3780

Bench: 7127040
2021-11-08 13:03:52 +01:00
Stefano Cardanobile
f7494961de Reformat Eval::evaluate()
Non functional simplification: the goal of this patch is to make
the style in the evaluate() function similar to the rest of the code.

passed STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 95608 W: 24058 L: 24026 D: 47524
Ptnml(0-2): 292, 10379, 26396, 10479, 258
https://tests.stockfishchess.org/tests/view/616c64fd99b580bf37797e4f

closes https://github.com/official-stockfish/Stockfish/pull/3744

Non-functional change
2021-10-18 20:45:47 +02:00
xoto10
f21a66f70d Small clean-up, Sept 2021
Closes https://github.com/official-stockfish/Stockfish/pull/3485

No functional change
2021-10-07 09:41:57 +02:00
Joost VandeVondele
329bdbd9cf Improve the Chess960 correction for cornered bishops
As Chess960 patches can not be tested on fishtest, this was locally tuned
and tested:

Elo: 2.36 +- 1.07
LOS: 0.999992

closes https://github.com/official-stockfish/Stockfish/pull/3730

Bench: 5714575
2021-10-06 11:57:34 +02:00
Joost VandeVondele
af0d82792e Fix empty EvalFile option
some GUIs send an empty string for EvalFile, in that case explicitly try the default name

fixes https://github.com/official-stockfish/Stockfish/issues/3675

closes https://github.com/official-stockfish/Stockfish/pull/3678

No functional change.
2021-08-27 07:48:18 +02:00
MichaelB7
b939c80513 Update the default net to nn-76a8a7ffb820.nnue.
combined work by Serio Vieri, Michael Byrne, and Jonathan D (aka SFisGod) based on top of previous developments, by restarts from good nets.

Sergio generated the net https://tests.stockfishchess.org/api/nn/nn-d8609abe8caf.nnue:

The initial net nn-d8609abe8caf.nnue is trained by generating around 16B of training data from the last master net nn-9e3c6298299a.nnue, then trained, continuing from the master net, with lambda=0.2 and sampling ratio of 1. Starting with LR=2e-3, dropping LR with a factor of 0.5 until it reaches LR=5e-4. in_scaling is set to 361. No other significant changes made to the pytorch trainer.

Training data gen command (generates in chunks of 200k positions):

generate_training_data min_depth 9 max_depth 11 count 200000 random_move_count 10 random_move_max_ply 80 random_multi_pv 12 random_multi_pv_diff 100 random_multi_pv_depth 8 write_min_ply 10 eval_limit 1500 book noob_3moves.epd output_file_name gendata/$(date +"%Y%m%d-%H%M")_${HOSTNAME}.binpack

PyTorch trainer command (Note that this only trains for 20 epochs, repeatedly train until convergence):

python train.py --features "HalfKAv2^" --max_epochs 20 --smart-fen-skipping --random-fen-skipping 500 --batch-size 8192 --default_root_dir $dir --seed $RANDOM --threads 4 --num-workers 32 --gpus $gpuids --track_grad_norm 2 --gradient_clip_val 0.05 --lambda 0.2 --log_every_n_steps 50 $resumeopt $data $val

See https://github.com/sergiovieri/Stockfish/tree/tools_mod/rl for the scripts used to generate data.

Based on that Michael generated nn-76a8a7ffb820.nnue in the following way:

The net being submitted was trained with the pytorch trainer: https://github.com/glinscott/nnue-pytorch

python train.py i:/bin/all.binpack i:/bin/all.binpack --gpus 1 --threads 4 --num-workers 30 --batch-size 16384 --progress_bar_refresh_rate 30 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^ --auto_lr_find True --lambda=1.0 --max_epochs=240 --seed %random%%random% --default_root_dir exp/run_109 --resume-from-model ./pt/nn-d8609abe8caf.pt

This run is thus started from Segio Vieri's net nn-d8609abe8caf.nnue

all.binpack equaled 4 parts Wrong_NNUE_2.binpack https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq/view?usp=sharing plus two parts of Training_Data.binpack https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing
Each set was concatenated together - making one large Wrong_NNUE 2 binpack and one large Training so the were approximately equal in size. They were then interleaved together. The idea was to give Wrong_NNUE.binpack closer to equal weighting with the Training_Data binpack

model.py modifications:
loss = torch.pow(torch.abs(p - q), 2.6).mean()
LR = 8.0e-5 calculated as follows: 1.5e-3*(.992^360) - the idea here was to take a highly trained net and just use all.binpack as a finishing micro refinement touch for the last 2 Elo or so. This net was discovered on the 59th epoch.
optimizer = ranger.Ranger(train_params, betas=(.90, 0.999), eps=1.0e-7, gc_loc=False, use_gc=False)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.992)
For this micro optimization, I had set the period to "5" in train.py. This changes the checkpoint output so that every 5th checkpoint file is created

The final touches were to adjust the NNUE scale, as was done by Jonathan in tests running at the same time.

passed LTC
https://tests.stockfishchess.org/tests/view/60fa45aed8a6b65b2f3a77a4
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 53040 W: 1732 L: 1575 D: 49733
Ptnml(0-2): 14, 1432, 23474, 1583, 17

passed STC
https://tests.stockfishchess.org/tests/view/60f9fee2d8a6b65b2f3a7775
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 37928 W: 3178 L: 3001 D: 31749
Ptnml(0-2): 100, 2446, 13695, 2623, 100.

closes https://github.com/official-stockfish/Stockfish/pull/3626

Bench: 5169957
2021-07-24 18:04:59 +02:00
xoto10
d297d1d8a7 Simplify lazy_skip.
Small speedup by removing operations in lazy_skip.

STC 10+0.1 :
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 55088 W: 4553 L: 4482 D: 46053
Ptnml(0-2): 163, 3546, 20045, 3637, 153
https://tests.stockfishchess.org/tests/view/60daa2cb3beab81350aca04d

LTC 60+0.6 :
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 46136 W: 1457 L: 1407 D: 43272
Ptnml(0-2): 10, 1282, 20442, 1316, 18
https://tests.stockfishchess.org/tests/view/60db0e753beab81350aca08e

closes https://github.com/official-stockfish/Stockfish/pull/3599

Bench 5122403
2021-07-03 09:26:58 +02:00
Stéphane Nicolet
0470bcef0e Detect fortresses a little bit quicker
In the so-called "hybrid" method of evaluation of current master, we use the
classical eval (because of its speed) instead of the NNUE eval when the classical
material balance approximation hints that the position is "winning enough" to
rely on the classical eval.

This trade-off idea between speed and accuracy works well in general, but in
some fortress positions the classical eval is just bad. So in shuffling branches
of the search tree, we (slowly) increase the thresehold so that eventually we
don't trust classical anymore and switch to NNUE evaluation.

This patch increases that threshold faster, so that we switch to NNUE quicker
in shuffling branches. Idea is to incite Stockfish to spend less time in fortresses
lines in the search tree, and spend more time searching the critical lines.

passed STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 47872 W: 3908 L: 3720 D: 40244
Ptnml(0-2): 122, 3053, 17419, 3199, 143
https://tests.stockfishchess.org/tests/view/60cef34b457376eb8bcab79d

passed LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 73616 W: 2326 L: 2143 D: 69147
Ptnml(0-2): 21, 1940, 32705, 2119, 23
https://tests.stockfishchess.org/tests/view/60cf6d842114332881e73528

Retested at LTC against lastest master:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 18264 W: 642 L: 532 D: 17090
Ptnml(0-2): 6, 479, 8055, 583, 9
https://tests.stockfishchess.org/tests/view/60d18cd540925195e7a6c351

closes https://github.com/official-stockfish/Stockfish/pull/3578

Bench: 5139233
2021-06-22 11:51:03 +02:00
Stéphane Nicolet
ed436a36ba Remove the Contempt UCI option
This patch removes the UCI option for setting Contempt in classical evaluation.

It is exactly equivalent to using Contempt=0 for the UCI contempt value and keeping
the dynamic part in the algo (renaming this dynamic part `trend` to better describe
what it does). We have tried quite hard to implement a working Contempt feature for
NNUE but nothing really worked, so it is probably time to give up.

Interested chess fans wishing to keep playing with the UCI option for Contempt and
use it with the classical eval are urged to download the version tagged "SF_Classical"
of Stockfish (dated 31 July 2020), as it was the last version where our search
algorithm was tuned for the classical eval and is probably our strongest classical
player ever: https://github.com/official-stockfish/Stockfish/tags

Passed STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 72904 W: 6228 L: 6175 D: 60501
Ptnml(0-2): 221, 5006, 25971, 5007, 247
https://tests.stockfishchess.org/tests/view/60c98bf9457376eb8bcab18d

Passed LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 45168 W: 1601 L: 1547 D: 42020
Ptnml(0-2): 38, 1331, 19786, 1397, 32
https://tests.stockfishchess.org/tests/view/60c9c7fa457376eb8bcab1bb

closes https://github.com/official-stockfish/Stockfish/pull/3575

Bench: 4947716
2021-06-21 22:58:56 +02:00
Stéphane Nicolet
70ac5ecbb6 Keep more pawns and pieces when attacking
This patch increase the weight of pawns and pieces from 28 to 32
in the scaling formula we apply to the output of the NNUE pure eval.

Increasing this gradient for pawns and pieces means that Stockfish
will try a little harder to keep material when she has the advantage,
and try a little bit harder to escape into an endgame when she is
under pressure.

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 53168 W: 4371 L: 4177 D: 44620
Ptnml(0-2): 160, 3389, 19283, 3601, 151
https://tests.stockfishchess.org/tests/view/60cefd1d457376eb8bcab7ab

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 10888 W: 386 L: 288 D: 10214
Ptnml(0-2): 3, 260, 4821, 356, 4
https://tests.stockfishchess.org/tests/view/60cf709d2114332881e7352b

closes https://github.com/official-stockfish/Stockfish/pull/3571

Bench: 4965430
2021-06-20 23:17:07 +02:00
Tomasz Sobczyk
2e745956c0 Change trace with NNUE eval support
This patch adds some more output to the `eval` command. It adds a board display
with estimated piece values (method is remove-piece, evaluate, put-piece), and
splits the NNUE evaluation with (psqt,layers) for each bucket for the NNUE net.

Example:

```

./stockfish
position fen 3Qb1k1/1r2ppb1/pN1n2q1/Pp1Pp1Pr/4P2p/4BP2/4B1R1/1R5K b - - 11 40
eval

 Contributing terms for the classical eval:
+------------+-------------+-------------+-------------+
|    Term    |    White    |    Black    |    Total    |
|            |   MG    EG  |   MG    EG  |   MG    EG  |
+------------+-------------+-------------+-------------+
|   Material |  ----  ---- |  ----  ---- | -0.73 -1.55 |
|  Imbalance |  ----  ---- |  ----  ---- | -0.21 -0.17 |
|      Pawns |  0.35 -0.00 |  0.19 -0.26 |  0.16  0.25 |
|    Knights |  0.04 -0.08 |  0.12 -0.01 | -0.08 -0.07 |
|    Bishops | -0.34 -0.87 | -0.17 -0.61 | -0.17 -0.26 |
|      Rooks |  0.12  0.00 |  0.08  0.00 |  0.04  0.00 |
|     Queens |  0.00  0.00 | -0.27 -0.07 |  0.27  0.07 |
|   Mobility |  0.84  1.76 |  0.01  0.66 |  0.83  1.10 |
|King safety | -0.99 -0.17 | -0.72 -0.10 | -0.27 -0.07 |
|    Threats |  0.27  0.27 |  0.73  0.86 | -0.46 -0.59 |
|     Passed |  0.00  0.00 |  0.79  0.82 | -0.79 -0.82 |
|      Space |  0.61  0.00 |  0.24  0.00 |  0.37  0.00 |
|   Winnable |  ----  ---- |  ----  ---- |  0.00 -0.03 |
+------------+-------------+-------------+-------------+
|      Total |  ----  ---- |  ----  ---- | -1.03 -2.14 |
+------------+-------------+-------------+-------------+

 NNUE derived piece values:
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |   Q   |   b   |       |   k   |       |
|       |       |       | +12.4 | -1.62 |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |   r   |       |       |   p   |   p   |   b   |       |
|       | -3.89 |       |       | -0.84 | -1.19 | -3.32 |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|   p   |   N   |       |   n   |       |       |   q   |       |
| -1.81 | +3.71 |       | -4.82 |       |       | -5.04 |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|   P   |   p   |       |   P   |   p   |       |   P   |   r   |
| +1.16 | -0.91 |       | +0.55 | +0.12 |       | +0.50 | -4.02 |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |       |   P   |       |       |   p   |
|       |       |       |       | +2.33 |       |       | +1.17 |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |       |   B   |   P   |       |       |
|       |       |       |       | +4.79 | +1.54 |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |       |   B   |       |   R   |       |
|       |       |       |       | +4.54 |       | +6.03 |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |   R   |       |       |       |       |       |   K   |
|       | +4.81 |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+

 NNUE network contributions (Black to move)
+------------+------------+------------+------------+
|   Bucket   |  Material  | Positional |   Total    |
|            |   (PSQT)   |  (Layers)  |            |
+------------+------------+------------+------------+
|  0         |  +  0.32   |  -  1.46   |  -  1.13   |
|  1         |  +  0.25   |  -  0.68   |  -  0.43   |
|  2         |  +  0.46   |  -  1.72   |  -  1.25   |
|  3         |  +  0.55   |  -  1.80   |  -  1.25   |
|  4         |  +  0.48   |  -  1.77   |  -  1.29   |
|  5         |  +  0.40   |  -  2.00   |  -  1.60   |
|  6         |  +  0.57   |  -  2.12   |  -  1.54   | <-- this bucket is used
|  7         |  +  3.38   |  -  2.00   |  +  1.37   |
+------------+------------+------------+------------+

Classical evaluation   -1.00 (white side)
NNUE evaluation        +1.54 (white side)
Final evaluation       +2.38 (white side) [with scaled NNUE, hybrid, ...]

```

Also renames the export_net() function to save_eval() while there.

closes https://github.com/official-stockfish/Stockfish/pull/3562

No functional change
2021-06-19 11:57:01 +02:00
Joost VandeVondele
4c02998325 Simplify NNUE / classical evaluation selection
for the new network architecture these rules can be simplified,
closer to the original PSQT difference based again.

passed STC
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 22656 W: 1979 L: 1868 D: 18809
Ptnml(0-2): 70, 1496, 8087, 1603, 72
https://tests.stockfishchess.org/tests/view/60b24579db3c4776cb89d122

passed LTC
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 30224 W: 1015 L: 953 D: 28256
Ptnml(0-2): 4, 860, 13330, 906, 12
https://tests.stockfishchess.org/tests/view/60b27613db3c4776cb89d145

closes https://github.com/official-stockfish/Stockfish/pull/3511

Bench: 3937626
2021-05-30 21:30:15 +02:00
Stéphane Nicolet
f193778446 Do not use lazy evaluation inside NNUE
This simplification patch implements two changes:

1. it simplifies away the so-called "lazy" path in the NNUE evaluation internals,
   where we trusted the psqt head alone to avoid the costly "positional" head in
   some cases;
2. it raises a little bit the NNUEThreshold1 in evaluate.cpp (from 682 to 800),
   which increases the limit where we switched from NNUE eval to Classical eval.

Both effects increase the number of positional evaluations done by our new net
architecture, but the results of our tests below seem to indicate that the loss
of speed will be compensated by the gain of eval quality.

STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 26280 W: 2244 L: 2137 D: 21899
Ptnml(0-2): 72, 1755, 9405, 1810, 98
https://tests.stockfishchess.org/tests/view/60ae73f112066fd299795a51

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 20592 W: 750 L: 677 D: 19165
Ptnml(0-2): 9, 614, 8980, 681, 12
https://tests.stockfishchess.org/tests/view/60ae88e812066fd299795a82

closes https://github.com/official-stockfish/Stockfish/pull/3503

Bench: 3817907
2021-05-27 01:21:56 +02:00
Tomasz Sobczyk
9d53129075 Expose the lazy threshold for the feature transformer PSQT as a parameter.
Definition of the lazy threshold moved to evaluate.cpp where all others are.
Lazy threshold only used for real searches, not used for the "eval" call.
This preserves the purity of NNUE evaluation, which is useful to verify
consistency between the engine and the NNUE trainer.

closes https://github.com/official-stockfish/Stockfish/pull/3499

No functional change
2021-05-25 21:40:51 +02:00
Stéphane Nicolet
a2f01c07eb Sometimes change the (materialist, positional) balance
Our new nets output two values for the side to move in the last layer.
We can interpret the first value as a material evaluation of the
position, and the second one as the dynamic, positional value of the
location of pieces.

This patch changes the balance for the (materialist, positional) parts
of the score from (128, 128) to (121, 135) when the piece material is
equal between the two players, but keeps the standard (128, 128) balance
when one player is at least an exchange up.

Passed STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 15936 W: 1421 L: 1266 D: 13249
Ptnml(0-2): 37, 1037, 5694, 1134, 66
https://tests.stockfishchess.org/tests/view/60a82df9ce8ea25a3ef0408f

Passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 13904 W: 516 L: 410 D: 12978
Ptnml(0-2): 4, 374, 6088, 484, 2
https://tests.stockfishchess.org/tests/view/60a8bbf9ce8ea25a3ef04101

closes https://github.com/official-stockfish/Stockfish/pull/3492

Bench: 3856635
2021-05-22 21:09:22 +02:00
Stéphane Nicolet
754fc8a8b5 Remove Tempo
The Tempo variable was introduced 10 years ago in our search because the
classical evaluation function was antisymmetrical in White and Black by design
to gain speed:

    Eval(White to play) = -Eval(Black to play)

Nowadays our neural networks know which side is to play in a position when
they evaluate a position and are trained on real games, so the neural network
encodes the advantage of moving as an output of search. This patch shows that
the Tempo variable is not necessary anymore.

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 33512 W: 2805 L: 2709 D: 27998
Ptnml(0-2): 80, 2209, 12095, 2279, 93
https://tests.stockfishchess.org/tests/view/60a44ceace8ea25a3ef03d30

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 53920 W: 1807 L: 1760 D: 50353
Ptnml(0-2): 16, 1617, 23650, 1658, 19
https://tests.stockfishchess.org/tests/view/60a477f0ce8ea25a3ef03d49

We also tried a match (20000 games) at STC using purely classical, result was neutral:
https://tests.stockfishchess.org/tests/view/60a4eebcce8ea25a3ef03db5

Note: there are two locations left in search.cpp where we assume antisymmetry
of evaluation (in relation with a speed optimization for null moves in lines
770 and 1439), but as the values are just used for heuristic pruning this
approximation should not hurt too much because the order of magnitude is still
true most of the time.

closes https://github.com/official-stockfish/Stockfish/pull/3481

Bench: 4015864
2021-05-19 20:34:37 +02:00
Tomasz Sobczyk
e8d64af123 New NNUE architecture and net
Introduces a new NNUE network architecture and associated network parameters,
as obtained by a new pytorch trainer.

The network is already very strong at short TC, without regression at longer TC,
and has potential for further improvements.

https://tests.stockfishchess.org/tests/view/60a159c65085663412d0921d
TC: 10s+0.1s, 1 thread
ELO: 21.74 +-3.4 (95%) LOS: 100.0%
Total: 10000 W: 1559 L: 934 D: 7507
Ptnml(0-2): 38, 701, 2972, 1176, 113

https://tests.stockfishchess.org/tests/view/60a187005085663412d0925b
TC: 60s+0.6s, 1 thread
ELO: 5.85 +-1.7 (95%) LOS: 100.0%
Total: 20000 W: 1381 L: 1044 D: 17575
Ptnml(0-2): 27, 885, 7864, 1172, 52

https://tests.stockfishchess.org/tests/view/60a2beede229097940a03806
TC: 20s+0.2s, 8 threads
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 34272 W: 1610 L: 1452 D: 31210
Ptnml(0-2): 30, 1285, 14350, 1439, 32

https://tests.stockfishchess.org/tests/view/60a2d687e229097940a03c72
TC: 60s+0.6s, 8 threads
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 45544 W: 1262 L: 1214 D: 43068
Ptnml(0-2): 12, 1129, 20442, 1177, 12

The network has been trained (by vondele) using the https://github.com/glinscott/nnue-pytorch/ trainer (started by glinscott),
specifically the branch https://github.com/Sopel97/nnue-pytorch/tree/experiment_56.
The data used are in 64 billion positions (193GB total) generated and scored with the current master net
d8: https://drive.google.com/file/d/1hOOYSDKgOOp38ZmD0N4DV82TOLHzjUiF/view?usp=sharing
d9: https://drive.google.com/file/d/1VlhnHL8f-20AXhGkILujnNXHwy9T-MQw/view?usp=sharing
d10: https://drive.google.com/file/d/1ZC5upzBYMmMj1gMYCkt6rCxQG0GnO3Kk/view?usp=sharing
fishtest_d9: https://drive.google.com/file/d/1GQHt0oNgKaHazwJFTRbXhlCN3FbUedFq/view?usp=sharing

This network also contains a few architectural changes with respect to the current master:

    Size changed from 256x2-32-32-1 to 512x2-16-32-1
        ~15-20% slower
        ~2x larger
        adds a special path for 16 valued ClippedReLU
        fixes affine transform code for 16 inputs/outputs, buy using InputDimensions instead of PaddedInputDimensions
            this is safe now because the inputs are processed in groups of 4 in the current affine transform code
    The feature set changed from HalfKP to HalfKAv2
        Includes information about the kings like HalfKA
        Packs king features better, resulting in 8% size reduction compared to HalfKA
    The board is flipped for the black's perspective, instead of rotated like in the current master
    PSQT values for each feature
        the feature transformer now outputs a part that is fowarded directly to the output and allows learning piece values more directly than the previous network architecture. The effect is visible for high imbalance positions, where the current master network outputs evaluations skewed towards zero.
        8 PSQT values per feature, chosen based on (popcount(pos.pieces()) - 1) / 4
        initialized to classical material values on the start of the training
    8 subnetworks (512x2->16->32->1), chosen based on (popcount(pos.pieces()) - 1) / 4
        only one subnetwork is evaluated for any position, no or marginal speed loss

A diagram of the network is available: https://user-images.githubusercontent.com/8037982/118656988-553a1700-b7eb-11eb-82ef-56a11cbebbf2.png
A more complete description: https://github.com/glinscott/nnue-pytorch/blob/master/docs/nnue.md

closes https://github.com/official-stockfish/Stockfish/pull/3474

Bench: 3806488
2021-05-18 18:06:23 +02:00
Stéphane Nicolet
f90274d8ce Small clean-ups
- Comment for Countemove pruning -> Continuation history
- Fix comment in input_slice.h
- Shorter lines in Makefile
- Comment for scale factor
- Fix comment for pinners in see_ge()
- Change Thread.id() signature to size_t
- Trailing space in reprosearch.sh
- Add Douglas Matos Gomes to the AUTHORS file
- Introduce comment for undo_null_move()
- Use Stockfish coding style for export_net()
- Change date in AUTHORS file

closes https://github.com/official-stockfish/Stockfish/pull/3416

No functional change
2021-05-17 10:47:14 +02:00
Tomasz Sobczyk
58054fd0fa Exporting the currently loaded network file
This PR adds an ability to export any currently loaded network.
The export_net command now takes an optional filename parameter.
If the loaded net is not the embedded net the filename parameter is required.

Two changes were required to support this:

* the "architecture" string, which is really just a some kind of description in the net, is now saved into netDescription on load and correctly saved on export.
* the AffineTransform scrambles weights for some architectures and sparsifies them, such that retrieving the index is hard. This is solved by having a temporary scrambled<->unscrambled index lookup table when loading the network, and the actual index is saved for each individual weight that makes it to canSaturate16. This increases the size of the canSaturate16 entries by 6 bytes.

closes https://github.com/official-stockfish/Stockfish/pull/3456

No functional change
2021-05-11 19:36:11 +02:00
Tomasz Sobczyk
ca250e969c Add an UCI level command "export_net".
This command writes the embedded net to the file `EvalFileDefaultName`.
If there is no embedded net the command does nothing.

fixes #3453

closes https://github.com/official-stockfish/Stockfish/pull/3454

No functional change
2021-05-07 09:45:08 +02:00
xoto10
6ad4f485d3 Change tempo with time and threads
Introduce variable tempo for nnue depending on logarithm of estimated
strength, where strength is the product of time and number of threads.

The original idea here was that NNUE is best with a slightly different
tempo value to classical, since its style of play is slightly different.
It turns out that the best tempo for NNUE varies with strength of play,
so a formula is used which gives about 19 for STC and 24 for LTC under
current fishtest settings.

STC 10+0.1:
LLR: 2.94 (-2.94,2.94) {-0.20,1.10}
Total: 120816 W: 11155 L: 10861 D: 98800
Ptnml(0-2): 406, 8728, 41933, 8848, 493
https://tests.stockfishchess.org/tests/view/60735b3a8141753378960534

LTC 60+0.6:
LLR: 2.94 (-2.94,2.94) {0.20,0.90}
Total: 35688 W: 1392 L: 1234 D: 33062
Ptnml(0-2): 23, 1079, 15473, 1255, 14
https://tests.stockfishchess.org/tests/view/6073ffbc814175337896057f

Passed non-regression SMP test at LTC 20+0.2 (8 threads):
LLR: 2.95 (-2.94,2.94) {-0.70,0.20}
Total: 11008 W: 317 L: 267 D: 10424
Ptnml(0-2): 2, 245, 4962, 291, 4
https://tests.stockfishchess.org/tests/view/60749ea881417533789605a4

closes https://github.com/official-stockfish/Stockfish/pull/3426

Bench 4075325
2021-04-28 13:58:46 +02:00
dsmsgms
a7ab92ec25 Use classical eval for Bishop vs Pawns
NNUE evaluation is incapable of recognizing trivially drawn bishop endgames
(the wrong-colored rook pawn), which are in fact ubiquitous and stock standard
in chess analysis. Switching off NNUE evaluation in KBPs vs KPs endgames is
a measure that stops Stockfish from trading down to a drawn version of these
endings when we presumably have advantage. The patch is able to edge over master
in endgame positions.

Patch tested for Elo gain with the "endgame.epd" book, and verified for
non-regression with our usual book (see the pull request for details).

STC:
LLR: 2.93 (-2.94,2.94) {-0.20,1.10}
Total: 33232 W: 6655 L: 6497 D: 20080
Ptnml(0-2): 4, 2342, 11769, 2494, 7
https://tests.stockfishchess.org/tests/view/6074a52981417533789605b8

LTC:
LLR: 2.93 (-2.94,2.94) {0.20,0.90}
Total: 159056 W: 29799 L: 29378 D: 99879
Ptnml(0-2): 7, 9004, 61085, 9425, 7
https://tests.stockfishchess.org/tests/view/6074c39a81417533789605ca

Closes https://github.com/official-stockfish/Stockfish/pull/3427

Bench: 4503918

blah
2021-04-15 12:45:39 +02:00
Stéphane Nicolet
f40913f7f6 Keep more pawns
This patch increases the weight of pawns in the scale factor applied
to the output of the NNUE evaluation. This has the effect that Stockfish
will try a little bit harder to keep more pawns in position where the
engine has the advantage, and exchange more pawns in bad positions.

STC:
LLR: 2.93 (-2.94,2.94) {-0.20,1.10}
Total: 42552 W: 3858 L: 3668 D: 35026
Ptnml(0-2): 152, 2956, 14876, 3134, 158
https://tests.stockfishchess.org/tests/view/606a06dd2b2df919fd5f0504

LTC:
LLR: 2.95 (-2.94,2.94) {0.20,0.90}
Total: 44328 W: 1703 L: 1531 D: 41094
Ptnml(0-2): 20, 1373, 19207, 1543, 21
https://tests.stockfishchess.org/tests/view/606aa4ec2b2df919fd5f053e

Closes https://github.com/official-stockfish/Stockfish/pull/3420

Bench: 4310076
2021-04-06 09:07:20 +02:00
Stéphane Nicolet
b862c8d4be Small clean-up
Bench: 4321677
2021-03-31 08:12:25 +02:00
mstembera
62a0b65ff8 Simplify and unify FRC cornered bishop.
tested locally as fishtest doesn't support FRC:

STC NNUE
9646 - 9647 - 20707 [0.500] 40000 -0.0 +/- 2.4, LOS: 49.7 %, DrawRatio: 51.8 %

STC classical
9678 - 9609 - 20713 [0.501] 40000 0.6 +/- 2.4, LOS: 69.0 %, DrawRatio: 51.8 %

and verified independently:

Score of master vs patch: 6463 - 6580 - 34957 [0.499] 48000

closes https://github.com/official-stockfish/Stockfish/pull/3413

bench: 4321677
2021-03-27 17:03:10 +01:00
Stéphane Nicolet
83eac08e75 Small cleanups (march 2021)
With help of @BM123499, @mstembera, @gvreuls, @noobpwnftw and @Fanael
Thanks!

Closes https://github.com/official-stockfish/Stockfish/pull/3405

No functional change
2021-03-24 17:11:06 +01:00
Guy Vreuls
ec42154ef2 Use reference instead of pointer for pop_lsb() signature
This patch changes the pop_lsb() signature from Square pop_lsb(Bitboard*) to
Square pop_lsb(Bitboard&). This is more idomatic for C++ style signatures.

Passed a non-regression STC test:
LLR: 2.93 (-2.94,2.94) {-1.25,0.25}
Total: 21280 W: 1928 L: 1847 D: 17505
Ptnml(0-2): 71, 1427, 7558, 1518, 66
https://tests.stockfishchess.org/tests/view/6053a1e22433018de7a38e2f

We have verified that the generated binary is identical on gcc-10.

Closes https://github.com/official-stockfish/Stockfish/pull/3404

No functional change.
2021-03-19 20:28:57 +01:00
Vizvezdenec
ace9632c67 Add a specific FRC correction from classical to NNUE
our net currently is not trained on FRC games, and so doesn't know about the important pattern of a bishop that is cornered in FRC.
This patch introduces a term we have in the classical evaluation for this case, and adds it to the NNUE eval.

Since fishtest doesn't support FRC right now, the patch was tested locally at STC conditions,
starting from the book of FRC starting positions.

Score of master vs patch: 993 - 2226 - 6781  [0.438] 10000

Which corresponds to approximately 40 Elo

The patch passes non-regression testing for traditional chess (where it adds one branch).

passed STC:
https://tests.stockfishchess.org/tests/view/604fa2532433018de7a38b67
LLR: 2.95 (-2.94,2.94) {-1.25,0.25}
Total: 30560 W: 2701 L: 2636 D: 25223
Ptnml(0-2): 88, 2056, 10921, 2133, 82

passed STC also in an earlier version:
https://tests.stockfishchess.org/tests/view/604f61282433018de7a38b4d

closes https://github.com/official-stockfish/Stockfish/pull/3398

No functional change
2021-03-19 11:58:17 +01:00
Dieter Dobbelaere
7ffae17f85 Add Stockfish namespace.
fixes #3350 and is a small cleanup that might make it easier to use SF
in separate projects, like a NNUE trainer or similar.

closes https://github.com/official-stockfish/Stockfish/pull/3370

No functional change.
2021-03-07 14:26:54 +01:00
Lolligerhans
40cb0f076a Small trivial clean-ups, February 2021
Closes https://github.com/official-stockfish/Stockfish/pull/3329

No functional change
2021-02-16 01:31:42 +01:00