1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 16:53:09 +00:00
Commit graph

194 commits

Author SHA1 Message Date
Linmiao Xu
5d81071953 Update default main net to nn-1111cefa1111.nnue
Created from 2 distinct spsa tunes of the latest main net (nn-31337bea577c.nnue)
and applying the params to the prior main net (nn-e8bac1c07a5a.nnue). This
effectively reverts the modifications to output weights and biases in
https://github.com/official-stockfish/Stockfish/pull/5509

SPSA:
A: 6000, alpha: 0.602, gamma: 0.101

1st - 437 feature transformer biases where values are < 25
54k / 120k games at 180+1.8
https://tests.stockfishchess.org/tests/view/66af98ac4ff211be9d4edad0
nn-808259761cca.nnue

2nd - 208 L2 weights where values are zero
112k / 120k games at 180+1.8
https://tests.stockfishchess.org/tests/view/66b0c3074ff211be9d4edbe5
nn-a56cb8c3d477.nnue

When creating the above 2 nets (nn-808259761cca.nnue, nn-a56cb8c3d477.nnue),
spsa params were unintentionally applied to nn-e8bac1c07a5a.nnue rather
than nn-31337bea577c.nnue due to an issue in a script that creates nets
by applying spsa results to base nets.

Since they both passed STC and were neutral or slightly positive at LTC,
they were combined to see if the elo from each set of params was additive.

The 2 nets can be merged on top of nn-e8bac1c07a5a.nnue with:
https://github.com/linrock/nnue-tools/blob/90942d3/spsa/combine_nnue.py
```
python3 combine_nnue.py \
  nn-e8bac1c07a5a.nnue \
  nn-808259761cca.nnue \
  nn-a56cb8c3d477.nnue
```

Merging yields nn-87caa003fc6a.nnue which was renamed to nn-1111cefa1111.nnue
with an updated nnue-namer around 10x faster than before by:
- using a prefix trie for efficient prefix matches
- modifying 4 non-functional bytes near the end of the file instead of 2
https://github.com/linrock/nnue-namer

Thanks to @MinetaS for pointing out in #nnue-dev what the non-functional bytes are:
  L3 is 32, 4 bytes for biases, 32 bytes for weights. (fc_2)
  So -38 and -37 are technically -2 and -1 of fc_1 (type AffineTransform<30, 32>)
  And since InputDimension is padded to 32 there are total 32 of 2 adjacent bytes padding.
  So yes, it's non-functional whatever values are there.
  It's possible to tweak bytes at -38 - 32 * N and -37 - 32 * N given N = 0 ... 31

The net renamed with the new method passed non-regression STC vs. the original net:
https://tests.stockfishchess.org/tests/view/66c0f0a821503a509c13b332

To print the spsa params with nnue-pytorch:
```
import features
from serialize import NNUEReader

feature_set = features.get_feature_set_from_name("HalfKAv2_hm")

with open("nn-31337bea577c.nnue", "rb") as f:
    model = NNUEReader(f, feature_set).model

c_end = 16
for i,ft_bias in enumerate(model.input.bias.data[:3072]):
    value = int(ft_bias * 254)
    if abs(value) < 25:
        print(f"ftB[{i}],{value},-1024,1024,{c_end},0.0020")

c_end = 6
for i in range(8):
    for j in range(32):
        for k in range(30):
            value = int(model.layer_stacks.l2.weight.data[32 * i + j, k] * 64)
            if value == 0:
                print(f"twoW[{i}][{j}][{k}],{value},-127,127,{c_end},0.0020")
```

New params found with the same method as:
https://github.com/official-stockfish/Stockfish/pull/5459

Passed STC:
https://tests.stockfishchess.org/tests/view/66b4d4464ff211be9d4edf6e
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 136416 W: 35753 L: 35283 D: 65380
Ptnml(0-2): 510, 16159, 34416, 16597, 526

Passed LTC:
https://tests.stockfishchess.org/tests/view/66b76e814ff211be9d4ee1cc
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 159336 W: 40753 L: 40178 D: 78405
Ptnml(0-2): 126, 17497, 43864, 18038, 143

closes https://github.com/official-stockfish/Stockfish/pull/5534

bench 1613043
2024-08-20 20:59:36 +02:00
Linmiao Xu
b55217fd02 Update default main net to nn-31337bea577c.nnue
Created by updating output weights (256) and biases (8)
of the previous main net with values found with spsa around
101k / 120k games at 140+1.4.

264 spsa params: output weights and biases in nn-e8bac1c07a5a.nnue
A: 6000, alpha: 0.602, gamma: 0.101
weights: [-127, 127], c_end = 6
biases: [-8192, 8192], c_end = 64

Among the 264 params, 189 weights and all 8 biases were changed.

Changes in the weights:
- mean: -0.111 +/- 3.57
- range: [-8, 8]

Found with the same method as:
https://github.com/official-stockfish/Stockfish/pull/5459

Due to the original name (nn-ea8c9128c325.nnue) being too similar
to the previous main net (nn-e8bac1c07a5a.nnue) and creating confusion,
it was renamed by making non-functional changes to the .nnue file
the same way as past nets with:
https://github.com/linrock/nnue-namer

To verify that bench is the same and view the modified non-functional bytes:
```
echo -e "setoption name EvalFile value nn-ea8c9128c325.nnue\nbench" | ./stockfish
echo -e "setoption name EvalFile value nn-31337bea577c.nnue\nbench" | ./stockfish

cmp -l nn-ea8c9128c325.nnue nn-31337bea577c.nnue

diff <(xxd nn-ea8c9128c325.nnue) <(xxd nn-31337bea577c.nnue)
```

Passed STC:
https://tests.stockfishchess.org/tests/view/669564154ff211be9d4ec080
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 57280 W: 15139 L: 14789 D: 27352
Ptnml(0-2): 209, 6685, 14522, 6995, 229

Passed LTC:
https://tests.stockfishchess.org/tests/view/669694204ff211be9d4ec1b4
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 63030 W: 16093 L: 15720 D: 31217
Ptnml(0-2): 47, 6766, 17516, 7139, 47

closes https://github.com/official-stockfish/Stockfish/pull/5509

bench 1371485
2024-07-23 19:34:27 +02:00
Linmiao Xu
b209f14b1e Update default main net to nn-e8bac1c07a5a.nnue
Created by modifying L2 weights from the previous main net (nn-74f1d263ae9a.nnue)
with params found by spsa around 9k / 120k games at 120+1.2.

370 spsa params - L2 weights in nn-74f1d263ae9a.nnue where |val| >= 50
A: 6000, alpha: 0.602, gamma: 0.101
weights: [-127, 127], c_end = 6

To print the spsa params with nnue-pytorch:
```
import features
from serialize import NNUEReader

feature_set = features.get_feature_set_from_name("HalfKAv2_hm")
with open("nn-74f1d263ae9a.nnue", "rb") as f:
    model = NNUEReader(f, feature_set).model

c_end = 6
for i in range(8):
    for j in range(32):
        for k in range(30):
            value = int(model.layer_stacks.l2.weight[32 * i + j, k] * 64)
            if abs(value) >= 50:
                print(f"twoW[{i}][{j}][{k}],{value},-127,127,{c_end},0.0020")
```

Among the 370 params, 229 weights were changed.
  avg change: 0.0961 ± 1.67
  range: [-4, 3]

The number of weights changed, grouped by layer stack index,
shows more weights were modified in the lower piece count buckets:
[54, 52, 29, 23, 22, 18, 14, 17]

Found with the same method described in:
https://github.com/official-stockfish/Stockfish/pull/5459

Passed STC:
https://tests.stockfishchess.org/tests/view/668aec9a58083e5fd88239e7
LLR: 3.00 (-2.94,2.94) <0.00,2.00>
Total: 52384 W: 13569 L: 13226 D: 25589
Ptnml(0-2): 127, 6141, 13335, 6440, 149

Passed LTC:
https://tests.stockfishchess.org/tests/view/668af50658083e5fd8823a0b
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 46974 W: 12006 L: 11668 D: 23300
Ptnml(0-2): 25, 4992, 13121, 5318, 31

closes https://github.com/official-stockfish/Stockfish/pull/5466

bench 1300471
2024-07-09 18:49:28 +02:00
Linmiao Xu
5752529cab Update default main net to nn-74f1d263ae9a.nnue
Created by setting output weights (256) and biases (8) of the previous main net
nn-ddcfb9224cdb.nnue to values found around 12k / 120k spsa games at 120+1.2

This used modified fishtest dev workers to construct .nnue files from
spsa params, then load them with EvalFile when running tests:
https://github.com/linrock/fishtest/tree/spsa-file-modified-nnue/worker

Inspired by researching loading spsa params from files:
https://github.com/official-stockfish/fishtest/pull/1926

Scripts for modifying nnue files and preparing params:
https://github.com/linrock/nnue-pytorch/tree/no-gpu-modify-nnue

spsa params:
  weights: [-127, 127], c_end = 6
  biases: [-8192, 8192], c_end = 64

Example of reading output weights and biases from the previous main net using
nnue-pytorch and printing spsa params in a format compatible with fishtest:

```
import features
from serialize import NNUEReader

feature_set = features.get_feature_set_from_name("HalfKAv2_hm")
with open("nn-ddcfb9224cdb.nnue", "rb") as f:
    model = NNUEReader(f, feature_set).model

c_end_weights = 6
c_end_biases = 64

for i in range(8):
    for j in range(32):
        value = round(int(model.layer_stacks.output.weight[i, j] * 600 * 16) / 127)
        print(f"oW[{i}][{j}],{value},-127,127,{c_end_weights},0.0020")

for i in range(8):
    value = int(model.layer_stacks.output.bias[i] * 600 * 16)
    print(f"oB[{i}],{value},-8192,8192,{c_end_biases},0.0020")
```

For more info on spsa tuning params in nets:
https://github.com/official-stockfish/Stockfish/pull/5149
https://github.com/official-stockfish/Stockfish/pull/5254

Passed STC:
https://tests.stockfishchess.org/tests/view/66894d64e59d990b103f8a37
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 32000 W: 8443 L: 8137 D: 15420
Ptnml(0-2): 80, 3627, 8309, 3875, 109

Passed LTC:
https://tests.stockfishchess.org/tests/view/6689668ce59d990b103f8b8b
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 172176 W: 43822 L: 43225 D: 85129
Ptnml(0-2): 97, 18821, 47633, 19462, 75

closes https://github.com/official-stockfish/Stockfish/pull/5459

bench 1120091
2024-07-09 18:35:23 +02:00
Linmiao Xu
cb4a623119 Update default smallnet to nn-37f18f62d772.nnue
Created by training L1-128 from scratch with:
- skipping based on simple eval in the trainer, for compatibility with
  regular binpacks without requiring pre-filtering all binpacks
- minimum simple eval of 950, lower than 1000 previously
- usage of some hse-v1 binpacks with minimum simple eval 1000
- addition of hse-v6 binpacks with minimum simple eval 500
- permuting the FT with 10k positions from fishpack32.binpack
- torch.compile to speed up smallnet training

Training is significantly slower when using non-pre-filtered binpacks due to
the increased skipping required.

This net was reached at epoch 339.

```
experiment-name: 128--S1-hse-1k-T80-v6-unfilt-less-sf--se-gt950-no-wld-skip

training-dataset:
  /data/:
    - dfrc99-16tb7p.v2.min.binpack

  /data/hse-v1/:
    - leela96-filt-v2.min.high-simple-eval-1k.min-v2.binpack

    - test60-novdec2021-12tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.min-v2.binpack

    - test77-nov2021-2tb7p.no-db.min.high-simple-eval-1k.min-v2.binpack
    - test77-dec2021-16tb7p.no-db.min.high-simple-eval-1k.min-v2.binpack
    - test77-jan2022-2tb7p.high-simple-eval-1k.min-v2.binpack

    - test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.min-v2.binpack
    - test78-juntosep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.min-v2.binpack

    - test79-apr2022-16tb7p.min.high-simple-eval-1k.min-v2.binpack
    - test79-may2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.min-v2.binpack

    - test80-apr2022-16tb7p.min.high-simple-eval-1k.min-v2.binpack
    - test80-may2022-16tb7p.high-simple-eval-1k.min-v2.binpack
    - test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.min-v2.binpack
    - test80-jul2022-16tb7p.v6-dd.min.high-simple-eval-1k.min-v2.binpack
    - test80-sep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.min-v2.binpack
    - test80-nov2022-16tb7p-v6-dd.min.high-simple-eval-1k.min-v2.binpack

  /data/S11-mar2024/:
    - test80-2022-08-aug-16tb7p.v6-dd.min.binpack
    - test80-2022-10-oct-16tb7p.v6-dd.binpack
    - test80-2022-12-dec-16tb7p.min.binpack

    - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
    - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack
    - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack
    - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack
    - test80-2023-05-may-2tb7p.v6.min.binpack
    - test80-2023-06-jun-2tb7p.binpack.min-v2.binpack
    - test80-2023-07-jul-2tb7p.binpack.min-v2.binpack
    - test80-2023-08-aug-2tb7p.v6.min.binpack
    - test80-2023-09-sep-2tb7p.binpack.hse-v6.binpack
    - test80-2023-10-oct-2tb7p.binpack.hse-v6.binpack
    - test80-2023-11-nov-2tb7p.binpack.hse-v6.binpack
    - test80-2023-12-dec-2tb7p.binpack.hse-v6.binpack

    - test80-2024-01-jan-2tb7p.binpack.hse-v6.binpack
    - test80-2024-02-feb-2tb7p.binpack.hse-v6.binpack
    - test80-2024-03-mar-2tb7p.binpack

wld-fen-skipping: False

nnue-pytorch-branch: linrock/nnue-pytorch/128-skipSimpleEval-lt950-torch-compile
engine-test-branch: linrock/Stockfish/L1-128-nolazy
engine-base-branch: linrock/Stockfish/L1-128
start-from-engine-test-net: False

num-epochs: 500
start-lambda: 1.0
end-lambda: 1.0
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/66549c16a86388d5e27daff5
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 196608 W: 51254 L: 50697 D: 94657
Ptnml(0-2): 722, 23244, 49796, 23839, 703

Passed LTC:
https://tests.stockfishchess.org/tests/view/6658d1aa6b0e318cefa90122
LLR: 2.96 (-2.94,2.94) <0.50,2.50>
Total: 122538 W: 31332 L: 30835 D: 60371
Ptnml(0-2): 69, 13407, 33811, 13922, 60

closes https://github.com/official-stockfish/Stockfish/pull/5333

bench
2024-06-01 19:59:07 +02:00
Linmiao Xu
35aff79843 Update default main net to nn-ddcfb9224cdb.nnue
Created by further tuning the spsa-tuned main net `nn-c721dfca8cd3.nnue`
with the same methods described in https://github.com/official-stockfish/Stockfish/pull/5254

This net was reached at 61k / 120k spsa games at 70+0.7 th 7:
https://tests.stockfishchess.org/tests/view/665639d0a86388d5e27dd259

Passed STC:
https://tests.stockfishchess.org/tests/view/6657d44e6b0e318cefa8d771
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 114688 W: 29775 L: 29344 D: 55569
Ptnml(0-2): 274, 13633, 29149, 13964, 324

Passed LTC:
https://tests.stockfishchess.org/tests/view/6657e1e46b0e318cefa8d7a6
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 88152 W: 22412 L: 21988 D: 43752
Ptnml(0-2): 56, 9560, 24409, 10006, 45

closes https://github.com/official-stockfish/Stockfish/pull/5308

Bench: 1434678
2024-05-30 14:28:07 +02:00
Linmiao Xu
d92d1f3180 Move smallnet threshold logic into a function
Now that the smallnet threshold is no longer a constant,
use a function to organize it with other eval code.

Passed non-regression STC:
https://tests.stockfishchess.org/tests/view/66459fa093ce6da3e93b5ba2
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 217600 W: 56281 L: 56260 D: 105059
Ptnml(0-2): 756, 23787, 59729, 23736, 792

closes https://github.com/official-stockfish/Stockfish/pull/5255

No functional change
2024-05-18 09:21:00 +02:00
Linmiao Xu
1b7dea3f85 Update default main net to nn-c721dfca8cd3.nnue
Created by first retraining the spsa-tuned main net `nn-ae6a388e4a1a.nnue` with:
- using v6-dd data without bestmove captures removed
- addition of T80 mar2024 data
- increasing loss by 20% when Q is too high
- torch.compile changes for marginal training speed gains

And then SPSA tuning weights of epoch 899 following methods described in:
https://github.com/official-stockfish/Stockfish/pull/5149

This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run:
https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb
Thanks to @Viren6 for suggesting usage of:
- c value 4 for the weights
- c value 128 for the biases

Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in:
https://github.com/linrock/nnue-tools/tree/master/spsa

Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue
https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167

After initially training with max-epoch 800, training was resumed with max-epoch 1000.

```
experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8
nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more

start-from-engine-test-net: False
start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue

early-fen-skipping: 28
training-dataset:
  /data/S11-mar2024/:
    - leela96.v2.min.binpack

    - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
    - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack

    - test80-2022-06-jun-16tb7p.v6-dd.min.binpack

    - test80-2022-08-aug-16tb7p.v6-dd.min.binpack
    - test80-2022-09-sep-16tb7p.v6-dd.min.binpack

    - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
    - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack
    - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack
    - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack
    - test80-2023-05-may-2tb7p.v6.min.binpack

    # https://github.com/official-stockfish/Stockfish/pull/4782
    - test80-2023-06-jun-2tb7p.binpack
    - test80-2023-07-jul-2tb7p.binpack

    # https://github.com/official-stockfish/Stockfish/pull/4972
    - test80-2023-08-aug-2tb7p.v6.min.binpack
    - test80-2023-09-sep-2tb7p.binpack
    - test80-2023-10-oct-2tb7p.binpack

    # S9 new data: https://github.com/official-stockfish/Stockfish/pull/5056
    - test80-2023-11-nov-2tb7p.binpack
    - test80-2023-12-dec-2tb7p.binpack

    # S10 new data: https://github.com/official-stockfish/Stockfish/pull/5149
    - test80-2024-01-jan-2tb7p.binpack
    - test80-2024-02-feb-2tb7p.binpack

    # S11 new data
    - test80-2024-03-mar-2tb7p.binpack

  /data/filt-v6-dd/:
    - test77-dec2021-16tb7p-filter-v6-dd.binpack
    - test78-juntosep2022-16tb7p-filter-v6-dd.binpack
    - test79-apr2022-16tb7p-filter-v6-dd.binpack
    - test79-may2022-16tb7p-filter-v6-dd.binpack
    - test80-jul2022-16tb7p-filter-v6-dd.binpack
    - test80-oct2022-16tb7p-filter-v6-dd.binpack
    - test80-nov2022-16tb7p-filter-v6-dd.binpack

num-epochs: 1000

lr: 4.375e-4
gamma: 0.995
start-lambda: 0.8
end-lambda: 0.7
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch899.nnue : 4.6 +/- 1.4

Passed STC:
https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 95232 W: 24598 L: 24194 D: 46440
Ptnml(0-2): 294, 11215, 24180, 11647, 280

Passed LTC:
https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 320544 W: 81432 L: 80524 D: 158588
Ptnml(0-2): 164, 35659, 87696, 36611, 142

closes https://github.com/official-stockfish/Stockfish/pull/5254

bench 1995552
2024-05-18 09:19:10 +02:00
Linmiao Xu
47597641dc Lower smallnet threshold linearly as pawn count decreases
Passed STC:
https://tests.stockfishchess.org/tests/view/6644f677324e96f42f89d894
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 377920 W: 97135 L: 96322 D: 184463
Ptnml(0-2): 1044, 44259, 97588, 44978, 1091

Passed LTC:
https://tests.stockfishchess.org/tests/view/664548af93ce6da3e93b31b3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 169056 W: 42901 L: 42312 D: 83843
Ptnml(0-2): 58, 18538, 46753, 19115, 64

closes https://github.com/official-stockfish/Stockfish/pull/5252

Bench: 1991750
2024-05-16 14:19:28 +02:00
Linmiao Xu
0b08953174 Re-evaluate some small net positions for more accurate evals
Use main net evals when small net evals hint that higher eval
accuracy may be worth the slower eval speeds. With Finny caches,
re-evals with the main net are less expensive than before.

Original idea by mstembera who I've added as co-author to this PR.

Based on reEval tests by mstembera:
https://tests.stockfishchess.org/tests/view/65e69187b6345c1b934866e5
https://tests.stockfishchess.org/tests/view/65e863aa0ec64f0526c3e991

A few variants of this patch also passed LTC:
https://tests.stockfishchess.org/tests/view/663d2108507ebe1c0e91f407
https://tests.stockfishchess.org/tests/view/663e388c3a2f9702074bc152

Passed STC:
https://tests.stockfishchess.org/tests/view/663dadbd1a61d6377f190e2c
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 92320 W: 23941 L: 23531 D: 44848
Ptnml(0-2): 430, 10993, 22931, 11349, 457

Passed LTC:
https://tests.stockfishchess.org/tests/view/663ef48b2948bf9aa698690c
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 98934 W: 24907 L: 24457 D: 49570
Ptnml(0-2): 48, 10952, 27027, 11382, 58

closes https://github.com/official-stockfish/Stockfish/pull/5238

bench 1876282

Co-Authored-By: mstembera <5421953+mstembera@users.noreply.github.com>
2024-05-13 07:30:18 +02:00
cj5716
8ee9905d8b Remove PSQT-only mode
Passed STC:
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 94208 W: 24270 L: 24112 D: 45826
Ptnml(0-2): 286, 11186, 24009, 11330, 293
https://tests.stockfishchess.org/tests/view/6635ddd773559a8aa8582826

Passed LTC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 114960 W: 29107 L: 28982 D: 56871
Ptnml(0-2): 37, 12683, 31924, 12790, 46
https://tests.stockfishchess.org/tests/view/663604a973559a8aa85881ed

closes #5214

Bench 1653939
2024-05-05 12:36:20 +02:00
gab8192
49ef4c935a Implement accumulator refresh table
For each thread persist an accumulator cache for the network, where each
cache contains multiple entries for each of the possible king squares.
When the accumulator needs to be refreshed, the cached entry is used to more
efficiently update the accumulator, instead of rebuilding it from scratch.
This idea, was first described by Luecx (author of Koivisto) and
is commonly referred to as "Finny Tables".

When the accumulator needs to be refreshed, instead of filling it with
biases and adding every piece from scratch, we...

1. Take the `AccumulatorRefreshEntry` associated with the new king bucket
2. Calculate the features to activate and deactivate (from differences
   between bitboards in the entry and bitboards of the actual position)
3. Apply the updates on the refresh entry
4. Copy the content of the refresh entry accumulator to the accumulator
   we were refreshing
5. Copy the bitboards from the position to the refresh entry, to match
   the newly updated accumulator

Results at STC:
https://tests.stockfishchess.org/tests/view/662301573fe04ce4cefc1386
(first version)
https://tests.stockfishchess.org/tests/view/6627fa063fe04ce4cefc6560
(final)

Non-Regression between first and final:
https://tests.stockfishchess.org/tests/view/662801e33fe04ce4cefc660a

STC SMP:
https://tests.stockfishchess.org/tests/view/662808133fe04ce4cefc667c

closes https://github.com/official-stockfish/Stockfish/pull/5183

No functional change
2024-04-24 18:38:20 +02:00
Muzhen Gaming
1adf8e1ae6 VVLTC search tune
Parameters were tuned in 3 stages:

* Using an earlier L1-3072 net, and with triple extension margin manually set to 0: https://tests.stockfishchess.org/tests/view/65ffdf5d0ec64f0526c544f2 (~30k games)
* Continue tuning, but with the previous master net (L1-2560). https://tests.stockfishchess.org/tests/view/660663f00ec64f0526c59c41 (~27k games)
* Starting with the parameters from step 2, use the current L1-3072 net, and allow the triple extension margin to be tuned starting from 0: https://tests.stockfishchess.org/tests/view/660c16b8216a13d9498e7536 (40k games)

Passed VVLTC 1st sprt: https://tests.stockfishchess.org/tests/view/66115eacbfeb43334bf7eddd
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 27138 W: 7045 L: 6789 D: 13304
Ptnml(0-2): 1, 2421, 8471, 2673, 3

Passed VVLTC 2nd sprt: https://tests.stockfishchess.org/tests/view/661483623eb00c8ccc0049c1
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 26242 W: 6807 L: 6535 D: 12900
Ptnml(0-2): 0, 2353, 8143, 2625, 0

STC Elo estimate: https://tests.stockfishchess.org/tests/view/66175ca55a4693796d96608c
Elo: -10.53 ± 2.4 (95%) LOS: 0.0%
Total: 21584 W: 5294 L: 5948 D: 10342
Ptnml(0-2): 102, 2937, 5363, 2293, 97
nElo: -19.99 ± 4.7 (95%) PairsRatio: 0.79

closes https://github.com/official-stockfish/Stockfish/pull/5162

Bench: 1381387
2024-04-11 22:23:52 +02:00
Viren6
0716b845fd Update NNUE architecture to SFNNv9 and net nn-ae6a388e4a1a.nnue
Part 1: PyTorch Training, linrock

Trained with a 10-stage sequence from scratch, starting in May 2023:
https://github.com/linrock/nnue-tools/blob/master/exp-sequences/3072-10stage-SFNNv9.yml

While the training methods were similar to the L1-2560 training sequence,
the last two stages introduced min-v2 binpacks,
where bestmove capture and in-check position scores were not zeroed during minimization,
for compatibility with skipping SEE >= 0 positions and future research.

Training data can be found at:
https://robotmoon.com/nnue-training-data

This net was tested at epoch 679 of the 10th training stage:
https://tests.stockfishchess.org/tests/view/65f32e460ec64f0526c48dbc

Part 2: SPSA Training, Viren6

The net was then SPSA tuned.
This consisted of the output weights (32 * 8) and biases (8)
as well as the L3 biases (32 * 8) and L2 biases (16 * 8), totalling 648 params in total.

The SPSA tune can be found here:
https://tests.stockfishchess.org/tests/view/65fc33ba0ec64f0526c512e3

With the help of Disservin , the initial weights were extracted with:
https://github.com/Viren6/Stockfish/tree/new228

The net was saved with the tuned weights using:
https://github.com/Viren6/Stockfish/tree/new241

Earlier nets of the SPSA failed STC compared to the base 3072 net of part 1:
https://tests.stockfishchess.org/tests/view/65ff356e0ec64f0526c53c98
Therefore it is suspected that the SPSA at VVLTC has
added extra scaling on top of the scaling of increasing the L1 size.

Passed VVLTC 1:
https://tests.stockfishchess.org/tests/view/6604a9020ec64f0526c583da
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 53042 W: 13554 L: 13256 D: 26232
Ptnml(0-2): 12, 5147, 15903, 5449, 10

Passed VVLTC 2:
https://tests.stockfishchess.org/tests/view/660ad1b60ec64f0526c5dd23
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 17506 W: 4574 L: 4315 D: 8617
Ptnml(0-2): 1, 1567, 5362, 1818, 5

STC Elo estimate:
https://tests.stockfishchess.org/tests/view/660b834d01aaec5069f87cb0
Elo: -7.66 ± 3.8 (95%) LOS: 0.0%
Total: 9618 W: 2440 L: 2652 D: 4526
Ptnml(0-2): 80, 1281, 2261, 1145, 42
nElo: -13.94 ± 6.9 (95%) PairsRatio: 0.87

closes https://tests.stockfishchess.org/tests/view/660b834d01aaec5069f87cb0

bench 1823302

Co-Authored-By: Linmiao Xu <lin@robotmoon.com>
2024-04-02 08:49:48 +02:00
Muzhen Gaming
d99f89506b VVLTC search tune
This set of parameters was derived from 3 tuning attempts:

    https://tests.stockfishchess.org/tests/view/65d19ab61d8e83c78bfd8436 (80+0.8 x8, ~40k games)
    Then tuned with one of linrock's early L1-3072 nets:
    https://tests.stockfishchess.org/tests/view/65def7b04b19edc854ebdec8 (VVLTC, ~36k games)
    Starting from the result of this tuning, the parameters were then tuned with the current master net:
    https://tests.stockfishchess.org/tests/view/65f11c420ec64f0526c46fc4 (VVLTC, ~45k games)

Additionally, at the start of the third tuning phase, 2 parameters were manually changed:

    Notably, the triple extension margin was decreased from 78 to 22. This idea was given by Vizvezdenec:
    https://tests.stockfishchess.org/tests/view/65f0a2360ec64f0526c46752.
    The PvNode extension margin was also adjusted from 50 to 40.

This tune also differs from previous tuning attempts by tuning the evaluation thresholds for smallnet and psqt-only.
The former was increased through the tuning, and this is hypothesized to scale better at VVLTC,
although there is not much evidence of it.

Passed VVLTC 1st sprt: https://tests.stockfishchess.org/tests/view/65f6761d0ec64f0526c4be88
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 44688 W: 11421 L: 11140 D: 22127
Ptnml(0-2): 1, 4170, 13722, 4449, 2

Passed VVLTC 2nd sprt: https://tests.stockfishchess.org/tests/view/65fa31a30ec64f0526c4f611
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 27450 W: 7057 L: 6778 D: 13615
Ptnml(0-2): 4, 2545, 8346, 2828, 2

STC Elo estimate: https://tests.stockfishchess.org/tests/view/65fd3e540ec64f0526c521ae
Elo: -7.84 ± 1.8 (95%) LOS: 0.0%
Total: 40000 W: 9899 L: 10802 D: 19299
Ptnml(0-2): 203, 5221, 10025, 4378, 173
nElo: -14.91 ± 3.4 (95%) PairsRatio: 0.84

closes https://github.com/official-stockfish/Stockfish/pull/5130

Bench: 1876107
2024-03-22 16:44:06 +01:00
Gahtan Nahdi
1a6c22c511 Evaluation adjustment for different eval types
Gives different eval scaling parameters for the three different types
of evaluation (bignet, smallnet, psqtOnly).

Passed STC:
https://tests.stockfishchess.org/tests/view/65f4b0020ec64f0526c4a3bd
LLR: 2.96 (-2.94,2.94) <0.00,2.00>
Total: 168064 W: 43507 L: 42987 D: 81570
Ptnml(0-2): 662, 19871, 42445, 20393, 661

Passed LTC:
https://tests.stockfishchess.org/tests/view/65f6be1a0ec64f0526c4c361
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 162564 W: 41188 L: 40604 D: 80772
Ptnml(0-2): 120, 18112, 44216, 18732, 102

closes https://github.com/official-stockfish/Stockfish/pull/5122

Bench: 2113576
2024-03-20 16:29:35 +01:00
FauziAkram
627974c99f Search + Eval + Movepick Tune
Passed STC:
https://tests.stockfishchess.org/tests/view/65ef15220ec64f0526c44b04
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 24480 W: 6459 L: 6153 D: 11868
Ptnml(0-2): 101, 2798, 6184, 3008, 149

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ef4bac0ec64f0526c44f50
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 53316 W: 13561 L: 13203 D: 26552
Ptnml(0-2): 27, 5925, 14408, 6259, 39

closes https://github.com/official-stockfish/Stockfish/pull/5104

Bench: 1715522
2024-03-12 16:47:11 +01:00
Disservin
1a26d698de Refactor Network Usage
Continuing from PR #4968, this update improves how Stockfish handles network
usage, making it easier to manage and modify networks in the future.

With the introduction of a dedicated Network class, creating networks has become
straightforward. See uci.cpp:
```cpp
NN::NetworkBig({EvalFileDefaultNameBig, "None", ""}, NN::embeddedNNUEBig)
```

The new `Network` encapsulates all network-related logic, significantly reducing
the complexity previously required to support multiple network types, such as
the distinction between small and big networks #4915.

Non-Regression STC:
https://tests.stockfishchess.org/tests/view/65edd26c0ec64f0526c43584
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 33760 W: 8887 L: 8661 D: 16212
Ptnml(0-2): 143, 3795, 8808, 3961, 173

Non-Regression SMP STC:
https://tests.stockfishchess.org/tests/view/65ed71970ec64f0526c42fdd
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 59088 W: 15121 L: 14931 D: 29036
Ptnml(0-2): 110, 6640, 15829, 6880, 85

Compiled with `make -j profile-build`
```
bash ./bench_parallel.sh ./stockfish ./stockfish-nnue 13 50

sf_base =  1568540 +/-   7637 (95%)
sf_test =  1573129 +/-   7301 (95%)
diff    =     4589 +/-   8720 (95%)
speedup = 0.29260% +/- 0.556% (95%)
```

Compiled with `make -j build`
```
bash ./bench_parallel.sh ./stockfish ./stockfish-nnue 13 50

sf_base =  1472653 +/-   7293 (95%)
sf_test =  1491928 +/-   7661 (95%)
diff    =    19275 +/-   7154 (95%)
speedup = 1.30886% +/- 0.486% (95%)
```

closes https://github.com/official-stockfish/Stockfish/pull/5100

No functional change
2024-03-12 16:41:08 +01:00
Muzhen Gaming
10e2732978 VVLTC search tune
Result of 32k games of tuning at 60+0.6 8-thread. Link to the tuning
attempt:
https://tests.stockfishchess.org/tests/view/65def7b04b19edc854ebdec8

Passed VVLTC first SPRT:
https://tests.stockfishchess.org/tests/view/65e51b53416ecd92c162ab7f
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 37570 W: 9613 L: 9342 D: 18615
Ptnml(0-2): 2, 3454, 11601, 3727, 1

Passed VVLTC second SPRT:
https://tests.stockfishchess.org/tests/view/65e87d1c0ec64f0526c3eb39
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 123158 W: 31463 L: 31006 D: 60689
Ptnml(0-2): 5, 11589, 37935, 12044, 6

Note: The small net and psqt-only thresholds have been moved to
evaluate.h. The reasoning is that these values are used in both
`evaluate.cpp` and `evaluate_nnue.cpp`, and thus unifying their usage
avoids inconsistencies during testing, where one occurrence is changed
without the other (this happened during the search tune SPRT).

closes https://github.com/official-stockfish/Stockfish/pull/5101

Bench: 1741218
2024-03-11 10:04:37 +01:00
Linmiao Xu
bd579ab5d1 Update default main net to nn-1ceb1ade0001.nnue
Created by retraining the previous main net `nn-b1a57edbea57.nnue` with:
- some of the same options as before:
  - ranger21, more WDL skipping, 15% more loss when Q is too high
- removal of the huge 514G pre-interleaved binpack
- removal of SF-generated dfrc data (dfrc99-16tb7p-filt-v2.min.binpack)
- interleaving many binpacks at training time
- training with some bestmove capture positions where SEE < 0
- increased usage of torch.compile to speed up training by up to 40%

```yaml
experiment-name: 2560--S10-dfrc0-to-dec2023-skip-more-wdl-15p-more-loss-high-q-see-ge0-sk28
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more
start-from-engine-test-net: True

early-fen-skipping: 28
training-dataset:
  # similar, not the exact same as:
  # https://github.com/official-stockfish/Stockfish/pull/4635
  - /data/S5-5af/leela96.v2.min.binpack
  - /data/S5-5af/test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
  - /data/S5-5af/test77-2021-12-dec-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test78-2022-06-to-09-juntosep-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test79-2022-04-apr-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test79-2022-05-may-16tb7p.v6-dd.min.binpack

  - /data/S5-5af/test80-2022-06-jun-16tb7p.v6-dd.min.unmin.binpack
  - /data/S5-5af/test80-2022-07-jul-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-08-aug-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-09-sep-16tb7p.v6-dd.min.unmin.binpack
  - /data/S5-5af/test80-2022-10-oct-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-11-nov-16tb7p.v6-dd.min.binpack

  - /data/S5-5af/test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
  - /data/S5-5af/test80-2023-02-feb-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2023-03-mar-2tb7p.min.unmin.binpack
  - /data/S5-5af/test80-2023-04-apr-2tb7p.binpack
  - /data/S5-5af/test80-2023-05-may-2tb7p.min.dd.binpack

  # https://github.com/official-stockfish/Stockfish/pull/4782
  - /data/S6-1ee1aba5ed/test80-2023-06-jun-2tb7p.binpack
  - /data/S6-1ee1aba5ed/test80-2023-07-jul-2tb7p.min.binpack

  # https://github.com/official-stockfish/Stockfish/pull/4972
  - /data/S8-baff1edbea57/test80-2023-08-aug-2tb7p.v6.min.binpack
  - /data/S8-baff1edbea57/test80-2023-09-sep-2tb7p.binpack
  - /data/S8-baff1edbea57/test80-2023-10-oct-2tb7p.binpack

  # https://github.com/official-stockfish/Stockfish/pull/5056
  - /data/S9-b1a57edbea57/test80-2023-11-nov-2tb7p.binpack
  - /data/S9-b1a57edbea57/test80-2023-12-dec-2tb7p.binpack

num-epochs: 800
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

This particular net was reached at epoch 759. Use of more torch.compile decorators
in nnue-pytorch model.py than in the previous main net training run sped up training
by up to 40% on Tesla gpus when using recent pytorch compiled with cuda 12:
https://github.com/linrock/nnue-tools/blob/7fb9831/Dockerfile

Skipping positions with bestmove captures where static exchange evaluation is >= 0
is based on the implementation from Sopel's NNUE training & experimentation log:
https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY
Experiment 293 - only skip captures with see>=0

Positions with bestmove captures where score == 0 are always skipped for
compatibility with minimized binpacks, since the original minimizer sets
scores to 0 for slight improvements in compression.

The trainer branch used was:
https://github.com/linrock/nnue-pytorch/tree/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more

Binpacks were renamed to be sorted chronologically by default when sorted by name.
The binpack data are otherwise the same as binpacks with similar names in the prior
naming convention.

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65e3ddd1f2ef6c733362ae5c
LLR: 2.92 (-2.94,2.94) <0.00,2.00>
Total: 149792 W: 39153 L: 38661 D: 71978
Ptnml(0-2): 675, 17586, 37905, 18032, 698

Passed LTC:
https://tests.stockfishchess.org/tests/view/65e4d91c416ecd92c162a69b
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 64416 W: 16517 L: 16135 D: 31764
Ptnml(0-2): 38, 7218, 17313, 7602, 37

closes https://github.com/official-stockfish/Stockfish/pull/5090

Bench: 1373183
2024-03-07 19:53:48 +01:00
Linmiao Xu
8e75548f2a Update default main net to nn-b1a57edbea57.nnue
Created by retraining the previous main net `nn-baff1edbea57.nnue` with:
- some of the same options as before: ranger21, more WDL skipping
- the addition of T80 nov+dec 2023 data
- increasing loss by 15% when prediction is too high, up from 10%
- use of torch.compile to speed up training by over 25%

```yaml
experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

training-dataset:
  # https://github.com/official-stockfish/Stockfish/pull/4782
  - /data/S6-514G-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
  - /data/test80-nov2023-2tb7p.binpack
  - /data/test80-dec2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Epoch 819 trained with the above config led to this PR. Use of torch.compile
decorators in nnue-pytorch model.py was found to speed up training by at least
25% on Ampere gpus when using recent pytorch compiled with cuda 12:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

See recent main net PRs for more info on
- ranger21 and more WDL skipping: https://github.com/official-stockfish/Stockfish/pull/4942
- increasing loss when Q is too high: https://github.com/official-stockfish/Stockfish/pull/4972

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28

closes https://github.com/official-stockfish/Stockfish/pull/5056

Bench: 1351997
2024-02-17 17:11:46 +01:00
Disservin
88331add0d Remove the dependency on a Worker from evaluate
Also remove dead code, `rootSimpleEval` is no longer used since the introduction of dual net.
`iterBestValue` is also no longer used in evaluate and can be reduced to a local variable.

closes https://github.com/official-stockfish/Stockfish/pull/4979

No functional change
2024-01-14 10:46:13 +01:00
Disservin
a107910951 Refactor global variables
This aims to remove some of the annoying global structure which Stockfish has.

Overall there is no major elo regression to be expected.

Non regression SMP STC (paused, early version):
https://tests.stockfishchess.org/tests/view/65983d7979aa8af82b9608f1
LLR: 0.23 (-2.94,2.94) <-1.75,0.25>
Total: 76232 W: 19035 L: 19096 D: 38101
Ptnml(0-2): 92, 8735, 20515, 8690, 84

Non regression STC (early version):
https://tests.stockfishchess.org/tests/view/6595b3a479aa8af82b95da7f
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 185344 W: 47027 L: 46972 D: 91345
Ptnml(0-2): 571, 21285, 48943, 21264, 609

Non regression SMP STC:
https://tests.stockfishchess.org/tests/view/65a0715c79aa8af82b96b7e4
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 142936 W: 35761 L: 35662 D: 71513
Ptnml(0-2): 209, 16400, 38135, 16531, 193

These global structures/variables add hidden dependencies and allow data
to be mutable from where it shouldn't it be (i.e. options). They also
prevent Stockfish from internal selfplay, which would be a nice thing to
be able to do, i.e. instantiate two Stockfish instances and let them
play against each other. It will also allow us to make Stockfish a
library, which can be easier used on other platforms.

For consistency with the old search code, `thisThread` has been kept,
even though it is not strictly necessary anymore. This the first major
refactor of this kind (in recent time), and future changes are required,
to achieve the previously described goals. This includes cleaning up the
dependencies, transforming the network to be self contained and coming
up with a plan to deal with proper tablebase memory management (see
comments for more information on this).

The removal of these global structures has been discussed in parts with
Vondele and Sopel.

closes https://github.com/official-stockfish/Stockfish/pull/4968

No functional change
2024-01-13 19:40:53 +01:00
Linmiao Xu
6deb88728f Update default main net to nn-baff1edbea57.nnue
Created by retraining the previous main net nn-b1e55edbea57.nnue with:
- some of the same options as before: ranger21 optimizer, more WDL
  skipping
- adding T80 aug filter-v6, sep, and oct 2023 data to the previous best
  dataset
- increasing training loss for positions where predicted win rates were
  higher than estimated match results from training data position scores

```yaml
experiment-name: 2560--S8-r21-more-wdl-skip-10p-more-loss-high-q-sk28

training-dataset:
  # https://github.com/official-stockfish/Stockfish/pull/4782
  - /data/S6-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-10p-more-loss-high-q

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Training loss was increased by 10% for positions where predicted win
rates were higher than suggested by the win rate model based on the
training data, by multiplying with: ((qf > pt) * 0.1 + 1). This was a
variant of experiments from Sopel's NNUE training & experimentation log:
https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY
Experiment 302 - increase loss when prediction too high, vondele’s idea
Experiment 309 - increase loss when prediction too high, normalize in a
batch

Passed STC:
https://tests.stockfishchess.org/tests/view/6597a21c79aa8af82b95fd5c
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 148320 W: 37960 L: 37475 D: 72885
Ptnml(0-2): 542, 17565, 37383, 18206, 464

Passed LTC:
https://tests.stockfishchess.org/tests/view/659834a679aa8af82b960845
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 55188 W: 13955 L: 13592 D: 27641
Ptnml(0-2): 34, 6162, 14834, 6535, 29

closes https://github.com/official-stockfish/Stockfish/pull/4972

Bench: 1219824
2024-01-08 18:34:36 +01:00
Disservin
99cdb920fc Cleanup Evalfile handling
This cleans up the EvalFile handling after the merge of #4915,
which has become a bit confusing on what it is actually doing.

closes https://github.com/official-stockfish/Stockfish/pull/4971

No functional change
2024-01-08 18:33:38 +01:00
Linmiao Xu
f09adaa4a4 Update smallnet to nn-baff1ede1f90.nnue with wider eval range
Created by training an L1-128 net from scratch with a wider range of
evals in the training data and wld-fen-skipping disabled during
training. The differences in this training data compared to the first
dual nnue PR are:

- removal of all positions with 3 pieces
- when piece count >= 16, keep positions with simple eval above 750
- when piece count < 16, remove positions with simple eval above 3000

The asymmetric data filtering was meant to flatten the training data
piece count distribution, which was previously heavily skewed towards
positions with low piece counts.

Additionally, the simple eval range where the smallnet is used was
widened to cover more positions previously evaluated by the big net and
simple eval.

```yaml
experiment-name: 128--S1-hse-S7-v4-S3-v1-no-wld-skip

training-dataset:
  - /data/hse/S3/leela96-filt-v2.min.high-simple-eval-1k.binpack
  - /data/hse/S3/dfrc99-16tb7p-eval-filt-v2.min.high-simple-eval-1k.binpack
  - /data/hse/S3/test80-apr2022-16tb7p.min.high-simple-eval-1k.binpack

  - /data/hse/S7/test60-2020-2tb7p.v6-3072.high-simple-eval-v4.binpack
  - /data/hse/S7/test60-novdec2021-12tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack

  - /data/hse/S7/test77-nov2021-2tb7p.v6-3072.min.high-simple-eval-v4.binpack
  - /data/hse/S7/test77-dec2021-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack
  - /data/hse/S7/test77-jan2022-2tb7p.high-simple-eval-v4.binpack

  - /data/hse/S7/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack
  - /data/hse/S7/test78-juntosep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack

  - /data/hse/S7/test79-apr2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack
  - /data/hse/S7/test79-may2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack

  - /data/hse/S7/test80-may2022-16tb7p.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-jul2022-16tb7p.v6-dd.min.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-aug2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-sep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-oct2022-16tb7p.v6-dd.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-nov2022-16tb7p-v6-dd.min.high-simple-eval-v4.binpack

  - /data/hse/S7/test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-mar2023-2tb7p.v6-sk16.min.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-apr2023-2tb7p-filter-v6-sk16.min.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-may2023-2tb7p.v6.min.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-jun2023-2tb7p.v6-3072.min.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-jul2023-2tb7p.v6-3072.min.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-aug2023-2tb7p.v6.min.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-sep2023-2tb7p.high-simple-eval-v4.binpack
  - /data/hse/S7/test80-oct2023-2tb7p.high-simple-eval-v4.binpack

wld-fen-skipping: False
start-from-engine-test-net: False

nnue-pytorch-branch: linrock/nnue-pytorch/L1-128
engine-test-branch: linrock/Stockfish/L1-128-nolazy
engine-base-branch: linrock/Stockfish/L1-128

num-epochs: 500
start-lambda: 1.0
end-lambda: 1.0
```

Experiment yaml configs converted to easy_train.sh commands with:
https://github.com/linrock/nnue-tools/blob/4339954/yaml_easy_train.py

Binpacks interleaved at training time with:
https://github.com/official-stockfish/nnue-pytorch/pull/259

FT weights permuted with 10k positions from fishpack32.binpack with:
https://github.com/official-stockfish/nnue-pytorch/pull/254

Data filtered for high simple eval positions (v4) with:
https://github.com/linrock/Stockfish/blob/b9c8440/src/tools/transform.cpp#L640-L675

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move of
L1-128 smallnet (nnue-only eval) vs. L1-128 trained on standard S1 data:
nn-epoch319.nnue : -241.7 +/- 3.2

Passed STC vs. 36db936:
https://tests.stockfishchess.org/tests/view/6576b3484d789acf40aabbfe
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 21920 W: 5680 L: 5381 D: 10859
Ptnml(0-2): 82, 2488, 5520, 2789, 81

Passed LTC vs. DualNNUE #4915:
https://tests.stockfishchess.org/tests/view/65775c034d789acf40aac7e3
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 147606 W: 36619 L: 36063 D: 74924
Ptnml(0-2): 98, 16591, 39891, 17103, 120

closes https://github.com/official-stockfish/Stockfish/pull/4919

Bench: 1438336
2024-01-07 21:20:15 +01:00
Linmiao Xu
584d9efedc Dual NNUE with L1-128 smallnet
Credit goes to @mstembera for:
- writing the code enabling dual NNUE:
  https://github.com/official-stockfish/Stockfish/pull/4898
- the idea of trying L1-128 trained exclusively on high simple eval
  positions

The L1-128 smallnet is:
- epoch 399 of a single-stage training from scratch
- trained only on positions from filtered data with high material
  difference
  - defined by abs(simple_eval) > 1000

```yaml
experiment-name: 128--S1-only-hse-v2

training-dataset:
  - /data/hse/S3/dfrc99-16tb7p-eval-filt-v2.min.high-simple-eval-1k.binpack
  - /data/hse/S3/leela96-filt-v2.min.high-simple-eval-1k.binpack
  - /data/hse/S3/test80-apr2022-16tb7p.min.high-simple-eval-1k.binpack

  - /data/hse/S7/test60-2020-2tb7p.v6-3072.high-simple-eval-1k.binpack
  - /data/hse/S7/test60-novdec2021-12tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack

  - /data/hse/S7/test77-nov2021-2tb7p.v6-3072.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test77-dec2021-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test77-jan2022-2tb7p.high-simple-eval-1k.binpack

  - /data/hse/S7/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test78-juntosep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack

  - /data/hse/S7/test79-apr2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test79-may2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack

  # T80 2022
  - /data/hse/S7/test80-may2022-16tb7p.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-jul2022-16tb7p.v6-dd.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-aug2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-sep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-oct2022-16tb7p.v6-dd.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-nov2022-16tb7p-v6-dd.min.high-simple-eval-1k.binpack

  # T80 2023
  - /data/hse/S7/test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-mar2023-2tb7p.v6-sk16.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-apr2023-2tb7p-filter-v6-sk16.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-may2023-2tb7p.v6.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-jun2023-2tb7p.v6-3072.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-jul2023-2tb7p.v6-3072.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-aug2023-2tb7p.v6.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-sep2023-2tb7p.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-oct2023-2tb7p.high-simple-eval-1k.binpack

start-from-engine-test-net: False

nnue-pytorch-branch: linrock/nnue-pytorch/L1-128
engine-test-branch: linrock/Stockfish/L1-128-nolazy
engine-base-branch: linrock/Stockfish/L1-128

num-epochs: 500
lambda: 1.0
```

Experiment yaml configs converted to easy_train.sh commands with:
https://github.com/linrock/nnue-tools/blob/4339954/yaml_easy_train.py

Binpacks interleaved at training time with:
https://github.com/official-stockfish/nnue-pytorch/pull/259

Data filtered for high simple eval positions with:
https://github.com/linrock/nnue-data/blob/32d6a68/filter_high_simple_eval_plain.py
https://github.com/linrock/Stockfish/blob/61dbfe/src/tools/transform.cpp#L626-L655

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move of
L1-128 smallnet (nnue-only eval) vs. L1-128 trained on standard S1 data:
nn-epoch399.nnue : -318.1 +/- 2.1

Passed STC:
https://tests.stockfishchess.org/tests/view/6574cb9d95ea6ba1fcd49e3b
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 62432 W: 15875 L: 15521 D: 31036
Ptnml(0-2): 177, 7331, 15872, 7633, 203

Passed LTC:
https://tests.stockfishchess.org/tests/view/6575da2d4d789acf40aaac6e
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 64830 W: 16118 L: 15738 D: 32974
Ptnml(0-2): 43, 7129, 17697, 7497, 49

closes https://github.com/official-stockfish/Stockfish/pulls

Bench: 1330050

Co-Authored-By: mstembera <5421953+mstembera@users.noreply.github.com>
2024-01-07 21:15:52 +01:00
Disservin
b987d4f033 Use type aliases instead of enums for Value types
The primary rationale behind this lies in the fact that enums were not
originally designed to be employed in the manner we currently utilize them.

The Value enum was used like a type alias throughout the code and was often
misused. Furthermore, changing the underlying size of the enum to int16_t broke
everything, mostly because of the operator overloads for the Value enum, were
causing data to be truncated. Since Value is now a type alias, the operator
overloads are no longer required.

Passed Non-Regression STC:
https://tests.stockfishchess.org/tests/view/6593b8bb79aa8af82b95b401
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 235296 W: 59919 L: 59917 D: 115460
Ptnml(0-2): 743, 27085, 62054, 26959, 807

closes https://github.com/official-stockfish/Stockfish/pull/4960

No functional change
2024-01-04 15:54:23 +01:00
Disservin
444f03ee95 Update copyright year
closes https://github.com/official-stockfish/Stockfish/pull/4954

No functional change
2024-01-04 15:47:10 +01:00
Linmiao Xu
f12035c88c Update default net to nn-b1e55edbea57.nnue
Created by retraining the master big net `nn-0000000000a0.nnue` on the same
dataset with the ranger21 optimizer and more WDL skipping at training time.

More WDL skipping is meant to increase lambda accuracy and train on fewer
misevaluated positions where position scores are unlikely to correlate
with game outcomes. Inspired by:
- repeated reports in discord #events-discuss about SF misplaying due to wrong endgame
  evals, possibly due to Leela's endgame weaknesses reflected in training data
- an attempt to reduce the skewed dataset piece count distribution where there
  are much more positions with less than 16 pieces, since the target piece count
  distribution in the trainer is symmetric around 16

The faster convergence seen with ranger21 is meant to:
- prune experiment ideas more quickly since fewer epochs are needed to reach elo maxima
- research faster potential trainings by shortening each run

```yaml
experiment-name: 2560-S7-Re-514G-ranger21-more-wdl-skip
training-dataset: /data/S6-514G.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip

num-epochs: 1200
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Experiment yaml configs converted to easy_train.sh commands with:
https://github.com/linrock/nnue-tools/blob/4339954/yaml_easy_train.py

Implementations based off of Sopel's NNUE training & experimentation log:
https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY
- Experiment 336 - ranger21 https://github.com/Sopel97/nnue-pytorch/tree/experiment_336
- Experiment 351 - more WDL skipping

The version of the ranger21 optimizer used is:
https://github.com/lessw2020/Ranger21/blob/b507df6/ranger21/ranger21.py

The dataset is the exact same as in:
https://github.com/official-stockfish/Stockfish/pull/4782

Local elo at 25k nodes per move:
nn-epoch619.nnue : 6.2 +/- 4.2

Passed STC:
https://tests.stockfishchess.org/tests/view/658a029779aa8af82b94fbe6
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 46528 W: 11985 L: 11650 D: 22893
Ptnml(0-2): 154, 5489, 11688, 5734, 199

Passed LTC:
https://tests.stockfishchess.org/tests/view/658a448979aa8af82b95010f
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 265326 W: 66378 L: 65574 D: 133374
Ptnml(0-2): 153, 30175, 71254, 30877, 204

This was additionally tested with the latest DualNNUE and passed SPRTs:

Passed STC vs. https://github.com/official-stockfish/Stockfish/pull/4919
https://tests.stockfishchess.org/tests/view/658bcd5c79aa8af82b951846
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 296128 W: 76273 L: 75554 D: 144301
Ptnml(0-2): 1223, 35768, 73617, 35979, 1477

Passed LTC vs. https://github.com/official-stockfish/Stockfish/pull/4919
https://tests.stockfishchess.org/tests/view/658c988d79aa8af82b95240f
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 75618 W: 19085 L: 18680 D: 37853
Ptnml(0-2): 45, 8420, 20497, 8779, 68

closes https://github.com/official-stockfish/Stockfish/pull/4942

Bench: 1304666
2023-12-30 11:08:03 +01:00
Disservin
2d0237db3f add clang-format
This introduces clang-format to enforce a consistent code style for Stockfish.

Having a documented and consistent style across the code will make contributing easier
for new developers, and will make larger changes to the codebase easier to make.

To facilitate formatting, this PR includes a Makefile target (`make format`) to format the code,
this requires clang-format (version 17 currently) to be installed locally.

Installing clang-format is straightforward on most OS and distros
(e.g. with https://apt.llvm.org/, brew install clang-format, etc), as this is part of quite commonly
used suite of tools and compilers (llvm / clang).

Additionally, a CI action is present that will verify if the code requires formatting,
and comment on the PR as needed. Initially, correct formatting is not required, it will be
done by maintainers as part of the merge or in later commits, but obviously this is encouraged.

fixes https://github.com/official-stockfish/Stockfish/issues/3608
closes https://github.com/official-stockfish/Stockfish/pull/4790

Co-Authored-By: Joost VandeVondele <Joost.VandeVondele@gmail.com>
2023-10-22 16:06:27 +02:00
Linmiao Xu
afe7f4d9b0 Update default net to nn-0000000000a0.nnue
This is a later epoch from the same experiment that led to the previous
master net. In training stage 6, max-epoch was raised to 1,200 near the
end of the first 1,000 epochs.

For more details, see https://github.com/official-stockfish/Stockfish/pull/4795

Local elo at 25k nodes per move (vs. L1-2048 nn-1ee1aba5ed4c.nnue)
ep1079 : 15.6 +/- 1.2

Passed STC:
https://tests.stockfishchess.org/tests/view/651503b3b3e74811c8af1e2a
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 29408 W: 7607 L: 7304 D: 14497
Ptnml(0-2): 97, 3277, 7650, 3586, 94

Passed LTC:
https://tests.stockfishchess.org/tests/view/651585ceb3e74811c8af2a5f
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 73164 W: 18828 L: 18440 D: 35896
Ptnml(0-2): 30, 7749, 20644, 8121, 38

closes https://github.com/official-stockfish/Stockfish/pull/4810

Bench: 1453057
2023-09-29 22:30:27 +02:00
Linmiao Xu
70ba9de85c Update NNUE architecture to SFNNv8: L1-2560 nn-ac1dbea57aa3.nnue
Creating this net involved:
- a 6-stage training process from scratch. The datasets used in stages 1-5 were fully minimized.
- permuting L1 weights with https://github.com/official-stockfish/nnue-pytorch/pull/254

A strong epoch after each training stage was chosen for the next. The 6 stages were:

```
1. 400 epochs, lambda 1.0, default LR and gamma
   UHOx2-wIsRight-multinet-dfrc-n5000 (135G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack

2. 800 epochs, end-lambda 0.75, LR 4.375e-4, gamma 0.995, skip 12
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack

3. 800 epochs, end-lambda 0.725, LR 4.375e-4, gamma 0.995, skip 20
   leela93-v1-dfrc99-v2-T78juntosepT80jan-v6dd-T78janfebT79aprT80aprmay.min.binpack
     leela93-filt-v1.min.binpack
     dfrc99-16tb7p-filt-v2.min.binpack
     test78-juntosep2022-16tb7p-filter-v6-dd.min-mar2023.binpack
     test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.binpack
     test78-janfeb2022-16tb7p.min.binpack
     test79-apr2022-16tb7p.min.binpack
     test80-apr2022-16tb7p.min.binpack
     test80-may2022-16tb7p.min.binpack

4. 800 epochs, end-lambda 0.7, LR 4.375e-4, gamma 0.995, skip 24
   leela96-dfrc99-v2-T78juntosepT79mayT80junsepnovjan-v6dd-T80mar23-v6-T60novdecT77decT78aprmayT79aprT80may23.min.binpack
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-filt-v2.min.binpack
     test78-juntosep2022-16tb7p-filter-v6-dd.min-mar2023.binpack
     test79-may2022-16tb7p.filter-v6-dd.min.binpack
     test80-jun2022-16tb7p.filter-v6-dd.min.binpack
     test80-sep2022-16tb7p.filter-v6-dd.min.binpack
     test80-nov2022-16tb7p.filter-v6-dd.min.binpack
     test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.binpack
     test80-mar2023-2tb7p.v6-sk16.min.binpack
     test60-novdec2021-16tb7p.min.binpack
     test77-dec2021-16tb7p.min.binpack
     test78-aprmay2022-16tb7p.min.binpack
     test79-apr2022-16tb7p.min.binpack
     test80-may2023-2tb7p.min.binpack

5. 960 epochs, end-lambda 0.7, LR 4.375e-4, gamma 0.995, skip 28
   Increased max-epoch to 960 near the end of the first 800 epochs
   5af11540bbfe dataset: https://github.com/official-stockfish/Stockfish/pull/4635

6. 1000 epochs, end-lambda 0.7, LR 4.375e-4, gamma 0.995, skip 28
   Increased max-epoch to 1000 near the end of the first 800 epochs
   1ee1aba5ed dataset: https://github.com/official-stockfish/Stockfish/pull/4782
```

L1 weights permuted with:
```bash
python3 serialize.py $nnue $nnue_permuted \
  --features=HalfKAv2_hm \
  --ft_optimize \
  --ft_optimize_data=/data/fishpack32.binpack \
  --ft_optimize_count=10000
```

Speed measurements from 100 bench runs at depth 13 with profile-build x86-64-avx2:
```
sf_base =  1329051 +/-   2224 (95%)
sf_test =  1163344 +/-   2992 (95%)
diff    =  -165706 +/-   4913 (95%)
speedup = -12.46807% +/- 0.370% (95%)
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move (vs. L1-2048 nn-1ee1aba5ed4c.nnue)
ep959 : 16.2 +/- 2.3

Failed 10+0.1 STC:
https://tests.stockfishchess.org/tests/view/6501beee2cd016da89abab21
LLR: -2.92 (-2.94,2.94) <0.00,2.00>
Total: 13184 W: 3285 L: 3535 D: 6364
Ptnml(0-2): 85, 1662, 3334, 1440, 71

Failed 180+1.8 VLTC:
https://tests.stockfishchess.org/tests/view/6505cf9a72620bc881ea908e
LLR: -2.94 (-2.94,2.94) <0.00,2.00>
Total: 64248 W: 16224 L: 16374 D: 31650
Ptnml(0-2): 26, 6788, 18640, 6650, 20

Passed 60+0.6 th 8 VLTC SMP (STC bounds):
https://tests.stockfishchess.org/tests/view/65084a4618698b74c2e541dc
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 90630 W: 23372 L: 23033 D: 44225
Ptnml(0-2): 13, 8490, 27968, 8833, 11

Passed 60+0.6 th 8 VLTC SMP:
https://tests.stockfishchess.org/tests/view/6501d45d2cd016da89abacdb
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 137804 W: 35764 L: 35276 D: 66764
Ptnml(0-2): 31, 13006, 42326, 13522, 17

closes https://github.com/official-stockfish/Stockfish/pull/4795

bench 1246812
2023-09-22 19:26:16 +02:00
Sebastian Buchwald
952740b36c Let CI check C++ includes
The commit adds a CI workflow that uses the included-what-you-use (IWYU)
tool to check for missing or superfluous includes in .cpp files and
their corresponding .h files. This means that some .h files (especially
in the nnue folder) are not checked yet.

The CI setup looks like this:
- We build IWYU from source to include some yet unreleased fixes.
  This IWYU version targets LLVM 17. Thus, we get the latest release
  candidate of LLVM 17 from LLVM's nightly packages.
- The Makefile now has an analyze target that just build the object
  files (without linking)
- The CI uses the analyze target with the IWYU tool as compiler to
  analyze the compiled .cpp file and its corresponding .h file.
- If IWYU suggests a change the build fails (-Xiwyu --error).
- To avoid false positives we use LLVM's libc++ as standard library
- We have a custom mappings file that adds some mappings that are
  missing in IWYU's default mappings

We also had to add one IWYU pragma to prevent a false positive in
movegen.h.

https://github.com/official-stockfish/Stockfish/pull/4783

No functional change
2023-09-22 19:12:53 +02:00
Linmiao Xu
3d1b067d85 Update default net to nn-1ee1aba5ed4c.nnue
Created by retraining the master net on a dataset composed by:
- adding Leela data from T60 jul-dec 2020, T77 nov 2021, T80 jun-jul 2023
- deduplicating and unminimizing parts of the dataset before interleaving

Trained initially with max epoch 800, then increased near the end of training
twice. First to 960, then 1200. After training, post-processing involved:
- greedy permuting L1 weights with https://github.com/official-stockfish/Stockfish/pull/4620
- greedy 2- and 3- cycle permuting with https://github.com/official-stockfish/Stockfish/pull/4640

  python3 easy_train.py \
    --experiment-name 2048-retrain-S6-sk28 \
    --training-dataset /data/S6.binpack \
    --early-fen-skipping 28 \
    --start-from-engine-test-net True \
    --max_epoch 1200 \
    --lr 4.375e-4 \
    --gamma 0.995 \
    --start-lambda 1.0 \
    --end-lambda 0.7 \
    --tui False \
    --seed $RANDOM \
    --gpus 0

In the list of datasets below, periods in the filename represent the sequence of
steps applied to arrive at the particular binpack. For example:

test77-dec2021-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
1. test77 dec2021 data rescored with 16 TB of syzygy tablebases during data conversion
2. filtered with csv_filter_v6_dd.py - v6 filtering and deduplication in one step
3. minimized with the original mar2023 implementation of `minimize_binpack` in
   the tools branch
4. unminimized by removing all positions with score == 32002 (`VALUE_NONE`)

Binpacks were:
- filtered with: https://github.com/linrock/nnue-data
- unminimized with: https://github.com/linrock/Stockfish/tree/tools-unminify
- deduplicated with: https://github.com/linrock/Stockfish/tree/tools-dd

  DATASETS=(
    leela96-filt-v2.min.unminimized.binpack
    dfrc99-16tb7p-eval-filt-v2.min.unminimized.binpack

    # most of the 0dd1cebea57 v6-dd dataset (without test80-jul2022)
    # https://github.com/official-stockfish/Stockfish/pull/4606
    test60-novdec2021-12tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test77-dec2021-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test78-jantomay2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test78-juntosep2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test79-apr2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test79-may2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-jun2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-aug2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-sep2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-oct2022-16tb7p.filter-v6-dd.min.binpack
    test80-nov2022-16tb7p.filter-v6-dd.min.binpack
    test80-jan2023-3of3-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-feb2023-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack

    # older Leela data, recently converted
    test60-octnovdec2020-2tb7p.min.unminimized.binpack
    test60-julaugsep2020-2tb7p.min.binpack
    test77-nov2021-2tb7p.min.dd.binpack

    # newer Leela data
    test80-mar2023-2tb7p.min.unminimized.binpack
    test80-apr2023-2tb7p.filter-v6-sk16.min.unminimized.binpack
    test80-may2023-2tb7p.min.dd.binpack
    test80-jun2023-2tb7p.min.binpack
    test80-jul2023-2tb7p.binpack
  )
  python3 interleave_binpacks.py ${DATASETS[@]} /data/S6.binpack

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch1059 : 2.7 +/- 1.6

Passed STC:
https://tests.stockfishchess.org/tests/view/64fc8d705dab775b5359db42
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 168352 W: 43216 L: 42704 D: 82432
Ptnml(0-2): 599, 19672, 43134, 20160, 611

Passed LTC:
https://tests.stockfishchess.org/tests/view/64fd44a75dab775b5359f065
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 154194 W: 39436 L: 38881 D: 75877
Ptnml(0-2): 78, 16577, 43238, 17120, 84

closes https://github.com/official-stockfish/Stockfish/pull/4782

Bench: 1603079
2023-09-11 22:37:39 +02:00
Stéphane Nicolet
b25d68f6ee Introduce simple_eval() for lazy evaluations
This patch implements the pure materialistic evaluation called simple_eval()
to gain a speed-up during Stockfish search.

We use the so-called lazy evaluation trick: replace the accurate but slow
NNUE network evaluation by the super-fast simple_eval() if the position
seems to be already won (high material advantage). To guard against some
of the most obvious blunders introduced by this idea, this patch uses the
following features which will raise the lazy evaluation threshold in some
situations:

- avoid lazy evals on shuffling branches in the search tree
- avoid lazy evals if the position at root already has a material imbalance
- avoid lazy evals if the search value at root is already winning/losing.

Moreover, we add a small random noise to the simple_eval() term. This idea
(stochastic mobility in the minimax tree) was worth about 200 Elo in the pure
simple_eval() player on Lichess.

Overall, the current implementation in this patch evaluates about 2% of the
leaves in the search tree lazily.

--------------------------------------------

STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 60352 W: 15585 L: 15234 D: 29533
Ptnml(0-2): 216, 6906, 15578, 7263, 213
https://tests.stockfishchess.org/tests/view/64f1d9bcbd9967ffae366209

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 35106 W: 8990 L: 8678 D: 17438
Ptnml(0-2): 14, 3668, 9887, 3960, 24
https://tests.stockfishchess.org/tests/view/64f25204f5b0c54e3f04c0e7

verification run at VLTC:
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 74362 W: 19088 L: 18716 D: 36558
Ptnml(0-2): 6, 7226, 22348, 7592, 9
https://tests.stockfishchess.org/tests/view/64f2ecdbf5b0c54e3f04d3ae

All three tests above were run with adjudication off, we also verified that
there was no regression on matetracker (thanks Disservin!).

----------------------------------------------

closes https://github.com/official-stockfish/Stockfish/pull/4771

Bench: 1393714
2023-09-03 09:28:16 +02:00
Disservin
3c0e86a91e Cleanup includes
Reorder a few includes, include "position.h" where it was previously missing
and apply include-what-you-use suggestions. Also make the order of the includes
consistent, in the following way:

1. Related header (for .cpp files)
2. A blank line
3. C/C++ headers
4. A blank line
5. All other header files

closes https://github.com/official-stockfish/Stockfish/pull/4763
fixes https://github.com/official-stockfish/Stockfish/issues/4707

No functional change
2023-09-03 08:24:51 +02:00
Sebastian Buchwald
f972947492 Cleanup code after removal of classical evaluation
This includes the following changes:
- Remove declaration of removed global variable
- Adapt string that mentions removed UCI option

closes https://github.com/official-stockfish/Stockfish/pull/4675

No functional change
2023-07-13 08:19:37 +02:00
Linmiao Xu
e699fee513 Update default net to nn-c38c3d8d3920.nnue
This was a later epoch from the same experiment that led to the
previous master net. After training, it was prepared the same way:

1. greedy permuting L1 weights with https://github.com/official-stockfish/Stockfish/pull/4620
2. leb128 compression with https://github.com/glinscott/nnue-pytorch/pull/251
3. greedy 2- and 3- cycle permuting with https://github.com/official-stockfish/Stockfish/pull/4640

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch739.nnue : 20.2 +/- 1.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64a050b33ee09aa549c4e4c8
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 195552 W: 49977 L: 49430 D: 96145
Ptnml(0-2): 556, 22775, 50607, 23242, 596

Passed LTC:
https://tests.stockfishchess.org/tests/view/64a127bd3ee09aa549c4f60c
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 235452 W: 60327 L: 59609 D: 115516
Ptnml(0-2): 119, 25173, 66426, 25887, 121

closes https://github.com/official-stockfish/Stockfish/pull/4666

bench 2427629
2023-07-06 23:03:58 +02:00
Linmiao Xu
915532181f Update NNUE architecture to SFNNv7 with larger L1 size of 2048
Creating this net involved:
- a 5-step training process from scratch
- greedy permuting L1 weights with https://github.com/official-stockfish/Stockfish/pull/4620
- leb128 compression with https://github.com/glinscott/nnue-pytorch/pull/251
- greedy 2- and 3- cycle permuting with https://github.com/official-stockfish/Stockfish/pull/4640

The 5 training steps were:

1. 400 epochs, lambda 1.0, lr 9.75e-4
   UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9.binpack (178G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack
     large_gensfen_multipvdiff_100_d9.binpack
   ep399 chosen as start model for step2

2. 800 epochs, end-lambda 0.75, skip 16
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack
   ep559 chosen as start model for step3

3. 800 epochs, end-lambda 0.725, skip 20
   leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr.binpack (223G)
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-eval-filt-v2.min.binpack
     test80-dec2022-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-jan2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-feb2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-mar2023-2tb7p-filter-v6.min.binpack
     test77-dec2021-16tb7p.no-db.min.binpack
     test78-janfeb2022-16tb7p.no-db.min.binpack
     test79-apr2022-16tb7p.no-db.min.binpack
   ep499 chosen as start model for step4

4. 800 epochs, end-lambda 0.7, skip 24
   0dd1cebea57 dataset https://github.com/official-stockfish/Stockfish/pull/4606
   ep599 chosen as start model for step5

5. 800 epochs, end-lambda 0.7, skip 28
   same dataset as step4
   ep619 became nn-1b951f8b449d.nnue

For the final step5 training:

python3 easy_train.py \
  --experiment-name L1-2048-S5-sameData-sk28-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --early-fen-skipping 28 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-2048 \
  --engine-test-branch linrock/Stockfish/L1-2048 \
  --start-from-engine-test-net False \
  --start-from-model /data/experiments/experiment_L1-2048-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9/training/run_0/nn-epoch599.nnue
  --max_epoch 800 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

SF training data components for the step1 dataset:
https://drive.google.com/drive/folders/1yLCEmioC3Xx9KQr4T7uB6GnLm5icAYGU

Leela training data for steps 2-5 can be found at:
https://robotmoon.com/nnue-training-data/

Due to larger L1 size and slower inference, the speed penalty loses elo
at STC. Measurements from 100 bench runs at depth 13 with x86-64-modern
on Intel Core i5-1038NG7 2.00GHz:

sf_base =  1240730  +/-   3443 (95%)
sf_test =  1153341  +/-   2832 (95%)
diff    =   -87388  +/-   1616 (95%)
speedup = -7.04330% +/- 0.130% (95%)

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch619.nnue : 21.1 +/- 3.2

Failed STC:
https://tests.stockfishchess.org/tests/view/6498ee93dc7002ce609cf979
LLR: -2.95 (-2.94,2.94) <0.00,2.00>
Total: 11680 W: 3058 L: 3299 D: 5323
Ptnml(0-2): 44, 1422, 3149, 1181, 44

LTC:
https://tests.stockfishchess.org/tests/view/649b32f5dc7002ce609d20cf
Elo: 0.68 ± 1.5 (95%) LOS: 80.5%
Total: 40000 W: 10887 L: 10809 D: 18304
Ptnml(0-2): 36, 3938, 11958, 4048, 20
nElo: 1.50 ± 3.4 (95%) PairsRatio: 1.02

Passed VLTC 180+1.8:
https://tests.stockfishchess.org/tests/view/64992b43dc7002ce609cfd20
LLR: 3.06 (-2.94,2.94) <0.00,2.00>
Total: 38086 W: 10612 L: 10338 D: 17136
Ptnml(0-2): 9, 3316, 12115, 3598, 5

Passed VLTC SMP 60+0.6 th 8:
https://tests.stockfishchess.org/tests/view/649a21fedc7002ce609d0c7d
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 38936 W: 11091 L: 10820 D: 17025
Ptnml(0-2): 1, 2948, 13305, 3207, 7

closes https://github.com/official-stockfish/Stockfish/pull/4646

Bench: 2505168
2023-07-01 13:34:30 +02:00
Daniel Monroe
ef94f77f8c Update default net to nn-a3d1bfca1672.nnue
faster permutation of master net weights

Activation data taken from https://drive.google.com/drive/folders/1Ec9YuuRx4N03GPnVPoQOW70eucOKngQe?usp=sharing
Permutation found using 836387a0e5/ftperm.py
See also https://github.com/glinscott/nnue-pytorch/pull/254

The algorithm greedily selects 2- and 3-cycles that can be permuted to increase the number of runs of zeroes. The percent of zero runs from the master net increased from 68.46 to 70.11 from 2-cycles and only increased to 70.32 when considering 3-cycles. Interestingly, allowing both halves of L1 to intermix when creating zero runs can give another 0.5% zero-run density increase with this method.

Measured speedup:

```
CPU: 16 x AMD Ryzen 9 3950X 16-Core Processor
Result of 50 runs

base (./stockfish.master ) = 1561556 +/- 5439
test (./stockfish.patch ) = 1575788 +/- 5427
diff = +14231 +/- 2636

speedup = +0.0091
P(speedup > 0) = 1.0000
```

closes https://github.com/official-stockfish/Stockfish/pull/4640

No functional change
2023-07-01 12:59:28 +02:00
Linmiao Xu
a49b3ba7ed Update default net to nn-5af11540bbfe.nnue
Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
https://github.com/official-stockfish/Stockfish/pull/4620

LEB128 compression done with the new serialize.py param in:
https://github.com/glinscott/nnue-pytorch/pull/251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
  --experiment-name L1-1536-sparse-master-retrain \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
  --early-fen-skipping 27 \
  --start-from-engine-test-net True \
  --max_epoch 960 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
  leela96-filt-v2.min.binpack \
  dfrc99-16tb7p-eval-filt-v2.min.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
  test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
  test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
  /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927
Ptnml(0-2): 23, 5123, 16650, 5460, 20

closes https://github.com/official-stockfish/Stockfish/pull/4635

bench 2593605
2023-06-22 10:33:19 +02:00
maxim
a46087ee30 Compressed network parameters
Implemented LEB128 (de)compression for the feature transformer.
Reduces embedded network size from 70 MiB to 39 Mib.

The new nn-78bacfcee510.nnue corresponds to the master net compressed.

closes https://github.com/official-stockfish/Stockfish/pull/4617

No functional change
2023-06-19 21:37:23 +02:00
AndrovT
32d3284df5 Permute master net weights to increase sparsity
Activation data collection using ac468039ab run as

bench 16 1 13 varied_1000.epd depth NNUE log.bin

on FENs from https://gist.github.com/AndrovT/7eae6918eb50764227e2bafe7938953c.

Permutation found using https://gist.github.com/AndrovT/359c831b7223c637e9156b01eb96949e.
Uses a greedy algorithm that goes sequentially through the output positions and
chooses a neuron for that position such that the number of nonzero quartets is the smallest.

Net weights permuted using https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.

Benchmark:

Result of 100 runs of 'bench 16 1 13 default depth NNUE'
========================================================
base (...kfish-master) =     885869  +/- 7395
test (./stockfish    ) =     895885  +/- 7368
diff                   =     +10016  +/- 2984

speedup        = +0.0113
P(speedup > 0) =  1.0000

Passed STC:
https://tests.stockfishchess.org/tests/view/648866c4713491385c804728
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 126784 W: 34003 L: 33586 D: 59195
Ptnml(0-2): 283, 13001, 36437, 13358, 313

closes https://github.com/official-stockfish/Stockfish/pull/4620

No functional change.
2023-06-14 18:36:39 +02:00
AndrovT
38e61663d8 Use block sparse input for the first layer.
Use block sparse input for the first fully connected layer on architectures with at least SSSE3.

Depending on the CPU architecture, this yields a speedup of up to 10%, e.g.

```
Result of 100 runs of 'bench 16 1 13 default depth NNUE'

base (...ockfish-base) =     959345  +/- 7477
test (...ckfish-patch) =    1054340  +/- 9640
diff                   =     +94995  +/- 3999

speedup        = +0.0990
P(speedup > 0) =  1.0000

CPU: 8 x AMD Ryzen 7 5700U with Radeon Graphics
Hyperthreading: on
```

Passed STC:
https://tests.stockfishchess.org/tests/view/6485aa0965ffe077ca12409c
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 8864 W: 2479 L: 2223 D: 4162
Ptnml(0-2): 13, 829, 2504, 1061, 25

This commit includes a net with reordered weights, to increase the likelihood of block sparse inputs,
but otherwise equivalent to the previous master net (nn-ea57bea57e32.nnue).

Activation data collected with https://github.com/AndrovT/Stockfish/tree/log-activations, running bench 16 1 13 varied_1000.epd depth NNUE on this data. Net parameters permuted with https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.

closes https://github.com/official-stockfish/Stockfish/pull/4612

No functional change
2023-06-12 20:41:27 +02:00
Linmiao Xu
932f5a2d65 Update default net to nn-ea57bea57e32.nnue
Created by retraining an earlier epoch (ep659) of the experiment that led to the first SFNNv6 net:
- First retrained on the nn-0dd1cebea573 dataset
- Then retrained with skip 20 on a smaller dataset containing unfiltered Leela data
- And then retrained again with skip 27 on the nn-0dd1cebea573 dataset

The equivalent 7-step training sequence from scratch that led here was:

1. max-epoch 400, lambda 1.0, constant LR 9.75e-4, T79T77-filter-v6-dd.min.binpack
   ep379 chosen for retraining in step2

2. max-epoch 800, end-lambda 0.75, T60T70wIsRightFarseerT60T74T75T76.binpack
   ep679 chosen for retraining in step3

3. max-epoch 800, end-lambda 0.75, skip 28, nn-e1fb1ade4432 dataset
   ep799 chosen for retraining in step4

4. max-epoch 800, end-lambda 0.7, skip 28, nn-e1fb1ade4432 dataset
   ep759 became nn-8d69132723e2.nnue (first SFNNv6 net)
   ep659 chosen for retraining in step5

5. max-epoch 800, end-lambda 0.7, skip 28, nn-0dd1cebea573 dataset
   ep759 chosen for retraining in step6

6. max-epoch 800, end-lambda 0.7, skip 20, leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack
   ep639 chosen for retraining in step7

7. max-epoch 800, end-lambda 0.7, skip 27, nn-0dd1cebea573 dataset
   ep619 became nn-ea57bea57e32.nnue

For the last retraining (step7):

python3 easy_train.py
  --experiment-name L1-1536-Re6-masterShuffled-ep639-sk27-Re5-leela-dfrc-v2-T77toT80small-Re4-masterShuffled-ep659-Re3-sameAs-Re2-leela96-dfrc99-16t-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-Re1-LeelaFarseer-new-T77T79 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --early-fen-skipping 27 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 800 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-Re5-leela-dfrc-v2-T77toT80small-epoch639.nnue \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --seed $RANDOM \
  --gpus "0,"

For preparing the step6 leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack dataset:

python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-16tb7p-eval-filt-v2.binpack \
  test77-dec2021-16tb7p.no-db.min-mar2023.binpack \
  test78-janfeb2022-16tb7p.no-db.min-mar2023.binpack \
  test79-apr2022-16tb7p-filter-v6-dd.binpack \
  test80-apr2022-16tb7p.no-db.min-mar2023.binpack \
  /data/leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack

The unfiltered Leela data used for the step6 dataset can be found at:
https://robotmoon.com/nnue-training-data

Local elo at 25k nodes per move:
nn-epoch619.nnue : 2.3 +/- 1.9

Passed STC:
https://tests.stockfishchess.org/tests/view/6480d43c6e6ce8d9fc6d7cc8
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 40992 W: 11017 L: 10706 D: 19269
Ptnml(0-2): 113, 4400, 11170, 4689, 124

Passed LTC:
https://tests.stockfishchess.org/tests/view/648119ac6e6ce8d9fc6d8208
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 129174 W: 35059 L: 34579 D: 59536
Ptnml(0-2): 66, 12548, 38868, 13050, 55

closes https://github.com/official-stockfish/Stockfish/pull/4611

bench: 2370027
2023-06-11 15:23:52 +02:00
Linmiao Xu
373359b44d Update default net to nn-0dd1cebea573.nnue
Created by retraining an earlier epoch of the experiment leading to the first SFNNv6 net
on a more-randomized version of the nn-e1fb1ade4432.nnue dataset mixed with unfiltered
T80 apr2023 data. Trained using early-fen-skipping 28 and max-epoch 960.

The trainer settings and epochs used in the 5-step training sequence leading here were:
1. train from scratch for 400 epochs, lambda 1.0, constant LR 9.75e-4, T79T77-filter-v6-dd.min.binpack
2. retrain ep379, max-epoch 800, end-lambda 0.75, T60T70wIsRightFarseerT60T74T75T76.binpack
3. retrain ep679, max-epoch 800, end-lambda 0.75, skip 28, nn-e1fb1ade4432 dataset
4. retrain ep799, max-epoch 800, end-lambda 0.7, skip 28, nn-e1fb1ade4432 dataset
5. retrain ep439, max-epoch 960, end-lambda 0.7, skip 28, shuffled nn-e1fb1ade4432 + T80 apr2023

This net was epoch 559 of the final (step 5) retraining:

```bash
python3 easy_train.py \
  --experiment-name L1-1536-Re4-leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr-shuffled-sk28 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --early-fen-skipping 28 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 960 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-Re3-nn-epoch439.nnue \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --seed $RANDOM \
  --gpus "0,"
```

During data preparation, most binpacks were unminimized by removing positions with
score 32002 (`VALUE_NONE`). This makes the tradeoff of increasing dataset filesize
on disk to increase the randomness of positions in interleaved datasets.
The code used for unminimizing is at:
https://github.com/linrock/Stockfish/tree/tools-unminify

For preparing the dataset used in this experiment:

```bash
python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-16tb7p-eval-filt-v2.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd-min/test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
  test80-apr2023-2tb7p.binpack \
  /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack
```

T80 apr2023 data was converted using lc0-rescorer with ~2tb of tablebases and can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move vs. nn-e1fb1ade4432.nnue (L1 size 1024):
nn-epoch559.nnue : 25.7 +/- 1.6

Passed STC:
https://tests.stockfishchess.org/tests/view/647cd3b87cf638f0f53f9cbb
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 59200 W: 16000 L: 15660 D: 27540
Ptnml(0-2): 159, 6488, 15996, 6768, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/647d58de726f6b400e4085d8
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 58800 W: 16002 L: 15657 D: 27141
Ptnml(0-2): 44, 5607, 17748, 5962, 39

closes https://github.com/official-stockfish/Stockfish/pull/4606

bench 2141197
2023-06-06 21:17:36 +02:00
Linmiao Xu
c1fff71650 Update NNUE architecture to SFNNv6 with larger L1 size of 1536
Created by training a new net from scratch with L1 size increased from 1024 to 1536.
Thanks to Vizvezdenec for the idea of exploring larger net sizes after recent
training data improvements.

A new net was first trained with lambda 1.0 and constant LR 8.75e-4. Then a strong net
from a later epoch in the training run was chosen for retraining with start-lambda 1.0
and initial LR 4.375e-4 decaying with gamma 0.995. Retraining was performed a total of
3 times, for this 4-step process:

1. 400 epochs, lambda 1.0 on filtered T77+T79 v6 deduplicated data
2. 800 epochs, end-lambda 0.75 on T60T70wIsRightFarseerT60T74T75T76.binpack
3. 800 epochs, end-lambda 0.75 and early-fen-skipping 28 on the master dataset
4. 800 epochs, end-lambda 0.7 and early-fen-skipping 28 on the master dataset

In the training sequence that reached the new nn-8d69132723e2.nnue net,
the epochs used for the 3x retraining runs were:

1. epoch 379 trained on T77T79-filter-v6-dd.min.binpack
2. epoch 679 trained on T60T70wIsRightFarseerT60T74T75T76.binpack
3. epoch 799 trained on the master dataset

For training from scratch:

python3 easy_train.py \
  --experiment-name new-L1-1536-T77T79-filter-v6dd \
  --training-dataset /data/T77T79-filter-v6-dd.min.binpack \
  --max_epoch 400 \
  --lambda 1.0 \
  --start-from-engine-test-net False \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --nnue-pytorch-branch linrock/Stockfish/misc-fixes-L1-1536 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM

Retraining commands were similar to each other. For the 3rd retraining run:

python3 easy_train.py \
  --experiment-name L1-1536-T77T79-v6dd-Re1-LeelaFarseer-Re2-masterDataset-Re3-sameData \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack \
  --early-fen-skipping 28 \
  --max_epoch 800 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-T77T79-v6dd-Re1-LeelaFarseer-Re2-masterDataset-nn-epoch799.nnue \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM

The T77+T79 data used is a subset of the master dataset available at:
https://robotmoon.com/nnue-training-data/

T60T70wIsRightFarseerT60T74T75T76.binpack is available at:
https://drive.google.com/drive/folders/1S9-ZiQa_3ApmjBtl2e8SyHxj4zG4V8gG

Local elo at 25k nodes per move vs. nn-e1fb1ade4432.nnue (L1 size 1024):
nn-epoch759.nnue : 26.9 +/- 1.6

Failed STC
https://tests.stockfishchess.org/tests/view/64742485d29264e4cfa75f97
LLR: -2.94 (-2.94,2.94) <0.00,2.00>
Total: 13728 W: 3588 L: 3829 D: 6311
Ptnml(0-2): 71, 1661, 3610, 1482, 40

Failing LTC
https://tests.stockfishchess.org/tests/view/64752d7c4a36543c4c9f3618
LLR: -1.91 (-2.94,2.94) <0.50,2.50>
Total: 35424 W: 9522 L: 9603 D: 16299
Ptnml(0-2): 24, 3579, 10585, 3502, 22

Passed VLTC 180+1.8
https://tests.stockfishchess.org/tests/view/64752df04a36543c4c9f3638
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 47616 W: 13174 L: 12863 D: 21579
Ptnml(0-2): 13, 4261, 14952, 4566, 16

Passed VLTC SMP 60+0.6 th 8
https://tests.stockfishchess.org/tests/view/647446ced29264e4cfa761e5
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 19942 W: 5694 L: 5451 D: 8797
Ptnml(0-2): 6, 1504, 6707, 1749, 5

closes https://github.com/official-stockfish/Stockfish/pull/4593

bench 2222567
2023-05-31 08:51:22 +02:00
Linmiao Xu
41f50b2c83 Update default net to nn-e1fb1ade4432.nnue
Created by retraining nn-dabb1ed23026.nnue with a dataset composed of:

* The previous best dataset (nn-1ceb1a57d117.nnue dataset)
* Adding de-duplicated T80 data from feb2023 and the last 10 days of jan2023, filtered with v6-dd

Initially trained with the same options as the recent master net (nn-1ceb1a57d117.nnue).
Around epoch 890, training was manually stopped and max epoch increased to 1000.

```
python3 easy_train.py \
  --experiment-name leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes \
  --start-from-engine-test-net True \
  --early-fen-skipping 30 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 900 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM
```

The same v6-dd filtering and binpack minimizer was used for preparing the recent nn-1ceb1a57d117.nnue dataset.

```
python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-filt-v2.binpack \
  T60-nov2021-12tb7p-eval-filt-v2.binpack \
  T60-dec2021-12tb7p-eval-filt-v2.binpack \
  filt-v6/test80-aug2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6/test80-sep2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6-dd/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-jan2022-3of3-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
  /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack
```

Links for downloading the training data components can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch919.nnue : 2.6 +/- 2.8

Passed STC vs. nn-dabb1ed23026.nnue
https://tests.stockfishchess.org/tests/view/644420df94ff3db5625f2af5
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 125960 W: 33898 L: 33464 D: 58598
Ptnml(0-2): 351, 13920, 34021, 14320, 368

Passed LTC vs. nn-1ceb1a57d117.nnue
https://tests.stockfishchess.org/tests/view/64469f128d30316529b3dc46
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 24544 W: 6817 L: 6542 D: 11185
Ptnml(0-2): 8, 2252, 7488, 2505, 19

closes https://github.com/official-stockfish/Stockfish/pull/4546

bench 3714847
2023-04-25 08:19:00 +02:00
Linmiao Xu
c3ce220408 Created by retraining the master net with these changes to the dataset:
* Extending v6 filtering to data from T77 dec2021, T79 may2022, and T80 nov2022
* Reducing the number of duplicate positions, prioritizing position scores seen later in time
* Using a binpack minimizer to reduce the overall data size

Trained the same way as the previous master net, aside from the dataset changes:

```
python3 easy_train.py \
  --experiment-name leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes \
  --start-from-engine-test-net True \
  --early-fen-skipping 30 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 900 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM
```

The new v6-dd filtering reduces duplicate positions by iterating over hourly data files within leela test runs, starting with the most recent, then keeping positions the first time they're seen and ignoring positions that are seen again. This ordering was done with the assumption that position scores seen later in time are generally more accurate than scores seen earlier in the test run. Positions are de-duplicated based on piece orientations, the first token in fen strings.

The binpack minimizer was run with default settings after first merging monthly data into single binpacks.

```
python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-filt-v2.binpack \
  T60-nov2021-12tb7p-eval-filt-v2.binpack \
  T60-dec2021-12tb7p-eval-filt-v2.binpack \
  filt-v6/test80-aug2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6/test80-sep2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6-dd/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
  /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd.binpack
```

The code for v6-dd filtering is available along with training data preparation scripts at:
https://github.com/linrock/nnue-data

Links for downloading the training data components:
https://robotmoon.com/nnue-training-data/

The binpack minimizer is from: #4447

Local elo at 25k nodes per move:
nn-epoch859.nnue : 1.2 +/- 2.6

Passed STC:
https://tests.stockfishchess.org/tests/view/643aad7db08900ff1bc5a832
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 565040 W: 150225 L: 149162 D: 265653
Ptnml(0-2): 1875, 62137, 153229, 63608, 1671

Passed LTC:
https://tests.stockfishchess.org/tests/view/643ecf2fa43cf30e719d2042
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 1014840 W: 274645 L: 272456 D: 467739
Ptnml(0-2): 515, 98565, 306970, 100956, 414

closes https://github.com/official-stockfish/Stockfish/pull/4545

bench 3476305
2023-04-25 08:17:22 +02:00