1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-02 09:39:36 +00:00

Compare commits

...

283 commits

Author SHA1 Message Date
NAme
3382c43079
Merge branch 'official-stockfish:master' into master 2022-02-24 06:24:22 +00:00
Michael Chaly
27139dedac Adjust usage of LMR for 2nd move in move ordering
Current master prohibits usage of LMR for 2nd move at rootNode. This patch also disables LMR for 2nd move not only at rootNode but also at first PvNode that is a reply to rootNode.

passed STC:
https://tests.stockfishchess.org/tests/view/620e8c9026f5b17ec885143a
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 54096 W: 14305 L: 13996 D: 25795
Ptnml(0-2): 209, 6075, 14192, 6342, 230

passed LTC:
https://tests.stockfishchess.org/tests/view/620eb327b1792e8985f81fb8
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 110864 W: 29602 L: 29156 D: 52106
Ptnml(0-2): 112, 11147, 32455, 11619, 99

closes https://github.com/official-stockfish/Stockfish/pull/3940

bench 6820724
2022-02-20 23:01:22 +01:00
Joost VandeVondele
abef3e86f4 Fix clang warning on unused variable
mark variable as used.

fixes https://github.com/official-stockfish/Stockfish/issues/3900
closes https://github.com/official-stockfish/Stockfish/pull/3941

No functional change
2022-02-20 22:59:19 +01:00
ppigazzini
2da1d1bf57 Add ARM NDK to Github Actions matrix
- set the variable only for the required tests to keep simple the yml file
- use NDK 21.x until will be fixed the Stockfish static build problem
  with NDK 23.x
- set the test for armv7, armv7-neon, armv8 builds:
  - use armv7a-linux-androideabi21-clang++ compiler for armv7 armv7-neon
  - enforce a static build
  - silence the Warning for the unused compilation flag "-pie" with
    the static build, otherwise the Github workflow stops
  - use qemu to bench the build and get the signature

Many thanks to @pschneider1968 that made all the hard work with NDK :)

closes https://github.com/official-stockfish/Stockfish/pull/3924

No functional change
2022-02-20 22:56:11 +01:00
Michael Chaly
84b1940fca Tune search at very long time control
This patch is a result of tuning done by user @candirufish after 150k games.

Since the tuned values were really interesting and touched heuristics
that are known for their non-linear scaling I decided to run limited
games LTC match, even if the STC test was really bad (which was expected).
After seeing the results of the LTC match, I also run a VLTC (very long
time control) SPRTtest, which passed.

The main difference is in extensions: this patch allows much more
singular/double extensions, both in terms of allowing them at lower
depths and with lesser margins.

Failed STC:
https://tests.stockfishchess.org/tests/view/620d66643ec80158c0cd3b46
LLR: -2.94 (-2.94,2.94) <0.00,2.50>
Total: 4968 W: 1194 L: 1398 D: 2376
Ptnml(0-2): 47, 633, 1294, 497, 13

Performed well at LTC in a fixed-length match:
https://tests.stockfishchess.org/tests/view/620d66823ec80158c0cd3b4a
ELO: 3.36 +-1.8 (95%) LOS: 100.0%
Total: 30000 W: 7966 L: 7676 D: 14358
Ptnml(0-2): 36, 2936, 8755, 3248, 25

Passed VLTC SPRT test:
https://tests.stockfishchess.org/tests/view/620da11a26f5b17ec884f939
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 4400 W: 1326 L: 1127 D: 1947
Ptnml(0-2): 13, 309, 1348, 526, 4

closes https://github.com/official-stockfish/Stockfish/pull/3937

Bench: 6318903
2022-02-17 20:45:21 +01:00
Michael Chaly
3ec6e1d245 Big search tuning (version 2)
One more tuning - this one includes newly introduced heuristics and
some other parameters that were not included in previous one. Result
of 400k games at 20+0.2 "as is". Tuning is continuing since there is
probably a lot more elo to gain.

STC:
https://tests.stockfishchess.org/tests/view/620782edd71106ed12a497d1
LLR: 2.99 (-2.94,2.94) <0.00,2.50>
Total: 38504 W: 10260 L: 9978 D: 18266
Ptnml(0-2): 142, 4249, 10230, 4447, 184

LTC:
https://tests.stockfishchess.org/tests/view/6207a243d71106ed12a49d07
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 25176 W: 6793 L: 6546 D: 11837
Ptnml(0-2): 20, 2472, 7360, 2713, 23

closes https://github.com/official-stockfish/Stockfish/pull/3931

Bench: 4784796
2022-02-13 01:05:27 +01:00
Tomasz Sobczyk
cb9c2594fc Update architecture to "SFNNv4". Update network to nn-6877cd24400e.nnue.
Architecture:

The diagram of the "SFNNv4" architecture:
https://user-images.githubusercontent.com/8037982/153455685-cbe3a038-e158-4481-844d-9d5fccf5c33a.png

The most important architectural changes are the following:

* 1024x2 [activated] neurons are pairwise, elementwise multiplied (not quite pairwise due to implementation details, see diagram), which introduces a non-linearity that exhibits similar benefits to previously tested sigmoid activation (quantmoid4), while being slightly faster.
* The following layer has therefore 2x less inputs, which we compensate by having 2 more outputs. It is possible that reducing the number of outputs might be beneficial (as we had it as low as 8 before). The layer is now 1024->16.
* The 16 outputs are split into 15 and 1. The 1-wide output is added to the network output (after some necessary scaling due to quantization differences). The 15-wide is activated and follows the usual path through a set of linear layers. The additional 1-wide output is at least neutral, but has shown a slightly positive trend in training compared to networks without it (all 16 outputs through the usual path), and allows possibly an additional stage of lazy evaluation to be introduced in the future.

Additionally, the inference code was rewritten and no longer uses a recursive implementation. This was necessitated by the splitting of the 16-wide intermediate result into two, which was impossible to do with the old implementation with ugly hacks. This is hopefully overall for the better.

First session:

The first session was training a network from scratch (random initialization). The exact trainer used was slightly different (older) from the one used in the second session, but it should not have a measurable effect. The purpose of this session is to establish a strong network base for the second session. Small deviations in strength do not harm the learnability in the second session.

The training was done using the following command:

python3 train.py \
    /home/sopel/nnue/nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
    /home/sopel/nnue/nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
    --gpus "$3," \
    --threads 4 \
    --num-workers 4 \
    --batch-size 16384 \
    --progress_bar_refresh_rate 20 \
    --random-fen-skipping 3 \
    --features=HalfKAv2_hm^ \
    --lambda=1.0 \
    --gamma=0.992 \
    --lr=8.75e-4 \
    --max_epochs=400 \
    --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2

Every 20th net was saved and its playing strength measured against some baseline at 25k nodes per move with pure NNUE evaluation (modified binary). The exact setup is not important as long as it's consistent. The purpose is to sift good candidates from bad ones.

The dataset can be found https://drive.google.com/file/d/1UQdZN_LWQ265spwTBwDKo0t1WjSJKvWY/view

Second session:

The second training session was done starting from the best network (as determined by strength testing) from the first session. It is important that it's resumed from a .pt model and NOT a .ckpt model. The conversion can be performed directly using serialize.py

The LR schedule was modified to use gamma=0.995 instead of gamma=0.992 and LR=4.375e-4 instead of LR=8.75e-4 to flatten the LR curve and allow for longer training. The training was then running for 800 epochs instead of 400 (though it's possibly mostly noise after around epoch 600).

The training was done using the following command:

The training was done using the following command:

python3 train.py \
        /data/sopel/nnue/nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
        /data/sopel/nnue/nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
        --gpus "$3," \
        --threads 4 \
        --num-workers 4 \
        --batch-size 16384 \
        --progress_bar_refresh_rate 20 \
        --random-fen-skipping 3 \
        --features=HalfKAv2_hm^ \
        --lambda=1.0 \
        --gamma=0.995 \
        --lr=4.375e-4 \
        --max_epochs=800 \
        --resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp295/nn-epoch399.pt \
        --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$run_id

In particular note that we now use lambda=1.0 instead of lambda=0.8 (previous nets), because tests show that WDL-skipping introduced by vondele performs better with lambda=1.0. Nets were being saved every 20th epoch. In total 16 runs were made with these settings and the best nets chosen according to playing strength at 25k nodes per move with pure NNUE evaluation - these are the 4 nets that have been put on fishtest.

The dataset can be found either at ftp://ftp.chessdb.cn/pub/sopel/data_sf/T60T70wIsRightFarseerT60T74T75T76.binpack in its entirety (download might be painfully slow because hosted in China) or can be assembled in the following way:

Get the 5640ad48ae/script/interleave_binpacks.py script.
Download T60T70wIsRightFarseer.binpack https://drive.google.com/file/d/1_sQoWBl31WAxNXma2v45004CIVltytP8/view
Download farseerT74.binpack http://trainingdata.farseer.org/T74-May13-End.7z
Download farseerT75.binpack http://trainingdata.farseer.org/T75-June3rd-End.7z
Download farseerT76.binpack http://trainingdata.farseer.org/T76-Nov10th-End.7z
Run python3 interleave_binpacks.py T60T70wIsRightFarseer.binpack farseerT74.binpack farseerT75.binpack farseerT76.binpack T60T70wIsRightFarseerT60T74T75T76.binpack

Tests:

STC: https://tests.stockfishchess.org/tests/view/6203fb85d71106ed12a407b7
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 16952 W: 4775 L: 4521 D: 7656
Ptnml(0-2): 133, 1818, 4318, 2076, 131

LTC: https://tests.stockfishchess.org/tests/view/62041e68d71106ed12a40e85
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 14944 W: 4138 L: 3907 D: 6899
Ptnml(0-2): 21, 1499, 4202, 1728, 22

closes https://github.com/official-stockfish/Stockfish/pull/3927

Bench: 4919707
2022-02-10 19:54:31 +01:00
Michael Chaly
b0b31558a2 Big search tuning
Most credits for this patch should go to @candirufish.
Based on his big search tuning (1M games at 20+0.1s)

https://tests.stockfishchess.org/tests/view/61fc7a6ed508ec6a1c9f4b7d

with some hand polishing on top of it, which includes :

a) correcting trend sigmoid - for some reason original tuning resulted in it being negative. This heuristic was proven to be worth some elo for years so reversing it sign is probably some random artefact;
b) remove changes to continuation history based pruning - this heuristic historically was really good at providing green STCs and then failing at LTC miserably if we tried to make it more strict, original tuning was done at short time control and thus it became more strict - which doesn't scale to longer time controls;
c) remove changes to improvement - not really indended :).

passed STC
https://tests.stockfishchess.org/tests/view/6203526e88ae2c84271c2ee2
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 16840 W: 4604 L: 4363 D: 7873
Ptnml(0-2): 82, 1780, 4449, 2033, 76

passed LTC
https://tests.stockfishchess.org/tests/view/620376e888ae2c84271c35d4
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 17232 W: 4771 L: 4542 D: 7919
Ptnml(0-2): 14, 1655, 5048, 1886, 13

closes https://github.com/official-stockfish/Stockfish/pull/3926

bench 5030992
2022-02-09 17:17:00 +01:00
Michael Chaly
08ac4e9db5 Do less depth reduction in null move pruning for complex positions
This patch makes us reduce less depth in null move pruning if complexity is high enough.
Thus, null move pruning now depends in two distinct ways on complexity,
while being the only search heuristic that exploits complexity so far.

passed STC
https://tests.stockfishchess.org/tests/view/61fde60fd508ec6a1c9f7754
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 170000 W: 45555 L: 45027 D: 79418
Ptnml(0-2): 760, 19352, 44359, 19658, 871

passed LTC
https://tests.stockfishchess.org/tests/view/61fe91febf46cb834cbd5c90
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 145272 W: 39182 L: 38651 D: 67439
Ptnml(0-2): 127, 14864, 42157, 15327, 161

closes https://github.com/official-stockfish/Stockfish/pull/3923

bench 4461945
2022-02-07 17:30:35 +01:00
Michael Chaly
4d3950c6eb Reintroduce razoring
Razoring was simplified away some years ago, this patch reintroduces it in a slightly different form.
Now for low depths if eval is far below alpha we check if qsearch can push it above alpha - and if it can't we return a fail low.

passed STC
https://tests.stockfishchess.org/tests/view/61fbf968d508ec6a1c9f3274
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 226120 W: 61106 L: 60472 D: 104542
Ptnml(0-2): 1118, 25592, 59080, 26078, 1192

passed LTC
https://tests.stockfishchess.org/tests/view/61fcc569d508ec6a1c9f5617
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 113128 W: 30851 L: 30397 D: 51880
Ptnml(0-2): 114, 11483, 32926, 11917, 124

closes https://github.com/official-stockfish/Stockfish/pull/3921

bench 4684080
2022-02-05 07:40:21 +01:00
Michael Chaly
95d7369e54 Introduce movecount pruning for quiet check evasions in qsearch
Idea of this patch is that we usually don't consider quiet check evasions as "good" ones and prefer capture based ones instead. So it makes sense to think that if in qsearch 2 quiet check evasions failed to produce anything good 3rd and further ones wouldn't be good either.

passed STC
https://tests.stockfishchess.org/tests/view/61fc1b1ed508ec6a1c9f397c
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 58800 W: 15947 L: 15626 D: 27227
Ptnml(0-2): 273, 6568, 15462, 6759, 338

passed LTC
https://tests.stockfishchess.org/tests/view/61fcc56dd508ec6a1c9f5619
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 89544 W: 24208 L: 23810 D: 41526
Ptnml(0-2): 81, 9038, 26134, 9440, 79

closes https://github.com/official-stockfish/Stockfish/pull/3920

bench 4830082
2022-02-05 07:38:30 +01:00
ppigazzini
e178a09c47 Drop sse from target "x86-32"
have maximal compatibility on legacy target arch, now supporting AMD Athlon

The old behavior can anyway be selected by the user if needed, for example

make -j profile-build ARCH=x86-32 sse=yes

fixes #3904
closes https://github.com/official-stockfish/Stockfish/pull/3918

No functional change
2022-02-05 07:33:34 +01:00
Michael Chaly
50200de5af Cleanup and update CPU contributors
closes https://github.com/official-stockfish/Stockfish/pull/3917

No functional change
2022-02-05 07:30:09 +01:00
Michael Chaly
90d051952f Do stats updates after LMR for captures
Since captures that are in LMR use continuation histories of corresponding quiet moves it makes sense to update this histories if this capture passes LMR by analogy to existing logic for quiet moves.

Passed STC
https://tests.stockfishchess.org/tests/view/61f367eef7fba9f1a4f1318b
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 208464 W: 56006 L: 55407 D: 97051
Ptnml(0-2): 964, 23588, 54655, 23935, 1090

Passed LTC
https://tests.stockfishchess.org/tests/view/61f41e34f7fba9f1a4f15241
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 69144 W: 18793 L: 18441 D: 31910
Ptnml(0-2): 65, 6982, 20142, 7302, 81

closes https://github.com/official-stockfish/Stockfish/pull/3910

bench 4637392
2022-01-29 08:58:12 +01:00
Michael Chaly
8b4afcf8f7 Scale child node futility pruning with previous move history.
Idea is to do more futility pruning if previous move has bad histories and less if it has good histories.

passed STC
https://tests.stockfishchess.org/tests/view/61e3757fbabab931824e0db7
LLR: 2.96 (-2.94,2.94) <0.00,2.50>
Total: 156816 W: 42282 L: 41777 D: 72757
Ptnml(0-2): 737, 17775, 40913, 18212, 771

passed LTC
https://tests.stockfishchess.org/tests/view/61e43496928632f7813a5535
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 349968 W: 94612 L: 93604 D: 161752
Ptnml(0-2): 300, 35934, 101550, 36858, 342

closes https://github.com/official-stockfish/Stockfish/pull/3903

bench 4720954
2022-01-25 07:27:52 +01:00
pschneider1968
bddd38c45e Fix Makefile for Android NDK cross-compile
For cross-compiling to Android on windows, the Makefile needs some tweaks.

Tested with Android NDK 23.1.7779620 and 21.4.7075529, using
Windows 10 with clean MSYS2 environment (i.e. no MINGW/GCC/Clang
toolchain in PATH) and Fedora 35, with build target:
build ARCH=armv8 COMP=ndk

The resulting binary runs fine inside Droidfish on my Samsung
Galaxy Note20 Ultra and Samsung Galaxy Tab S7+

Other builds tested to exclude regressions: MINGW64/Clang64 build
on Windows; MINGW64 cross build, native Clang and GCC builds on Fedora.

wiki docs https://github.com/glinscott/fishtest/wiki/Cross-compiling-Stockfish-for-Android-on-Windows-and-Linux

closes https://github.com/official-stockfish/Stockfish/pull/3901

No functional change
2022-01-25 07:27:23 +01:00
J. Oster
9083050be6 Simplify limiting extensions.
Replace the current method for limiting extensions to avoid search getting stuck
with a much simpler method.

the test position in 73018a0337
can still be searched without stuck search.

fixes #3815 where the search now makes progress with rootDepth

shows robust behavior in a d10 search for 1M positions.

passed STC
https://tests.stockfishchess.org/tests/view/61e303e3babab931824dfb18
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 57568 W: 15449 L: 15327 D: 26792
Ptnml(0-2): 243, 6211, 15779, 6283, 268

passed LTC
https://tests.stockfishchess.org/tests/view/61e3586cbabab931824e091c
LLR: 2.96 (-2.94,2.94) <-2.25,0.25>
Total: 128200 W: 34632 L: 34613 D: 58955
Ptnml(0-2): 124, 12559, 38710, 12588, 119

closes https://github.com/official-stockfish/Stockfish/pull/3899

Bench: 4550528
2022-01-22 10:48:24 +01:00
Joost VandeVondele
77cf5704b6 Revert -flto=auto on mingw
causes issues on some installations (glinscott/fishtest#1255).

closes https://github.com/official-stockfish/Stockfish/pull/3898

No functional change
2022-01-20 18:34:16 +01:00
ppigazzini
67062637f4 Improve Makefile for Windows native builds
A Windows Native Build (WNB) can be done:
 - on Windows, using a recent mingw-w64 g++/clang compiler
   distributed by msys2, cygwin and others
 - on Linux, using mingw-w64 g++ to cross compile

Improvements:
 - check for a WNB in a proper way and set a variable to simplify the code
 - set the proper EXE for a WNB
 - use the proper name for the mingw-w64 clang compiler
 - use the static linking for a WNB
 - use wine to make a PGO cross compile on Linux (also with Intel SDE)
 - enable the LTO build for mingw-w64 g++ compiler
 - set `lto=auto` to use the make's job server, if available, or otherwise
   to fall back to autodetection of the number of CPU threads
 - clean up all the temporary LTO files saved in the local directory

Tested on:
 - msys2 MINGW64 (g++), UCRT64 (g++), MINGW32 (g++), CLANG64 (clang)
   environments
 - cygwin mingw-w64 g++
 - Ubuntu 18.04 & 21.10 mingw-w64 PGO cross compile (also with Intel SDE)

closes #3891

No functional change
2022-01-19 22:26:20 +01:00
ppigazzini
48bf1a386f Add msys2 Clang x86_64 to GitHub Action matrix
Also use Windows Server 2022 virtual environment for msys2 builds.

closes https://github.com/official-stockfish/Stockfish/pull/3893

No functional change
2022-01-19 19:21:10 +01:00
Rui Coelho
2b0372319d Use average complexity for time management
This patch is a variant of the idea by locutus2 (https://tests.stockfishchess.org/tests/view/61e1f24cb1f9959fe5d88168) to adjust the total time depending on the average complexity of the position.

Passed STC
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 39664 W: 10765 L: 10487 D: 18412
Ptnml(0-2): 162, 4213, 10837, 4425, 195
https://tests.stockfishchess.org/tests/view/61e2df8b65a644da8c9ea708

Passed LTC
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 127656 W: 34505 L: 34028 D: 59123
Ptnml(0-2): 116, 12435, 38261, 12888, 128
https://tests.stockfishchess.org/tests/view/61e31db5babab931824dff5e

closes https://github.com/official-stockfish/Stockfish/pull/3892

Bench: 4464962
2022-01-17 19:48:23 +01:00
proukornew
d11101e4c6 Improve logic on mingw
There is no need to point g++, if we explicitly choose mingw.

Now for cygwin:

make COMP=mingw ARCH=x86-64-modern build

closes https://github.com/official-stockfish/Stockfish/pull/3860

No functional change
2022-01-17 19:47:32 +01:00
Rui Coelho
7678d63cf2 Use complexity in search
This patch uses the complexity measure (from #3875) as a heuristic for null move pruning.
Hopefully, there may be room to use it in other pruning techniques.
I would like to thank vondele and locutus2 for the feedback and suggestions during testing.

Passed STC
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 35000 W: 9624 L: 9347 D: 16029
Ptnml(0-2): 156, 3894, 9137, 4143, 170
https://tests.stockfishchess.org/tests/view/61dda784c65bf87d6c45ab80

Passed LTC
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 230776 W: 64227 L: 63454 D: 103095
Ptnml(0-2): 1082, 23100, 66380, 23615, 1211
https://tests.stockfishchess.org/tests/view/61ddd0cf3ddbc32543e72c2b

Closes https://github.com/official-stockfish/Stockfish/pull/3890

Bench: 4464962
2022-01-13 22:25:01 +01:00
pschneider1968
c5d45d3220 Fix Makefile for compilation with clang on Windows
use static compilation and
added exclusion of -latomic for Clang/MSYS2 as per ppigazzini's suggestion

fixes #3872

closes https://github.com/official-stockfish/Stockfish/pull/3873

No functional change
2022-01-13 22:17:27 +01:00
Michael Chaly
44b1ba89a9 Adjust pruning constants
This patch is a modification of original tuning done by vondele that failed yellow.
Value differences are divided by 2.

Passed STC
https://tests.stockfishchess.org/tests/view/61d918239fea7913d9c64cdf
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 98968 W: 26248 L: 25858 D: 46862
Ptnml(0-2): 392, 11085, 26156, 11443, 408

Passed LTC
https://tests.stockfishchess.org/tests/view/61d99e3c9fea7913d9c663e4
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 215232 W: 58191 L: 57492 D: 99549
Ptnml(0-2): 271, 22124, 62138, 22801, 282

closes https://github.com/official-stockfish/Stockfish/pull/3885

bench 4572746
2022-01-10 19:35:53 +01:00
Joost VandeVondele
c5a280c012 Tune FRC trapped Bishop patch
now that fishtest can deal with FRC, retune this correction.

Add an additional fen to bench with cornered B and N.

passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 49672 W: 7358 L: 7082 D: 35232
Ptnml(0-2): 241, 4329, 15458, 4529, 279
https://tests.stockfishchess.org/tests/view/61d8b7bf9fea7913d9c63cb7

passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 86688 W: 8308 L: 8007 D: 70373
Ptnml(0-2): 92, 4943, 32989, 5212, 108
https://tests.stockfishchess.org/tests/view/61d92dcb9fea7913d9c650ad

closes https://github.com/official-stockfish/Stockfish/pull/3884

Bench: 4326560
2022-01-09 15:49:19 +01:00
Joost VandeVondele
9ad0ea7382 Tune a few parameters related to evaluation
based on a SPSA tune (using Autoselect)
https://tests.stockfishchess.org/tests/view/61d5aa63a314fed318a57046

passed STC:
LLR: 2.93 (-2.94,2.94) <0.00,2.50>
Total: 61960 W: 16640 L: 16316 D: 29004
Ptnml(0-2): 278, 6934, 16204, 7314, 250
https://tests.stockfishchess.org/tests/view/61d7fe4af5fd40f357469a8d

passed LTC:
LLR: 2.97 (-2.94,2.94) <0.50,3.00>
Total: 79408 W: 21994 L: 21618 D: 35796
Ptnml(0-2): 106, 7887, 23331, 8285, 95
https://tests.stockfishchess.org/tests/view/61d836b7f5fd40f35746a3d5

closes https://github.com/official-stockfish/Stockfish/pull/3883

Bench: 4266621
2022-01-08 08:44:49 +01:00
Stéphane Nicolet
2efda17c2a Update AUTHORS and CPU contributors files
closes https://github.com/official-stockfish/Stockfish/pull/3882

No functional change
2022-01-08 08:43:14 +01:00
Brad Knox
ad926d34c0 Update copyright years
Happy New Year!

closes https://github.com/official-stockfish/Stockfish/pull/3881

No functional change
2022-01-06 15:45:45 +01:00
lonfom169
0b41887527 Simplify away rangeReduction
Remove rangeReduction, introduced in [#3717](https://github.com/official-stockfish/Stockfish/pull/3717),
as it seemingly doesn't bring enough ELO anymore. It might be interesting to add
new forms of reduction or tune the reduction formula in the future.

STC:
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 45008 W: 12114 L: 11972 D: 20922
Ptnml(0-2): 174, 5031, 11952, 5173, 174
https://tests.stockfishchess.org/tests/view/61d08b7b069ca917749c9f6f

LTC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 30792 W: 8235 L: 8086 D: 14471
Ptnml(0-2): 24, 3162, 8882, 3297, 31
https://tests.stockfishchess.org/tests/view/61d0a6ad069ca917749ca420

closes https://github.com/official-stockfish/Stockfish/pull/3878

Bench: 4048312
2022-01-02 17:49:44 +01:00
lonfom169
061f98a9e3 Smooth out doDeeperSearch
Adjust threshold based on the difference between newDepth and LMR depth.
With more reduction, bigger fail-high is required in order to perform the deeper search.

STC:
LLR: 2.96 (-2.94,2.94) <0.00,2.50>
Total: 93576 W: 24133 L: 23758 D: 45685
Ptnml(0-2): 260, 10493, 24935, 10812, 288
https://tests.stockfishchess.org/tests/view/61cbb5cee68b2a714b6eaf09

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 109280 W: 28198 L: 27754 D: 53328
Ptnml(0-2): 60, 11225, 31637, 11647, 71
https://tests.stockfishchess.org/tests/view/61cc03fee68b2a714b6ec091

closes https://github.com/official-stockfish/Stockfish/pull/3877

Bench: 4464723
2021-12-31 07:44:15 +01:00
Stéphane Nicolet
1066119083 Tweak optimism with complexity
This patch increases the optimism bonus for "complex positions", where the
complexity is measured as the absolute value of the difference between material
and the sophisticated NNUE evaluation (idea by Joost VandeVondele).

Also rename some variables in evaluate() while there.

passed STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 88392 W: 23150 L: 22781 D: 42461
Ptnml(0-2): 318, 9961, 23257, 10354, 306
https://tests.stockfishchess.org/tests/view/61cbbedee68b2a714b6eb110

passed LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 37848 W: 10043 L: 9766 D: 18039
Ptnml(0-2): 26, 3815, 10961, 4100, 22
https://tests.stockfishchess.org/tests/view/61cc0cc3e68b2a714b6ec28c

Closes https://github.com/official-stockfish/Stockfish/pull/3875
Follow-up from a5a89b27c8

Bench: 4125221
2021-12-30 11:59:23 +01:00
bmc4
93b14a17d1 Don't direct prune a move if it's a retake
STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 36304 W: 9499 L: 9226 D: 17579
Ptnml(0-2): 96, 4102, 9508, 4325, 121
https://tests.stockfishchess.org/tests/view/61c7069ae68b2a714b6dca27

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 93824 W: 24478 L: 24068 D: 45278
Ptnml(0-2): 70, 9644, 27082, 10038, 78
https://tests.stockfishchess.org/tests/view/61c725fee68b2a714b6dcfa2

closes https://github.com/official-stockfish/Stockfish/pull/3871

Bench: 4106806
2021-12-27 16:43:44 +01:00
Joost VandeVondele
7d82f0d1f4 Update default net to nn-ac07bd334b62.nnue
Trained with essentially the same data as provided and used by Farseer (mbabigian)
for the previous master net.

T60T70wIsRightFarseerT60T74T75T76.binpack (99GB):
['T60T70wIsRightFarseer.binpack', 'farseerT74.binpack', 'farseerT75.binpack', 'farseerT76.binpack']
using the trainer branch tweakLR1PR (https://github.com/glinscott/nnue-pytorch/pull/158) and
`--gpus 1 --threads 4 --num-workers 4 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 12 --features=HalfKAv2_hm^   --lambda=1.00` options

passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 108280 W: 28042 L: 27636 D: 52602
Ptnml(0-2): 328, 12382, 28401, 12614, 415
https://tests.stockfishchess.org/tests/view/61bcd8c257a0d0f327c34fbd

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 259296 W: 66974 L: 66175 D: 126147
Ptnml(0-2): 146, 27096, 74452, 27721, 233
https://tests.stockfishchess.org/tests/view/61bda70957a0d0f327c37817

closes https://github.com/official-stockfish/Stockfish/pull/3870

Bench: 4633875
2021-12-22 11:02:34 +01:00
Michael Chaly
0a6168089d Fall back to NNUE if classical evaluation is much lower than threshold
The idea is that if classical eval returns a value much lower than the threshold of
its usage it most likely means that position isn't that simple
so we need the more precise NNUE evaluation.

passed STC:
https://tests.stockfishchess.org/tests/view/61bf3e7557a0d0f327c3c47a
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 108072 W: 28007 L: 27604 D: 52461
Ptnml(0-2): 352, 12147, 28650, 12520, 367

passed LTC:
https://tests.stockfishchess.org/tests/view/61c0581657a0d0f327c3fa0c
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 155096 W: 40392 L: 39841 D: 74863
Ptnml(0-2): 88, 15983, 44843, 16558, 76

closes https://github.com/official-stockfish/Stockfish/pull/3869

bench 4310422
2021-12-22 08:18:35 +01:00
bmc4
88f17a814d Update Elo estimates for terms in search
This updates estimates from 2yr ago #2401, and adds missing terms.
All tests run at 10+0.1 (STC), 20000 games, error bars +- 1.8 Elo, book 8moves_v3.png.

A table of Elo values with the links to the corresponding tests can be found at the PR

closes https://github.com/official-stockfish/Stockfish/pull/3868

Non-functional Change
2021-12-21 13:47:57 +01:00
bmc4
22e92d23d2 Remove Capture history pruning
Fixed number of games. (book: 8moves_v3.png):
ELO: -0.69 +-1.8 (95%) LOS: 22.1%
Total: 20000 W: 1592 L: 1632 D: 16776
Ptnml(0-2): 44, 1194, 7566, 1150, 46
https://tests.stockfishchess.org/tests/view/61bb8eb657a0d0f327c30ce8

STC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 139976 W: 36039 L: 36036 D: 67901
Ptnml(0-2): 435, 16138, 36885, 16049, 481
https://tests.stockfishchess.org/tests/view/61be731857a0d0f327c39ea2

LTC:
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 70656 W: 18284 L: 18189 D: 34183
Ptnml(0-2): 34, 7317, 20529, 7416, 32
https://tests.stockfishchess.org/tests/view/61bf39b657a0d0f327c3c37b

closes https://github.com/official-stockfish/Stockfish/pull/3867

bench: 4281737
2021-12-21 13:42:33 +01:00
bmc4
2c30956a13 Remove Capture Extension
This revert the patch #3692, probably can be simplified after the introduction of #3838.

Fixed-game test:
ELO: -1.41 +-1.8 (95%) LOS: 5.9%
Total: 20000 W: 1552 L: 1633 D: 16815
Ptnml(0-2): 38, 1242, 7517, 1169, 34
https://tests.stockfishchess.org/tests/view/61bc1a2057a0d0f327c32a3c

STC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 44528 W: 11619 L: 11478 D: 21431
Ptnml(0-2): 146, 5020, 11771, 5201, 126
https://tests.stockfishchess.org/tests/view/61bc638c57a0d0f327c338fe

LTC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 34136 W: 8847 L: 8704 D: 16585
Ptnml(0-2): 23, 3475, 9925, 3626, 19
https://tests.stockfishchess.org/tests/view/61bcb24257a0d0f327c34813

closes https://github.com/official-stockfish/Stockfish/pull/3863

Bench: 4054695
2021-12-21 13:40:57 +01:00
Stéphane Nicolet
74776dbcd5 Simplification in evaluate_nnue.cpp
Removes the test on non-pawn-material before applying the positional/materialistic bonus.

Passed STC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 46904 W: 12197 L: 12059 D: 22648
Ptnml(0-2): 170, 5243, 12479, 5399, 161
https://tests.stockfishchess.org/tests/view/61be57cf57a0d0f327c3999d

Passed LTC:
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 18760 W: 4958 L: 4790 D: 9012
Ptnml(0-2): 14, 1942, 5301, 2108, 15
https://tests.stockfishchess.org/tests/view/61bed1fb57a0d0f327c3afa9

closes https://github.com/official-stockfish/Stockfish/pull/3866

Bench: 4826206
2021-12-19 15:44:01 +01:00
George Sobala
ca51b45649 Fixes build failure on Apple M1 Silicon
This pull request selectively avoids `-mdynamic-no-pic` for gcc on Apple Silicon
(there was no problem with the default clang compiler).

fixes https://github.com/official-stockfish/Stockfish/issues/3847
closes https://github.com/official-stockfish/Stockfish/pull/3850

No functional change
2021-12-19 11:43:18 +01:00
Michael Chaly
fb7d3ab32e Reintroduce futility pruning for captures
This is a reintroduction of an idea that was simplified away approximately 1 year ago.
There are some tweaks to it :
a) exclude promotions;
b) exclude Pv Nodes from it - Pv Nodes logic for captures is really different from non Pv nodes so it makes a lot of sense;
c) use a big grain of capture history - idea is taken from my recent patches in futility pruning.

passed STC
https://tests.stockfishchess.org/tests/view/61bd90f857a0d0f327c373b7
LLR: 2.96 (-2.94,2.94) <0.00,2.50>
Total: 86640 W: 22474 L: 22110 D: 42056
Ptnml(0-2): 268, 9732, 22963, 10082, 275

passed LTC
https://tests.stockfishchess.org/tests/view/61be094457a0d0f327c38aa3
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 23240 W: 6079 L: 5838 D: 11323
Ptnml(0-2): 14, 2261, 6824, 2512, 9

https://github.com/official-stockfish/Stockfish/pull/3864

bench 4493723
2021-12-19 08:03:41 +01:00
Michael Chaly
0a318cdddf Adjust reductions based on current node delta and root delta
This patch is a follow up of previous 2 patches that introduced more reductions for PV nodes with low delta and more pruning for nodes with low delta. Instead of writing separate heuristics now it adjust reductions based on delta / rootDelta - it allows to remove 3 separate adjustements of pruning/LMR in different places and also makes reduction dependence on delta and rootDelta smoother. Also now it works for all pruning heuristics and not just 2.

Passed STC
https://tests.stockfishchess.org/tests/view/61ba9b6c57a0d0f327c2d48b
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 79192 W: 20513 L: 20163 D: 38516
Ptnml(0-2): 238, 8900, 21024, 9142, 292

passed LTC
https://tests.stockfishchess.org/tests/view/61baf77557a0d0f327c2eb8e
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 158400 W: 41134 L: 40572 D: 76694
Ptnml(0-2): 101, 16372, 45745, 16828, 154

closes https://github.com/official-stockfish/Stockfish/pull/3862

bench 4651538
2021-12-18 17:19:21 +01:00
George Sobala
939b694bfd Fix for profile-build failure using gcc on MacOS
Fixes https://github.com/official-stockfish/Stockfish/issues/3846 ,
where the profiling SF binary generated by GCC on MacOS would launch
but failed to quit. Tested with gcc-8, gcc9, gcc10, gcc-11.

The problem can be fixed by adding -fvisibility=hidden to the compiler
flags, see for example the following piece of Apple documentation:
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/CppRuntimeEnv/Articles/SymbolVisibility.html

For instance this now works:
   make -j8 profile-build ARCH=x86-64-avx2 COMP=gcc COMPCXX=g++-11

No functional change
2021-12-17 18:52:09 +01:00
pb00067
dc5d9bdfee Remove lowPly history
Seems that after pull request #3731 (Capping stat bonus at 2000) this
heuristic is no longer useful.

STC:
https://tests.stockfishchess.org/tests/view/61b8d0e2dffbe89a35815444
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 30672 W: 7974 L: 7812 D: 14886
Ptnml(0-2): 106, 3436, 8072, 3634, 88

LTC:
https://tests.stockfishchess.org/tests/view/61b8e90cdffbe89a35815a67
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 42448 W: 10884 L: 10751 D: 20813
Ptnml(0-2): 23, 4394, 12267, 4507, 33

closes https://github.com/official-stockfish/Stockfish/pull/3853

bench: 4474950
2021-12-17 18:37:41 +01:00
bmc4
0889210262 Simplify away singularQuietLMR
While at it, we also update the Elo estimate of reduction at non-PV nodes
(source: https://tests.stockfishchess.org/tests/view/61acf97156fcf33bce7d6303 )

STC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 243632 W: 62874 L: 63022 D: 117736
Ptnml(0-2): 810, 28024, 64249, 27970, 763
https://tests.stockfishchess.org/tests/view/61b8b1b7dffbe89a35814c0d

LTC:
LLR: 2.93 (-2.94,2.94) <-2.25,0.25>
Total: 91392 W: 23520 L: 23453 D: 44419
Ptnml(0-2): 51, 9568, 26387, 9643, 47
https://tests.stockfishchess.org/tests/view/61b97316dffbe89a35817da7

closes https://github.com/official-stockfish/Stockfish/pull/3854

bench: 4217785
2021-12-17 18:22:48 +01:00
farseer
3bea736a2a Update default net to nn-4401e826ebcc.nnue
Using data T60 12/1/20 to 11/2/2021, T74 4/22/21 to 7/27/21, T75 6/3/21 to 10/16/21, T76
(half of the randomly interleaved dataset due to a mistake merging) 11/10/21 to 11/21/21,
wrongIsRight_nodes5000pv2.binpack, and WrongIsRight-Reloaded.binpack combined and shuffled
position by position.

Trained with LR=4.375e-4 and WDL filtering enabled:

python train.py --smart-fen-skipping --random-fen-skipping 0 --features=HalfKAv2_hm^
--lambda=1.0 --max_epochs=800 --seed 910688689 --batch-size 16384
--progress_bar_refresh_rate 30 --threads 4 --num-workers 4 --gpus 1
--resume-from-model C:\msys64\home\Mike\nnue-pytorch\9b3d.pt
E:\trainingdata\T60-T74-T75-T76-WiR-WiRR-PbyP.binpack
E:\trainingdata\T60-T74-T75-T76-WiR-WiRR-PbyP.binpack

Passed STC
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 41848 W: 10962 L: 10676 D: 20210 Elo +2.16
Ptnml(0-2): 142, 4699, 11016, 4865, 202
https://tests.stockfishchess.org/tests/view/61ba886857a0d0f327c2cfd6

Passed LTC
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 27776 W: 7208 L: 6953 D: 13615 Elo + 3.00
Ptnml(0-2): 14, 2808, 8007, 3027, 32
https://tests.stockfishchess.org/tests/view/61baae4d57a0d0f327c2d96f

closes https://github.com/official-stockfish/Stockfish/pull/3856

Bench: 4667591
2021-12-17 18:12:47 +01:00
Joost VandeVondele
c6edf33f53 Remove NNUE scaling term
remove pawns scaling, probably correlated with piece scaling, and might be less useful with the recent improved nets. Might allow for another tune of the scaling params.

passed STC
https://tests.stockfishchess.org/tests/view/61afdb2e56fcf33bce7df31a
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 280864 W: 72198 L: 72399 D: 136267
Ptnml(0-2): 854, 32356, 74346, 31889, 987

passed LTC
https://tests.stockfishchess.org/tests/view/61b233a606b4c2dcb1b16140
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 400136 W: 102669 L: 103012 D: 194455
Ptnml(0-2): 212, 42005, 116047, 41522, 282

closes https://github.com/official-stockfish/Stockfish/pull/3851

Bench: 4735679
2021-12-14 13:41:12 +01:00
Joost VandeVondele
ea1ddb6aef Update default net to nn-d93927199b3d.nnue
Using the same dataset as before but slightly reduced initial LR as in
https://github.com/vondele/nnue-pytorch/tree/tweakLR1

passed STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 51368 W: 13492 L: 13191 D: 24685
Ptnml(0-2): 168, 5767, 13526, 6042, 181
https://tests.stockfishchess.org/tests/view/61b61f43dffbe89a3580b529

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 45128 W: 11763 L: 11469 D: 21896
Ptnml(0-2): 24, 4583, 13063, 4863, 31
https://tests.stockfishchess.org/tests/view/61b6612edffbe89a3580c447

closes https://github.com/official-stockfish/Stockfish/pull/3848

Bench: 5121336
2021-12-13 07:17:25 +01:00
Stefan Geschwentner
d579db34a3 Simplify falling eval time factor.
Remove the difference to previous best score in falling eval calculation. As compensation double the effect of the difference to previous best average score.

STC:
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 86944 W: 22363 L: 22285 D: 42296
Ptnml(0-2): 273, 9227, 24396, 9301, 275
https://tests.stockfishchess.org/tests/view/61b111ce06b4c2dcb1b11546

LTC:
LLR: 2.96 (-2.94,2.94) <-2.25,0.25>
Total: 134944 W: 34606 L: 34596 D: 65742
Ptnml(0-2): 66, 12941, 41456, 12935, 74
https://tests.stockfishchess.org/tests/view/61b19ca206b4c2dcb1b13a8b

closes https://github.com/official-stockfish/Stockfish/pull/3841

Bench: 4729473
2021-12-11 15:56:38 +01:00
Joost VandeVondele
9db6ca8592 Update Top CPU Contributors
closes https://github.com/official-stockfish/Stockfish/pull/3842

No functional change
2021-12-11 15:55:32 +01:00
Michael Chaly
8e82345931 Adjust singular extension depth restriction
This patch is a modification of original idea by lonfom169 which had a good yellow run
- do singular extension search with depth threshold 6 unless this is a PvNode with is a part of a PV line -
for them set threshold to 8 instead.

Passed STC
https://tests.stockfishchess.org/tests/view/61b1080406b4c2dcb1b1128c
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 84352 W: 21917 L: 21555 D: 40880
Ptnml(0-2): 288, 9524, 22185, 9896, 283

Passed LTC
https://tests.stockfishchess.org/tests/view/61b1860a06b4c2dcb1b134a1
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 63520 W: 16575 L: 16237 D: 30708
Ptnml(0-2): 27, 6519, 18350, 6817, 47

https://github.com/official-stockfish/Stockfish/pull/3840

bench 4729473
2021-12-09 20:50:00 +01:00
Stefan Geschwentner
9451419912 Improve transposition table remplacement strategy
Increase chance that PV node replaces old entry in transposition table.

STC:
LLR: 2.93 (-2.94,2.94) <0.00,2.50>
Total: 46744 W: 12108 L: 11816 D: 22820
Ptnml(0-2): 156, 5221, 12344, 5477, 174
https://tests.stockfishchess.org/tests/view/61ae068356fcf33bce7d99d0

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 88464 W: 22912 L: 22513 D: 43039
Ptnml(0-2): 84, 9133, 25393, 9544, 78
https://tests.stockfishchess.org/tests/view/61ae973656fcf33bce7db3e1

closes https://github.com/official-stockfish/Stockfish/pull/3839

Bench: 5292488
2021-12-08 17:16:17 +01:00
Michael Chaly
c228f3196a Introduce post-lmr extensions
This idea is somewhat similar to extentions in LMR but has a different flavour.
If result of LMR was really good - thus exceeded alpha by some pretty
big given margin, we can extend move after LMR in full depth search with 0 window.
The idea is that this move is probably a fail high with somewhat of a big
probability so extending it makes a lot of sense

passed STC
https://tests.stockfishchess.org/tests/view/61ad45ea56fcf33bce7d74b7
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 59680 W: 15531 L: 15215 D: 28934
Ptnml(0-2): 193, 6711, 15734, 6991, 211

passed LTC
https://tests.stockfishchess.org/tests/view/61ad9ff356fcf33bce7d8646
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 59104 W: 15321 L: 14992 D: 28791
Ptnml(0-2): 53, 6023, 17065, 6364, 47

closes https://github.com/official-stockfish/Stockfish/pull/3838

bench 4881329
2021-12-07 18:15:06 +01:00
Tomasz Sobczyk
4766dfc395 Optimize FT activation and affine transform for NEON.
This patch optimizes the NEON implementation in two ways.

    The activation layer after the feature transformer is rewritten to make it easier for the compiler to see through dependencies and unroll. This in itself is a minimal, but a positive improvement. Other architectures could benefit from this too in the future. This is not an algorithmic change.
    The affine transform for large matrices (first layer after FT) on NEON now utilizes the same optimized code path as >=SSSE3, which makes the memory accesses more sequential and makes better use of the available registers, which allows for code that has longer dependency chains.

Benchmarks from Redshift#161, profile-build with apple clang

george@Georges-MacBook-Air nets % ./stockfish-b82d93 bench 2>&1 | tail -4 (current master)
===========================
Total time (ms) : 2167
Nodes searched  : 4667742
Nodes/second    : 2154011
george@Georges-MacBook-Air nets % ./stockfish-7377b8 bench 2>&1 | tail -4 (this patch)
===========================
Total time (ms) : 1842
Nodes searched  : 4667742
Nodes/second    : 2534061

This is a solid 18% improvement overall, larger in a bench with NNUE-only, not mixed.

Improvement is also observed on armv7-neon (Raspberry Pi, and older phones), around 5% speedup.

No changes for architectures other than NEON.

closes https://github.com/official-stockfish/Stockfish/pull/3837

No functional changes.
2021-12-07 18:08:54 +01:00
Joost VandeVondele
b82d93ece4 Update default net to nn-63376713ba63.nnue.
same data set as previous trained nets, tuned the wdl model slightly for training.
https://github.com/vondele/nnue-pytorch/tree/wdlTweak1

passed STC:
https://tests.stockfishchess.org/tests/view/61abe9e456fcf33bce7d2834
LLR: 2.93 (-2.94,2.94) <0.00,2.50>
Total: 31720 W: 8385 L: 8119 D: 15216
Ptnml(0-2): 117, 3534, 8273, 3838, 98

passed LTC:
https://tests.stockfishchess.org/tests/view/61ac293756fcf33bce7d36cf
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 136136 W: 35255 L: 34741 D: 66140
Ptnml(0-2): 114, 14217, 38894, 14727, 116

closes https://github.com/official-stockfish/Stockfish/pull/3836

Bench: 4667742
2021-12-07 12:40:48 +01:00
Michael Chaly
a3d425cf55 Assign extra bonus for previous move that caused a fail low more often
This patch allows to assign extra bonus for previous move that caused a fail low not only for PvNodes and cutNodes but also fo some allNodes - namely if the best result we could've got from the search is still far below alpha.

passed STC
https://tests.stockfishchess.org/tests/view/61aa26a49e8855bba1a36d96
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 73808 W: 19183 L: 18842 D: 35783
Ptnml(0-2): 251, 8257, 19564, 8564, 268

passed LTC
https://tests.stockfishchess.org/tests/view/61aa7dc29e8855bba1a3814f
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 142416 W: 36717 L: 36192 D: 69507
Ptnml(0-2): 106, 14799, 40862, 15346, 95

closes https://github.com/official-stockfish/Stockfish/pull/3835

bench 4724181
2021-12-06 07:42:04 +01:00
Stefan Geschwentner
7d44b43b3c Tweak history initialization
Initialize continuation history with a slighlty negative value -71 instead of zero.

The idea is, because the most history entries will be later negative anyway, to shift
the starting values a little bit in the "correct" direction. Of course the effect of
initialization dimishes with greater depth so I had the apprehension that the LTC test
would be difficult to pass, but it passed.

STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 34520 W: 9076 L: 8803 D: 16641
Ptnml(0-2): 136, 3837, 9047, 4098, 142
https://tests.stockfishchess.org/tests/view/61aa52e39e8855bba1a3776b

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 75568 W: 19620 L: 19254 D: 36694
Ptnml(0-2): 44, 7773, 21796, 8115, 56
https://tests.stockfishchess.org/tests/view/61aa87d39e8855bba1a383a5

closes https://github.com/official-stockfish/Stockfish/pull/3834

Bench: 4674029
2021-12-05 18:13:49 +01:00
Stefan Geschwentner
18f2b12cd0 Tweak time management
Use for adjustment of the falling eval time factor now also the difference
between previous best average score and current best score.

STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 109216 W: 28296 L: 27900 D: 53020
Ptnml(0-2): 312, 11759, 30148, 11999, 390
https://tests.stockfishchess.org/tests/view/61aafa8d1b31b85bcfa29d9c

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 54096 W: 14091 L: 13787 D: 26218
Ptnml(0-2): 29, 5124, 16447, 5410, 38
https://tests.stockfishchess.org/tests/view/61abbbbd56fcf33bce7d1d64

closes https://github.com/official-stockfish/Stockfish/pull/3833

Bench: 4829419
2021-12-05 17:56:54 +01:00
bmc4
a6a9d828ab Simplifies bestMoveChanges from LMR
As bestMoveChanges is only reset on mainThread and it could change how other
threads search, a multi-threads test was made.

STC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 146776 W: 37934 L: 37941 D: 70901
Ptnml(0-2): 477, 15644, 41173, 15597, 497
https://tests.stockfishchess.org/tests/view/61a8f9f34ed77d629d4ea2d6

LTC:
LLR: 3.11 (-2.94,2.94) <-2.25,0.25>
Total: 114040 W: 29314 L: 29269 D: 55457
Ptnml(0-2): 50, 10584, 35722, 10599, 65
https://tests.stockfishchess.org/tests/view/61a9d4bf9e8855bba1a35c4f

(SMP, 8 threads) STC:
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 23888 W: 6308 L: 6143 D: 11437
Ptnml(0-2): 36, 2557, 6600, 2708, 43
https://tests.stockfishchess.org/tests/view/61ac27a756fcf33bce7d3677

closes https://github.com/official-stockfish/Stockfish/pull/3831

bench: 4829419
2021-12-05 17:50:04 +01:00
Joost VandeVondele
327060232a Update default net to nn-cdf1785602d6.nnue
Same process as in e4a0c6c759
with the training started from the current master net.

passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 38224 W: 10023 L: 9742 D: 18459
Ptnml(0-2): 133, 4328, 9940, 4547, 164
https://tests.stockfishchess.org/tests/view/61a8611e4ed77d629d4e836e

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 115176 W: 29783 L: 29321 D: 56072
Ptnml(0-2): 68, 12039, 32936, 12453, 92
https://tests.stockfishchess.org/tests/view/61a8963e4ed77d629d4e8d9b

closes https://github.com/official-stockfish/Stockfish/pull/3830

Bench: 4829419
2021-12-04 10:31:22 +01:00
Michael Chaly
e4b7403f12 Do more aggressive pruning for some node types
This patch allows more aggressive futility/see based pruning for PV nodes with low delta and non-pv nodes.

Fixes some white space issues.

Passed STC
https://tests.stockfishchess.org/tests/view/61a5ed33d16c530b5dcc27cc
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 182088 W: 47121 L: 46584 D: 88383
Ptnml(0-2): 551, 20687, 48037, 21212, 557

Passed LTC
https://tests.stockfishchess.org/tests/view/61a74dfdbd5c4360bcded0ac
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 87136 W: 22494 L: 22103 D: 42539
Ptnml(0-2): 38, 8918, 25272, 9295, 45

closes https://github.com/official-stockfish/Stockfish/pull/3828
closes https://github.com/official-stockfish/Stockfish/pull/3829

bench 4332259
2021-12-03 08:54:46 +01:00
Gian-Carlo Pascutto
c9977aa0a8 Add AVX-VNNI support for Alder Lake and later.
In their infinite wisdom, Intel axed AVX512 from Alder Lake
chips (well, not entirely, but we kind of want to use the Gracemont
cores for chess!) but still added VNNI support.
Confusingly enough, this is not the same as VNNI256 support.

This adds a specific AVX-VNNI target that will use this AVX-VNNI
mode, by prefixing the VNNI instructions with the appropriate VEX
prefix, and avoiding AVX512 usage.

This is about 1% faster on P cores:

Result of  20 runs
==================
base (./clang-bmi2   ) =    3306337  +/- 7519
test (./clang-vnni   ) =    3344226  +/- 7388
diff                   =     +37889  +/- 4153

speedup        = +0.0115
P(speedup > 0) =  1.0000

But a nice 3% faster on E cores:

Result of  20 runs
==================
base (./clang-bmi2   ) =    1938054  +/- 28257
test (./clang-vnni   ) =    1994606  +/- 31756
diff                   =     +56552  +/- 3735

speedup        = +0.0292
P(speedup > 0) =  1.0000

This was measured on Clang 13. GCC 11.2 appears to generate
worse code for Alder Lake, though the speedup on the E cores
is similar.

It is possible to run the engine specifically on the P or E using binding,
for example in linux it is possible to use (for an 8 P + 8 E setup like i9-12900K):
taskset -c 0-15 ./stockfish
taskset -c 16-23 ./stockfish
where the first call binds to the P-cores and the second to the E-cores.

closes https://github.com/official-stockfish/Stockfish/pull/3824

No functional change
2021-12-03 08:51:06 +01:00
bmc4
c1f9a359e8 Correctly reset bestMoveChanges
for searches not using time management (e.g. analysis, fixed node game play etc),
bestMoveChanges was not reset during search iterations. As LMR uses this quantity,
search was somewhat weaker.

Tested using fixed node playing games:
```
./c-chess-cli -each nodes=10000 option.Hash=16 -engine cmd=../Stockfish/src/fix -engine cmd=../Stockfish/src/master -concurrency 6 -openings file=../books/UHO_XXL_+0.90_+1.19.epd -games 10000
Score of Stockfish Fix vs Stockfish Master: 3187 - 3028 - 3785  [0.508] 10000

./c-chess-cli -each nodes=30000 option.Hash=16 -engine cmd=../Stockfish/src/fix -engine cmd=../Stockfish/src/master -concurrency 6 -openings file=../books/UHO_XXL_+0.90_+1.19.epd -games 10000
Score of Stockfish Fix vs Stockfish Master: 2946 - 2834 - 4220  [0.506] 10000
```

closes https://github.com/official-stockfish/Stockfish/pull/3818

bench: 5061979
2021-12-01 18:22:44 +01:00
bmc4
95a2ac1e07 Simplify reduction on rootNode when bestMoveChanges is high
The reduction introduced in #3736 also consider on rootNode, so we don't have to reduce again.

STC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 28736 W: 7494 L: 7329 D: 13913
Ptnml(0-2): 95, 3247, 7503, 3444, 79
https://tests.stockfishchess.org/tests/view/61a3abe01b7fdf52228e74d8

LTC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 47816 W: 12434 L: 12308 D: 23074
Ptnml(0-2): 37, 4972, 13755, 5116, 28
https://tests.stockfishchess.org/tests/view/61a3c3e39f0c43dae1c71d71

closes https://github.com/official-stockfish/Stockfish/pull/3817

bench: 6331638
2021-12-01 18:10:51 +01:00
Michael Ortmann
4b86ef8c4f Fix typos in comments, adjust readme
closes https://github.com/official-stockfish/Stockfish/pull/3822

also adjusts readme as requested in https://github.com/official-stockfish/Stockfish/pull/3816

No functional change
2021-12-01 18:07:30 +01:00
hengyu
64f21ecdae Small clean-up
remove unneeded calculation.

closes https://github.com/official-stockfish/Stockfish/pull/3807

No functional change.
2021-12-01 17:59:20 +01:00
pb00067
282644f141 Remove depth dependence and use same limit (2000) as stat_bonus
STC:
https://tests.stockfishchess.org/tests/view/619df59dc0a4ea18ba95a424
LLR: 2.96 (-2.94,2.94) <-2.25,0.25>
Total: 83728 W: 21329 L: 21242 D: 41157
Ptnml(0-2): 297, 9669, 21847, 9752, 299

LTC:
https://tests.stockfishchess.org/tests/view/619e64d7c0a4ea18ba95a475
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 79888 W: 20238 L: 20155 D: 39495
Ptnml(0-2): 57, 8391, 22980, 8444, 73

closes https://github.com/official-stockfish/Stockfish/pull/3806

bench: 6792010
2021-12-01 17:55:23 +01:00
noobpwnftw
ca3c1c5f3a Enable compilation on older Windows systems
Improve compatibility of the last NUMA patch when running under older versions of Windows,
for instance Windows Server 2003. Reported by user "g3g6" in the following comments:
7218ec4df9

Closes https://github.com/official-stockfish/Stockfish/pull/3821

No functional change
2021-11-30 20:57:47 +01:00
Joost VandeVondele
e4a0c6c759 Update default net to nn-4f56ecfca5b7.nnue
New net trained with nnue-pytorch, started from a master net on a data set of Leela
(T60.binpack+T74.binpck) Stockfish data (wrongIsRight_nodes5000pv2.binpack), and
Michael Babigian's conversion of T60 Leela data (including TB7 rescoring) (farseer.binpack)
available as a single interleaved binpack:

https://drive.google.com/file/d/1_sQoWBl31WAxNXma2v45004CIVltytP8/view?usp=sharing

The nnue-pytorch branch used is https://github.com/vondele/nnue-pytorch/tree/wdl

passed STC:
https://tests.stockfishchess.org/tests/view/61a3cc729f0c43dae1c71f1b
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 49152 W: 12842 L: 12544 D: 23766
Ptnml(0-2): 154, 5542, 12904, 5804, 172

passed LTC:
https://tests.stockfishchess.org/tests/view/61a43c6260afd064f2d724f1
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 25528 W: 6676 L: 6425 D: 12427
Ptnml(0-2): 9, 2593, 7315, 2832, 15

closes https://github.com/official-stockfish/Stockfish/pull/3816

Bench: 6885242
2021-11-29 12:56:01 +01:00
Michael Chaly
af050e5eed Refine futility pruning for parent nodes
This patch is a result of refining of tuning vondele did after
new net passed and some hand-made values adjustements - excluding
changes in other pruning heuristics and rounding value of history
divisor to the nearest power of 2.

With this patch futility pruning becomes more aggressive and
history influence on it is doubled again.

passed STC
https://tests.stockfishchess.org/tests/view/61a2c4c1a26505c2278c150d
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 33848 W: 8841 L: 8574 D: 16433
Ptnml(0-2): 100, 3745, 8988, 3970, 121

passed LTC
https://tests.stockfishchess.org/tests/view/61a327ffa26505c2278c26d9
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 22272 W: 5856 L: 5614 D: 10802
Ptnml(0-2): 12, 2230, 6412, 2468, 14

closes https://github.com/official-stockfish/Stockfish/pull/3814

bench 6302543
2021-11-28 14:25:06 +01:00
Michael Chaly
8bb5a436b2 Adjust usage of history in futility pruning
This patch refines 0ac8aca893 that uses history heuristics in futility pruning.
Now it adds main history of the move to in and also increases effect by factor of 2.

passed STC
https://tests.stockfishchess.org/tests/view/61a156829e83391467a2b2c9
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 68464 W: 17920 L: 17587 D: 32957
Ptnml(0-2): 239, 7711, 18025, 7992, 265

passed LTC
https://tests.stockfishchess.org/tests/view/61a1bde99e83391467a2b305
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 26088 W: 6926 L: 6674 D: 12488
Ptnml(0-2): 18, 2619, 7531, 2845, 31

closes https://github.com/official-stockfish/Stockfish/pull/3812

bench 6804653
2021-11-27 14:47:46 +01:00
Joost VandeVondele
4bb11e823f Tune NNUE scaling params
passed STC:
https://tests.stockfishchess.org/tests/view/61a156f89e83391467a2b2cc
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 22816 W: 5896 L: 5646 D: 11274
Ptnml(0-2): 55, 2567, 5961, 2723, 102

passed LTC:
https://tests.stockfishchess.org/tests/view/61a1cf3d9e83391467a2b30b
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 17904 W: 4658 L: 4424 D: 8822
Ptnml(0-2): 6, 1821, 5079, 2025, 21

closes https://github.com/official-stockfish/Stockfish/pull/3811

Bench: 7218806
2021-11-27 14:26:35 +01:00
Joost VandeVondele
9ee58dc7a7 Update default net to nn-3678835b1d3d.nnue
New net trained with nnue-pytorch, started from the master net on a data set of Leela
(T60.binpack+T74.binpck) and Stockfish data (wrongIsRight_nodes5000pv2.binpack),
available as a single interleaved binpack:

https://drive.google.com/file/d/12uWZIA3F2cNbraAzQNb1jgf3tq_6HkTr/view?usp=sharing

The nnue-pytorch branch used is https://github.com/vondele/nnue-pytorch/tree/wdl, which
has the new feature to filter positions based on the likelihood of the current evaluation
leading to the game outcome. It should make it less likely to try to learn from
misevaluated positions. Standard options have been used, starting from the master net:

   --gpus 1 --threads 4 --num-workers 4 --batch-size 16384 --progress_bar_refresh_rate 300
   --smart-fen-skipping --random-fen-skipping 12 --features=HalfKAv2_hm^   --lambda=1.0

Testing with games shows neutral Elo at STC, and good performance at LTC:

STC:
https://tests.stockfishchess.org/tests/view/619eb597c0a4ea18ba95a4dc
ELO: -0.44 +-1.8 (95%) LOS: 31.2%
Total: 40000 W: 10447 L: 10498 D: 19055
Ptnml(0-2): 254, 4576, 10260, 4787, 123

LTC:
https://tests.stockfishchess.org/tests/view/619f6e87c0a4ea18ba95a53f
ELO: 3.30 +-1.8 (95%) LOS: 100.0%
Total: 33062 W: 8560 L: 8246 D: 16256
Ptnml(0-2): 54, 3358, 9352, 3754, 13

passed LTC SPRT:
https://tests.stockfishchess.org/tests/view/61a0864e8967bbf894416e65
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 29376 W: 7663 L: 7396 D: 14317
Ptnml(0-2): 67, 3017, 8205, 3380, 19

closes https://github.com/official-stockfish/Stockfish/pull/3808

Bench: 7011501
2021-11-26 18:16:04 +01:00
Michael Chaly
0ac8aca893 Use fraction of history heuristics in futility pruning
This idea is somewhat of a respin of smth we had in futility pruning and that was simplified away - dependence of it not only on static evaluation of position but also on move history heuristics.
Instead of aborting it when they are high there we use fraction of their sum to adjust static eval pruning criteria.

passed STC
https://tests.stockfishchess.org/tests/view/619bd438c0a4ea18ba95a27d
LLR: 2.93 (-2.94,2.94) <0.00,2.50>
Total: 113704 W: 29284 L: 28870 D: 55550
Ptnml(0-2): 357, 12884, 30044, 13122, 445

passed LTC
https://tests.stockfishchess.org/tests/view/619cb8f0c0a4ea18ba95a334
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 147136 W: 37307 L: 36770 D: 73059
Ptnml(0-2): 107, 15279, 42265, 15804, 113

closes https://github.com/official-stockfish/Stockfish/pull/3805

bench 6777918
2021-11-25 19:38:03 +01:00
Stefan Geschwentner
092b27a6d0 Less futility pruning.
Disable futility pruning at former PV nodes stored in the transposition table.

STC:
LLR: 2.96 (-2.94,2.94) <0.00,2.50>
Total: 102256 W: 25708 L: 25318 D: 51230
Ptnml(0-2): 276, 11511, 27168, 11893, 280
https://tests.stockfishchess.org/tests/view/61990b3135c7c6348cb602db

LTC:
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 183304 W: 46027 L: 45408 D: 91869
Ptnml(0-2): 96, 19029, 52778, 19658, 91
https://tests.stockfishchess.org/tests/view/619a0d1b35c7c6348cb603bc

closes https://github.com/official-stockfish/Stockfish/pull/3804

Bench: 7334766
2021-11-23 21:23:28 +01:00
noobpwnftw
7218ec4df9 Revert and fix earlier windows NUMA patch
revert 9048ac00db due to core spread problem and fix new OS compatibility with another method.

This code assumes that if one NUMA node has more than one processor groups, they are created equal(having equal amount of cores assigned to each of the groups), and also the total number of available cores contained in such groups are equal to the number of available cores within one NUMA node because of how best_node function works.

closes https://github.com/official-stockfish/Stockfish/pull/3798
fixes https://github.com/official-stockfish/Stockfish/pull/3787

No functional change.
2021-11-22 13:31:13 +01:00
Joost VandeVondele
a943b1d28d Remove appveyor CI
retire msvc support and corresponding CI. No active development happens on msvc,
and build is much slower or wrong.

gcc (mingw) is our toolchain of choice also on windows, and the latter is tested.

No functional change
2021-11-21 21:56:13 +01:00
Stéphane Nicolet
a5a89b27c8 Introduce Optimism
Current master implements a scaling of the raw NNUE output value with a formula
equivalent to 'eval = alpha * NNUE_output', where the scale factor alpha varies
between 1.8 (for early middle game) and 0.9 (for pure endgames). This feature
allows Stockfish to keep material on the board when she thinks she has the advantage,
and to seek exchanges and simplifications when she thinks she has to defend.

This patch slightly offsets the turning point between these two strategies, by adding
to Stockfish's evaluation a small "optimism" value before actually doing the scaling.
The effect is that SF will play a little bit more risky, trying to keep the tension a
little bit longer when she is defending, and keeping even more material on the board
when she has an advantage.

We note that this patch is similar in spirit to the old "Contempt" idea we used to have
in classical Stockfish, but this implementation differs in two key points:

  a) it has been tested as an Elo-gainer against master;

  b) the values output by the search are not changed on average by the implementation
     (in other words, the optimism value changes the tension/exchange strategy, but a
     displayed value of 1.0 pawn has the same signification before and after the patch).

See the old comment https://github.com/official-stockfish/Stockfish/pull/1361#issuecomment-359165141
for some images illustrating the ideas.

-------

finished yellow at STC:
LLR: -2.94 (-2.94,2.94) <0.00,2.50>
Total: 165048 W: 41705 L: 41611 D: 81732
Ptnml(0-2): 565, 18959, 43245, 19327, 428
https://tests.stockfishchess.org/tests/view/61942a3dcd645dc8291c876b

passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 121656 W: 30762 L: 30287 D: 60607
Ptnml(0-2): 87, 12558, 35032, 13095, 56
https://tests.stockfishchess.org/tests/view/61962c58cd645dc8291c8877

-------

How to continue from there?

a) the shape (slope and amplitude) of the sigmoid used to compute the optimism value
   could be tweaked to try to gain more Elo, so the parameters of the sigmoid function
   in line 391 of search.cpp could be tuned with SPSA. Manual tweaking is also possible
   using this Desmos page: https://www.desmos.com/calculator/jhh83sqq92

b) in a similar vein, with two recents patches affecting the scaling of the NNUE
   evaluation in evaluate.cpp, now could be a good time to try a round of SPSA tuning
   of the NNUE network;

c) this patch will tend to keep tension in middlegame a little bit longer, so any
   patch improving the defensive aspect of play via search extensions in risky,
   tactical positions would be welcome.

-------

closes https://github.com/official-stockfish/Stockfish/pull/3797

Bench: 6184852
2021-11-21 21:18:08 +01:00
Michael Chaly
f5df517145 Simplify Pv nodes related logic in LMR
Instead of having 2 separate conditions for Pv nodes reductions we can actually write them together. Despite it's not being strictly logically the same bench actually doesn't change up to depth 20, so them interacting is really rare and thus it's just a removal of extra PvNode check most of the time.

passed STC:
https://tests.stockfishchess.org/tests/view/618ce27cd7a085ad008ef4e9
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 37488 W: 9424 L: 9279 D: 18785
Ptnml(0-2): 90, 3903, 10634, 4006, 111

passed LTC:
https://tests.stockfishchess.org/tests/view/618d2585d7a085ad008ef527
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 49968 W: 12449 L: 12331 D: 25188
Ptnml(0-2): 27, 4745, 15309, 4889, 14

closes https://github.com/official-stockfish/Stockfish/pull/3792

Bench: 6339548
2021-11-15 18:20:10 +01:00
noobpwnftw
9048ac00db Fix processor group binding under Windows.
Starting with Windows Build 20348 the behavior of the numa API has been changed:
https://docs.microsoft.com/en-us/windows/win32/procthread/numa-support

Old code only worked because there was probably a limit on how many
cores/threads can reside within one NUMA node, and the OS creates extra NUMA
nodes when necessary, however the actual mechanism of core binding is
done by "Processor Groups"(https://docs.microsoft.com/en-us/windows/win32/procthread/processor-groups). With a newer OS, one NUMA node can have many
such "Processor Groups" and we should just consistently use the number
of groups to bind the threads instead of deriving the topology from
the number of NUMA nodes.

This change is required to spread threads on all cores on Windows 11 with
a 3990X CPU. It has only 1 NUMA node with 2 groups of 64 threads each.

closes https://github.com/official-stockfish/Stockfish/pull/3787

No functional change.
2021-11-15 18:19:53 +01:00
Joost VandeVondele
1a5c21dc56 Tune a few NNUE related scaling parameters
passed STC
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 102480 W: 26099 L: 25708 D: 50673
Ptnml(0-2): 282, 11637, 27003, 12044, 274
https://tests.stockfishchess.org/tests/view/618820e3d7a085ad008ef1dd

passed LTC
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 165512 W: 41689 L: 41112 D: 82711
Ptnml(0-2): 82, 17255, 47510, 17822, 87
https://tests.stockfishchess.org/tests/view/6188b470d7a085ad008ef239

closes https://github.com/official-stockfish/Stockfish/pull/3784

Bench: 6339548
2021-11-11 00:56:57 +01:00
bmc4
c4a1390f4e Simplify away the Reverse Move penalty
This simplifies the penalty for reverse move introduced in
https://github.com/official-stockfish/Stockfish/pull/2294 .

STC:
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 81696 W: 20627 L: 20540 D: 40529
Ptnml(0-2): 221, 9390, 21559, 9437, 241
https://tests.stockfishchess.org/tests/view/618810acd7a085ad008ef1cc

LTC:
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 44136 W: 11021 L: 10890 D: 22225
Ptnml(0-2): 28, 4570, 12746, 4691, 33
https://tests.stockfishchess.org/tests/view/61885686d7a085ad008ef20b

closes https://github.com/official-stockfish/Stockfish/pull/3781

bench: 6547978
2021-11-08 13:14:18 +01:00
Joost VandeVondele
7b278aab9f Reduce use of lazyEval
In case the evaluation at root is large, discourage the use of lazyEval.

This fixes https://github.com/official-stockfish/Stockfish/issues/3772
or at least improves it significantly. In this case, poor play with large
odds can be observed, in extreme cases leading to a loss despite large
advantage:

r1bq1b1r/ppp3p1/3p1nkp/n3p3/2B1P2N/2NPB3/PPP2PPP/R3K2R b KQ - 5 9

With this patch the poor move is only considered up to depth 13, in master
up to depth 28.

The patch did not pass at LTC with Elo gainer bounds, but with slightly
positive Elo nevertheless (95% LOS).

STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 40368 W: 10318 L: 10041 D: 20009
Ptnml(0-2): 103, 4493, 10725, 4750, 113
https://tests.stockfishchess.org/tests/view/61800ad259e71df00dcc420d

LTC:
LLR: -2.94 (-2.94,2.94) <0.50,3.00>
Total: 212288 W: 52997 L: 52692 D: 106599
Ptnml(0-2): 112, 22038, 61549, 22323, 122
https://tests.stockfishchess.org/tests/view/618050d959e71df00dcc426d

closes https://github.com/official-stockfish/Stockfish/pull/3780

Bench: 7127040
2021-11-08 13:03:52 +01:00
Stefan Geschwentner
a0259d8ab9 Tweak initial aspiration window.
Maintain for each root move an exponential average of the search value with a weight ratio of 2:1 (new value vs old values). Then the average score is used as the center of the initial aspiration window instead of the previous score.

Stats indicate (see PR) that the deviation for previous score is in general greater than using average score, so later seems a better estimation of the next search value. This is probably the reason this patch succeded besides smoothing the sometimes wild swings in search score. An additional observation is that at higher depth previous score is above but average score below zero. So for average score more/less fail/low highs should be occur than previous score.

STC:
LLR: 2.97 (-2.94,2.94) <0.00,2.50>
Total: 59792 W: 15106 L: 14792 D: 29894
Ptnml(0-2): 144, 6718, 15869, 7010, 155
https://tests.stockfishchess.org/tests/view/61841612d7a085ad008eef06

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 46448 W: 11835 L: 11537 D: 23076
Ptnml(0-2): 21, 4756, 13374, 5050, 23
https://tests.stockfishchess.org/tests/view/618463abd7a085ad008eef3e

closes https://github.com/official-stockfish/Stockfish/pull/3776

Bench: 6719976
2021-11-05 22:22:30 +01:00
Joost VandeVondele
45e5e65a28 do not store qsearch positions in TT as exact.
in qsearch don't store positions in TT with the exact flag.

passed STC:
https://tests.stockfishchess.org/tests/view/617f9a29af49befdeee40231
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 155568 W: 39003 L: 39022 D: 77543
Ptnml(0-2): 403, 17854, 41305, 17803, 419

passed LTC:
https://tests.stockfishchess.org/tests/view/6180d47259e71df00dcc42a5
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 79640 W: 19993 L: 19910 D: 39737
Ptnml(0-2): 37, 8356, 22957, 8427, 43

closes https://github.com/official-stockfish/Stockfish/pull/3775

Bench: 7531210
2021-11-05 22:20:37 +01:00
Michael Chaly
c2b9134c6e Do more reductions at Pv nodes with low delta
This patch increases reduction for PvNodes that have their delta (difference between beta and alpha) significantly reduced compared to what it was at root.

passed STC
https://tests.stockfishchess.org/tests/view/617f9063af49befdeee40226
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 220840 W: 55752 L: 55150 D: 109938
Ptnml(0-2): 583, 24982, 58712, 25536, 607

passed LTC
https://tests.stockfishchess.org/tests/view/61815de959e71df00dcc42ed
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 79000 W: 19937 L: 19562 D: 39501
Ptnml(0-2): 36, 8190, 22674, 8563, 37

closes https://github.com/official-stockfish/Stockfish/pull/3774

bench: 6717808
2021-11-05 22:18:59 +01:00
lonfom169
11c6cf720d More futility pruning
Expand maximum allowed eval by 50% in futility pruning, above the VALUE_KNOWN_WIN.

STC:
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 128208 W: 32534 L: 32192 D: 63482
Ptnml(0-2): 298, 13484, 36216, 13790, 316
https://tests.stockfishchess.org/tests/view/6179c069a9b1d8fbcc4ee716

LTC:
LLR: 2.96 (-2.94,2.94) <0.50,3.50>
Total: 89816 W: 22645 L: 22265 D: 44906
Ptnml(0-2): 41, 8404, 27650, 8760, 53
https://tests.stockfishchess.org/tests/view/617ad728f411ea45cc39f895

closes https://github.com/official-stockfish/Stockfish/pull/3767

bench: 6804175
2021-11-05 22:15:53 +01:00
Joost VandeVondele
5a223afe4c Restore development version
No functional change
2021-11-01 06:28:37 +01:00
xefoci7612
ef4822aa8d Simplify Skill implementation
Currently we handle the UCI_Elo with a double randomization. This
seems not necessary and a bit involuted.

This patch removes the first randomization and unifies the 2 cases.

closes https://github.com/official-stockfish/Stockfish/pull/3769

No functional change.
2021-10-31 22:43:38 +01:00
Michel Van den Bergh
0e89d6e754 Do not output to stderr during the build.
To help with debugging, the worker sends the output of
stderr (suitable truncated) to the action log on the
server, in case a build fails. For this to work it is
important that there is no spurious output to stderr.

closes https://github.com/official-stockfish/Stockfish/pull/3773

No functional change
2021-10-31 22:40:41 +01:00
Stefan Geschwentner
a8330d5c3b Do more deeper LMR searches.
At expected cut nodes allow at least one ply deeper LMR search for the first seventh moves.

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 42880 W: 10964 L: 10738 D: 21178
Ptnml(0-2): 105, 4565, 11883, 4773, 114
https://tests.stockfishchess.org/tests/view/6179abd7a9b1d8fbcc4ee6f4

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 66872 W: 16930 L: 16603 D: 33339
Ptnml(0-2): 36, 6509, 20024, 6826, 41
https://tests.stockfishchess.org/tests/view/617a30fb2fbca9ca65972b5e

closes https://github.com/official-stockfish/Stockfish/pull/3770

Bench: 6295536
2021-10-31 22:31:55 +01:00
Joost VandeVondele
717d6c5ed5 Widen the aspiration window for larger evals
passed STC
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 36840 W: 9359 L: 9134 D: 18347
Ptnml(0-2): 111, 4130, 9722, 4337, 120
https://tests.stockfishchess.org/tests/view/617c601301c6d0988731d10a

passed LTC
LLR: 2.98 (-2.94,2.94) <0.50,3.50>
Total: 64824 W: 16377 L: 16043 D: 32404
Ptnml(0-2): 27, 6712, 18618, 7010, 45
https://tests.stockfishchess.org/tests/view/617c720d01c6d0988731d114

closes https://github.com/official-stockfish/Stockfish/pull/3768

Bench: 7683058
2021-10-31 22:30:01 +01:00
Joost VandeVondele
7262fd5d14 Stockfish 14.1
Official release version of Stockfish 14.1

Bench: 6334068

---

Today, we have the pleasure to announce Stockfish 14.1.

As usual, downloads will be freely available at stockfishchess.org/download [1].

With Stockfish 14.1 our users get access to the strongest chess engine
available today. In the period leading up to this release, Stockfish
convincingly won several chess engine tournaments, including the TCEC 21
superfinal, the TCEC Cup 9, and the Computer Chess Championship for
Fischer Random Chess (Chess960). In the latter tournament, Stockfish
was undefeated in 599 out of 600 games played.

Compared to Stockfish 14, this release introduces a more advanced NNUE
architecture and various search improvements. In self play testing, using
a book of balanced openings, Stockfish 14.1 wins three times more game
pairs than it loses [2]. At this high level, draws are very common, so the
Elo difference to Stockfish 14 is about 17 Elo. The NNUE evaluation method,
introduced to top level chess with Stockfish 12 about one year ago [3],
has now been adopted by several other strong CPU based chess engines.

The Stockfish project builds on a thriving community of enthusiasts
(thanks everybody!) that contribute their expertise, time, and resources
to build a free and open-source chess engine that is robust,
widely available, and very strong. We invite our chess fans to join the
fishtest testing framework and programmers to contribute to the project [4].

Stay safe and enjoy chess!

The Stockfish team

[1] https://stockfishchess.org/download/
[2] https://tests.stockfishchess.org/tests/view/6175c320af70c2be1788fa2b
[3] https://github.com/official-stockfish/Stockfish/discussions/3628
[4] https://stockfishchess.org/get-involved/
2021-10-28 07:38:19 +02:00
mstembera
385deefd80 Fix sometimes incorrect key for prefetches
STC
https://tests.stockfishchess.org/tests/view/61737b4f6ce927be32558401
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 138712 W: 34914 L: 34942 D: 68856
Ptnml(0-2): 421, 14817, 38894, 14817, 407

Very minor tweak since Position::key() depends on the 50 move rule counter.
Comments: cddde31eed

closes https://github.com/official-stockfish/Stockfish/pull/3759

No functional change
2021-10-25 12:26:44 +02:00
Joost VandeVondele
2c86ae196d Adjust ButterflyHistory decay parameter
passed STC:
LLR: 2.98 (-2.94,2.94) <-0.50,2.50>
Total: 26680 W: 6807 L: 6593 D: 13280
Ptnml(0-2): 73, 3007, 6989, 3175, 96
https://tests.stockfishchess.org/tests/view/6174094e6ce927be32558441

passed LTC:
LLR: 2.98 (-2.94,2.94) <0.50,3.50>
Total: 21104 W: 5403 L: 5185 D: 10516
Ptnml(0-2): 8, 2160, 6001, 2372, 11
https://tests.stockfishchess.org/tests/view/61744927351812fe5f969864

closes https://github.com/official-stockfish/Stockfish/pull/3761

Bench: 6334068
2021-10-24 22:17:55 +02:00
Stefan Geschwentner
8557f35aa5 Double extend search even more via LMR
Allow now for the first five moves a two plies deeper LMR search.

STC:
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 99608 W: 25143 L: 25115 D: 49350
Ptnml(0-2): 291, 11444, 26328, 11428, 313
https://tests.stockfishchess.org/tests/view/61718c9438cb9784038af8d7

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 52064 W: 13234 L: 13145 D: 25685
Ptnml(0-2): 35, 5431, 15014, 5514, 38
https://tests.stockfishchess.org/tests/view/6171e13e38cb9784038af928

closes https://github.com/official-stockfish/Stockfish/pull/3760

Bench: 7222293
2021-10-24 22:13:47 +02:00
bmc4
1163d972a9 Simplify LMR multiThread condition
STC (8 threads):
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 110584 W: 27818 L: 27807 D: 54959
Ptnml(0-2): 156, 12089, 30791, 12100, 156
https://tests.stockfishchess.org/tests/view/6172ef436ce927be325583a9

LTC (8 threads):
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 23632 W: 6025 L: 5903 D: 11704
Ptnml(0-2): 5, 2292, 7100, 2414, 5
https://tests.stockfishchess.org/tests/view/6173cf096ce927be32558412

closes https://github.com/official-stockfish/Stockfish/pull/3757

No functional change (in the single-threaded case)
Bench: 6689428
2021-10-24 22:08:28 +02:00
FauziAkram
fc8213c7df Tuning of a Null Move Parameter
STC:
LLR: 2.99 (-2.94,2.94) <-0.50,2.50>
Total: 78744 W: 19956 L: 19664 D: 39124
Ptnml(0-2): 259, 9005, 20573, 9255, 280
https://tests.stockfishchess.org/tests/view/6172017a38cb9784038af947

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 68528 W: 17309 L: 16964 D: 34255
Ptnml(0-2): 41, 7194, 19455, 7527, 47
https://tests.stockfishchess.org/tests/view/6172994d38cb9784038af983

closes https://github.com/official-stockfish/Stockfish/pull/3756

bench: 6689428
2021-10-23 12:27:32 +02:00
bmc4
927a84d310 Increase TTdepth acceptance some Threads
Increase TTdepth acceptance only on half of the Threads

STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 19272 W: 4956 L: 4766 D: 9550
Ptnml(0-2): 25, 1989, 5423, 2169, 30
https://tests.stockfishchess.org/tests/view/6172be6238cb9784038af9a7

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 23688 W: 6111 L: 5897 D: 11680
Ptnml(0-2): 2, 2275, 7081, 2479, 7
https://tests.stockfishchess.org/tests/view/6172e32938cb9784038af9c7

closes https://github.com/official-stockfish/Stockfish/pull/3754

No functional change in the single-threaded case
2021-10-23 12:23:29 +02:00
Stefano Cardanobile
2214fcecf7 Rewrite NNUE evaluation adjustments
Make the eval code in the evaluate_nnue.cpp more similar to the rest of the codebase:

* remove multiple variable assignment
* make if conditions explicit and indent on multiple lines

passed STC
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 59032 W: 14834 L: 14751 D: 29447
Ptnml(0-2): 176, 6310, 16459, 6397, 174
https://tests.stockfishchess.org/tests/view/616f250540f619782fd4f76d

closes https://github.com/official-stockfish/Stockfish/pull/3753

No functional change
2021-10-23 12:22:02 +02:00
mstembera
644f6d4790 Simplify away ValueListInserter
plus minor cleanups

STC: https://tests.stockfishchess.org/tests/view/616f059b40f619782fd4f73f
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 84992 W: 21244 L: 21197 D: 42551
Ptnml(0-2): 279, 9005, 23868, 9078, 266

closes https://github.com/official-stockfish/Stockfish/pull/3749

No functional change
2021-10-23 12:21:17 +02:00
Stefan Geschwentner
8a8640a761 Double extend more often via LMR
Allow for first three moves always a two plies deeper LMR search.

STC:
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 206096 W: 51966 L: 52093 D: 102037
Ptnml(0-2): 664, 23817, 54293, 23530, 744
https://tests.stockfishchess.org/tests/view/616f197d40f619782fd4f75a

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 62384 W: 15567 L: 15492 D: 31325
Ptnml(0-2): 40, 6633, 17777, 6696, 46
https://tests.stockfishchess.org/tests/view/616ffa1b4f0b65a0e231e682

closes https://github.com/official-stockfish/Stockfish/pull/3752

Bench: 6154836
2021-10-21 12:42:30 +02:00
bmc4
42a895d9c9 Simplify null move search condition
Remove `ss->ttPv` condition on null move search condition

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 80832 W: 20276 L: 20221 D: 40335
Ptnml(0-2): 267, 9335, 21168, 9368, 278
https://tests.stockfishchess.org/tests/view/616ed4a0942d40685e3237c6

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 54184 W: 13464 L: 13377 D: 27343
Ptnml(0-2): 37, 5758, 15435, 5805, 57
https://tests.stockfishchess.org/tests/view/616ef71f40f619782fd4f72d

closes https://github.com/official-stockfish/Stockfish/pull/3750

bench: 6201607
2021-10-21 08:43:43 +02:00
bmc4
4af1ae82c6 Adjust TTdepth acceptance on early cutoff
STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 63784 W: 16185 L: 15917 D: 31682
Ptnml(0-2): 231, 7309, 16531, 7603, 218
https://tests.stockfishchess.org/tests/view/616ed03a942d40685e3237c0

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 12728 W: 3268 L: 3072 D: 6388
Ptnml(0-2): 8, 1298, 3563, 1480, 15
https://tests.stockfishchess.org/tests/view/616ef156942d40685e32380a

closes https://github.com/official-stockfish/Stockfish/pull/3748

bench: 7050445
2021-10-19 22:14:39 +02:00
bmc4
b37054c310 Simplify evaluate condition on search
Remove condition for MOVE_NULL on search.

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 47544 W: 11968 L: 11864 D: 23712
Ptnml(0-2): 150, 5535, 12318, 5599, 170
https://tests.stockfishchess.org/tests/view/616e37143799eb91f1f071ee

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 67472 W: 16938 L: 16870 D: 33664
Ptnml(0-2): 49, 7119, 19331, 7189, 48
https://tests.stockfishchess.org/tests/view/616e3fab3799eb91f1f071f1

closes https://github.com/official-stockfish/Stockfish/pull/3746

bench: 5255771
2021-10-19 22:09:47 +02:00
bmc4
67d0616483 Simplify probCutCount away
Simplify away the limitation in number of moves in probCut.

STC:
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 286768 W: 71888 L: 72133 D: 142747
Ptnml(0-2): 983, 33084, 75471, 32887, 959
https://tests.stockfishchess.org/tests/view/616c9b9b90e1312a3cd0ef0a

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 69312 W: 17243 L: 17176 D: 34893
Ptnml(0-2): 42, 7452, 19614, 7493, 55
https://tests.stockfishchess.org/tests/view/616cebbf4f95b438f7a85f93

closes https://github.com/official-stockfish/Stockfish/pull/3745

bench: 5005810
2021-10-18 21:00:08 +02:00
Stefano Cardanobile
f7494961de Reformat Eval::evaluate()
Non functional simplification: the goal of this patch is to make
the style in the evaluate() function similar to the rest of the code.

passed STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 95608 W: 24058 L: 24026 D: 47524
Ptnml(0-2): 292, 10379, 26396, 10479, 258
https://tests.stockfishchess.org/tests/view/616c64fd99b580bf37797e4f

closes https://github.com/official-stockfish/Stockfish/pull/3744

Non-functional change
2021-10-18 20:45:47 +02:00
Stéphane Nicolet
8a74c08928 Remove noLMRExtension flag
This simplification patch removes the noLMRExtension flag. It was introduced in June
(see following link for that commit), but does not seem to be necessary anymore.
Link: e1f181ee64

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 21200 W: 5369 L: 5228 D: 10603
Ptnml(0-2): 67, 2355, 5616, 2494, 68
https://tests.stockfishchess.org/tests/view/616c03d299b580bf37797dcb

LTC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 37536 W: 9387 L: 9278 D: 18871
Ptnml(0-2): 23, 3988, 10643, 4085, 29
https://tests.stockfishchess.org/tests/view/616c10f499b580bf37797ddd

closes https://github.com/official-stockfish/Stockfish/pull/3743

Bench: 4792969
2021-10-17 17:54:39 +02:00
Stéphane Nicolet
6847be2c75 Allow some LMR double extensions
Allow some LMR double extensions for the second and third sons of each node.

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 170320 W: 42608 L: 42187 D: 85525
Ptnml(0-2): 516, 19635, 44422, 20086, 501
https://tests.stockfishchess.org/tests/view/616a9e3899b580bf37797cf4

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 74400 W: 18783 L: 18423 D: 37194
Ptnml(0-2): 46, 7812, 21129, 8162, 51
https://tests.stockfishchess.org/tests/view/616b378499b580bf37797d61

closes https://github.com/official-stockfish/Stockfish/pull/3742

Bench: 4877152
2021-10-17 12:29:11 +02:00
Stefano Cardanobile
4231d99ab4 Smooth improving
Smooth dependency on improvement margin in null move search.

STC
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 17384 W: 4468 L: 4272 D: 8644
Ptnml(0-2): 42, 1919, 4592, 2079, 60
https://tests.stockfishchess.org/tests/view/61689b8a1e5f6627cc1c0fdc

LTC
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 45648 W: 11525 L: 11243 D: 22880
Ptnml(0-2): 26, 4731, 13036, 4997, 34
https://tests.stockfishchess.org/tests/view/6168a12c1e5f6627cc1c0fe3

It would be interesting to test if the other pruning/reduction heuristics
in master which are using the improving variable (ie the sign of improvement)
could benefit from a smooth function of the improvement value (or maybe a
Relu of the improvement value).

closes https://github.com/official-stockfish/Stockfish/pull/3740

Bench: 4916775
2021-10-15 14:57:01 +02:00
Joost VandeVondele
580698e5e5 Compute ttCapture earlier
Compute ttCapture earlier, and reuse.

passed STC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 74128 W: 18640 L: 18578 D: 36910
Ptnml(0-2): 224, 7970, 20649, 7962, 259
https://tests.stockfishchess.org/tests/view/615dd9fa1a32f4036ac7fc4d

closes https://github.com/official-stockfish/Stockfish/pull/3734

No functional change
2021-10-14 09:58:03 +02:00
bmc4
0bddd942b4 Simplify ttHitAverage away
Simplify ttHitAverage away, which was introduced in the following commit:
[here](fe124896b2)

A few tweaks with Elo gaining bounds have been tried to keep the code,
but they all failed:
https://tests.stockfishchess.org/tests/view/61656f7683dd501a05b0b292
https://tests.stockfishchess.org/tests/view/6165c0ca83dd501a05b0b2ca
https://tests.stockfishchess.org/tests/view/6165bf9683dd501a05b0b2c8
https://tests.stockfishchess.org/tests/view/6165719483dd501a05b0b29b
https://tests.stockfishchess.org/tests/view/6166c7fd83dd501a05b0b353
https://tests.stockfishchess.org/tests/view/6166c63b83dd501a05b0b350

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 58504 W: 14781 L: 14694 D: 29029
Ptnml(0-2): 175, 6718, 15426, 6711, 222
https://tests.stockfishchess.org/tests/view/6165112c83dd501a05b0b257

LTC:
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 33480 W: 8448 L: 8332 D: 16700
Ptnml(0-2): 21, 3569, 9447, 3679, 24
https://tests.stockfishchess.org/tests/view/61656fcf83dd501a05b0b294

change https://github.com/official-stockfish/Stockfish/pull/3739

bench: 4540339
2021-10-14 09:47:20 +02:00
Joseph Ellis
673841301b Simplify multi-cut condition
Now that the multi-cut condition is safer, we can avoid the cost of the sub-search.

STC:
https://tests.stockfishchess.org/tests/view/6165fd9283dd501a05b0b2fe
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 18648 W: 4745 L: 4600 D: 9303
Ptnml(0-2): 47, 2111, 4887, 2208, 71

LTC:
https://tests.stockfishchess.org/tests/view/616629ea83dd501a05b0b320
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 41704 W: 10407 L: 10302 D: 20995
Ptnml(0-2): 35, 4425, 11823, 4538, 31

closes https://github.com/official-stockfish/Stockfish/pull/3738

Bench: 5905086
2021-10-13 23:34:23 +02:00
Michael Chaly
c8459b18ba Reduce more if multiple moves exceed alpha
Idea of this patch is the following: in case we already have four moves that
exceeded alpha in the current node, the probability of finding fifth should
be reasonably low. Note that four is completely arbitrary - there could and
probably should be some tweaks, both in tweaking best move count threshold
for more reductions and tweaking how they work - for example making more
reductions with best move count linearly.

passed STC:
https://tests.stockfishchess.org/tests/view/615f614783dd501a05b0aee2
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 141816 W: 36056 L: 35686 D: 70074
Ptnml(0-2): 499, 15131, 39273, 15511, 494

passed LTC:
https://tests.stockfishchess.org/tests/view/615fdff683dd501a05b0af35
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 68536 W: 17221 L: 16891 D: 34424
Ptnml(0-2): 38, 6573, 20725, 6885, 47

closes https://github.com/official-stockfish/Stockfish/pull/3736

Bench: 6131513
2021-10-09 09:59:33 +02:00
xoto10
f21a66f70d Small clean-up, Sept 2021
Closes https://github.com/official-stockfish/Stockfish/pull/3485

No functional change
2021-10-07 09:41:57 +02:00
Stéphane Nicolet
54a989930e Capping stat bonus at 2000
This patch updates the stat_bonus() function (used in the history tables to
help move ordering), keeping the same quadratic for small depths but changing
the values for depth >= 9:

The old bonus formula was increasing from zero at depth 1 to 4100 at depth 14,
then used the strange, small value of 73 for all depths >= 15.

The new bonus formula increases from 0 at depth 1 to 2000 at depth 8, then
keeps 2000 for all depths >= 8.

passed STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 169624 W: 42875 L: 42454 D: 84295
Ptnml(0-2): 585, 19340, 44557, 19729, 601
https://tests.stockfishchess.org/tests/view/615bd69e9d256038a969b97c

passed LTC:
LLR: 3.07 (-2.94,2.94) <0.50,3.50>
Total: 37336 W: 9456 L: 9191 D: 18689
Ptnml(0-2): 20, 3810, 10747, 4067, 24
https://tests.stockfishchess.org/tests/view/615c75d99d256038a969b9b2

closes https://github.com/official-stockfish/Stockfish/pull/3731

Bench: 6261865
2021-10-06 12:04:35 +02:00
Joost VandeVondele
329bdbd9cf Improve the Chess960 correction for cornered bishops
As Chess960 patches can not be tested on fishtest, this was locally tuned
and tested:

Elo: 2.36 +- 1.07
LOS: 0.999992

closes https://github.com/official-stockfish/Stockfish/pull/3730

Bench: 5714575
2021-10-06 11:57:34 +02:00
J. Oster
371b522e9e Time-management fix in MultiPV mode.
When playing games in MultiPV mode we must take care to only track the
best move changing for the first PV line. Otherwise, SF will spend most
of its time for the initial moves after the book exit.

This has been observed and reported on Discord, but can also be seen in
games played in Stefan Pohl's MultiPV experiment.

Tested with MultiPV=4.

STC:
https://tests.stockfishchess.org/tests/view/615c24b59d256038a969b990
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 1744 W: 694 L: 447 D: 603
Ptnml(0-2): 32, 125, 358, 278, 79

LTC:
https://tests.stockfishchess.org/tests/view/615c31769d256038a969b993
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 2048 W: 723 L: 525 D: 800
Ptnml(0-2): 10, 158, 511, 314, 31

closes https://github.com/official-stockfish/Stockfish/pull/3729

Bench: 5714575
2021-10-06 11:53:33 +02:00
Michael Chaly
135caee606 Increase reductions with thread count
Respin of multi-thread idea that was simplified away recently: basically doing
more reductions with thread count since Lazy SMP naturally widens search. With
drawish book this idea got simplified away but with less drawish book it again
gains elo, maybe trying to reinstall other ideas that were simplified away
previously can be beneficial.

passed STC
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 39736 W: 10205 L: 9986 D: 19545
Ptnml(0-2): 45, 4254, 11064, 4447, 58
https://tests.stockfishchess.org/tests/view/615750702d02f48db3961b00

passed LTC
LLR: 2.97 (-2.94,2.94) <0.50,3.50>
Total: 60352 W: 15530 L: 15218 D: 29604
Ptnml(0-2): 24, 5900, 18016, 6212, 24
https://tests.stockfishchess.org/tests/view/6157d8935488e26ea5eace7f

closes https://github.com/official-stockfish/Stockfish/pull/3724

Bench 5714575
2021-10-03 11:28:19 +02:00
Michael Chaly
21ad356c09 Extend quiet tt moves at PvNodes
Idea is to extend some quiet ttMoves if a lot of things indicate that
the transposition table move is going to be a good move:

1) move being a killer - so being the best move in nearby node;
2) reply continuation history is really good.

This is basically saying that move is good "in general" in this position,
that it is a good reply to the opponent move and that it was the best in
this position somewhere in search - so extending it makes a lot of sense.
In general in past year we had a lot of extensions of different types,
maybe there is something more in it :)

passed STC
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 42944 W: 10932 L: 10695 D: 21317
Ptnml(0-2): 141, 4869, 11210, 5116, 136
https://tests.stockfishchess.org/tests/view/614cca8e7bdc23e77ceb89f0

passed LTC
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 156848 W: 39473 L: 38893 D: 78482
Ptnml(0-2): 125, 16327, 44913, 16961, 98
https://tests.stockfishchess.org/tests/view/614cf93d7bdc23e77ceb8a13

closes https://github.com/official-stockfish/Stockfish/pull/3719

Bench: 5714575
2021-09-26 06:58:14 +02:00
Stéphane Nicolet
919da65d70 Reduction instead of cutoff
In master, during singular move analysis, when both the transposition value
and a reduced search for the other moves seem to indicate a fail high, we
heuristically prune the whole subtree and return an fail high score.

This patch is a little bit more cautious in this case, and instead of the
risky cutoff, we now search the ttMove with a reduced depth (by two plies).

STC:
https://tests.stockfishchess.org/tests/view/614dafe07bdc23e77ceb8a89
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 46728 W: 11909 L: 11666 D: 23153
Ptnml(0-2): 181, 5288, 12168, 5561, 166

LTC:
https://tests.stockfishchess.org/tests/view/614dc84abe4c07e0ecac3c95
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 74520 W: 18809 L: 18450 D: 37261
Ptnml(0-2): 45, 7735, 21346, 8084, 50

closes https://github.com/official-stockfish/Stockfish/pull/3718

Bench: 5499262
2021-09-25 22:12:17 +02:00
OfekShochat
00e34a758f Range reductions
adding reductions for when the delta between the static eval and the child's eval is consistently low.

passed STC
https://tests.stockfishchess.org/html/live_elo.html?614d7b3c7bdc23e77ceb8a5d
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 88872 W: 22672 L: 22366 D: 43834
Ptnml(0-2): 343, 10150, 23117, 10510, 316

passed LTC
https://tests.stockfishchess.org/html/live_elo.html?614daf3e7bdc23e77ceb8a82
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 24368 W: 6153 L: 5928 D: 12287
Ptnml(0-2): 13, 2503, 6937, 2708, 23

closes https://github.com/official-stockfish/Stockfish/pull/3717

Bench: 5443950
2021-09-24 23:17:48 +02:00
Stéphane Nicolet
ff3fa0c664 Tweak doubly singular condition (Topo's patch)
This patch relax a little bit the condition for doubly singular moves
(ie moves that are so forced that we think that they deserve a local
double extension of the search). We lower the margin and allow up to
six such double extensions in the path between the root and the critical
node.

Original idea by Siad Daboul (@TopoIogist) in PR #3709

Tested with the previous commit:

passed STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 33048 W: 8458 L: 8236 D: 16354
Ptnml(0-2): 120, 3701, 8660, 3923, 120
https://tests.stockfishchess.org/tests/view/614b24347bdc23e77ceb88fe

passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 54176 W: 13712 L: 13406 D: 27058
Ptnml(0-2): 36, 5653, 15399, 5969, 31
https://tests.stockfishchess.org/tests/view/614b3b727bdc23e77ceb8911

closes https://github.com/official-stockfish/Stockfish/pull/3714

Bench: 5792377
2021-09-23 23:24:28 +02:00
Stéphane Nicolet
73018a0337 Detect search explosions
This patch detects some search explosions (due to double extensions in
search.cpp) which can happen in some pathological positions, and takes
measures to ensure progress in search even for these pathological situations.

While a small number of double extensions can be useful during search
(for example to resolve a tactical sequence), a sustained regime of
double extensions leads to search explosion and a non-finishing search.
See the discussion in https://github.com/official-stockfish/Stockfish/pull/3544
and the issue https://github.com/official-stockfish/Stockfish/issues/3532 .

The implemented algorithm is the following:

a) at each node during search, store the current depth in the stack.
   Double extensions are by definition levels of the stack where the
   depth at ply N is strictly higher than depth at ply N-1.

b) during search, calculate for each thread a running average of the
   number of double extensions in the last 4096 visited nodes.

c) if one thread has more than 2% of double extensions for a sustained
   period of time (6 millions consecutive nodes, or about 4 seconds on
   my iMac), we decide that this thread is in an explosion state and
   we calm down this thread by preventing it to do any double extension
   for the next 6 millions nodes.

To calculate the running averages, we also introduced a auxiliary class
generalizing the computations of ttHitAverage variable we already had in
code. The implementation uses an exponential moving average of period 4096
and resolution 1/1024, and all computations are done with integers for
efficiency.

-----------

Example where the patch solves a search explosion:

```
   ./stockfish
   ucinewgame
   position fen 8/Pk6/8/1p6/8/P1K5/8/6B1 w - - 37 130
   go infinite
```

This algorithm does not affect search in normal, non-pathological positions.
We verified, for instance, that the usual bench is unchanged up to depth 20
at least, and that the node numbers are unchanged for a search of the starting
position at depth 32.

-------------

See https://github.com/official-stockfish/Stockfish/pull/3714

Bench: 5575265
2021-09-23 23:19:06 +02:00
Michael Chaly
e8788d1b32 Combo of various parameter tweaks
Combination of parameter tweaks in search, evaluation and time management.
Original patches by snicolet xoto10 lonfom169 and Vizvezdenec.

Includes:

* Use bigger grain of positional evaluation more frequently (up to 1 exchange difference in non-pawn-material);
* More extra time according to increment;
* Increase margin for singular extensions;
* Do more aggresive parent node futility pruning.

Passed STC
https://tests.stockfishchess.org/tests/view/6147deab3733d0e0dd9f313d
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 45488 W: 11691 L: 11450 D: 22347
Ptnml(0-2): 145, 5208, 11824, 5395, 172

Passed LTC
https://tests.stockfishchess.org/tests/view/6147f1d53733d0e0dd9f3141
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 62520 W: 15808 L: 15482 D: 31230
Ptnml(0-2): 43, 6439, 17960, 6785, 33

closes https://github.com/official-stockfish/Stockfish/pull/3710

bench 5575265
2021-09-21 19:48:40 +02:00
xoto10
5b47b4e6c0 Increase optimumTime by 10%
STC 10+0.1 :
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 47032 W: 12078 L: 11841 D: 23113
Ptnml(0-2): 159, 5098, 12746, 5373, 140
https://tests.stockfishchess.org/tests/view/613f9df1f29dda16fcca8731

LTC 60+0.6 :
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 66248 W: 16631 L: 16301 D: 33316
Ptnml(0-2): 44, 6560, 19578, 6906, 36
https://tests.stockfishchess.org/tests/view/6140603d7315e7c73204a4c1

Non-regression tests with other time control styles:

Moves/Time 40/10+0 :
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 51640 W: 13350 L: 13254 D: 25036
Ptnml(0-2): 183, 5770, 13797, 5908, 162
https://tests.stockfishchess.org/tests/view/6141592b7315e7c73204a599

TCEC Style 10+0.01 :
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 20592 W: 5300 L: 5157 D: 10135
Ptnml(0-2): 81, 2240, 5544, 2317, 114
https://tests.stockfishchess.org/tests/view/61425bb27315e7c73204a6a2

Sudden death 15+0 :
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 127104 W: 32728 L: 32741 D: 61635
Ptnml(0-2): 735, 13973, 34149, 13960, 735
https://tests.stockfishchess.org/tests/view/614256a77315e7c73204a699

The first 3 tests were run with an initial version of the code, which was then modified to make the amount of extra time dependent on the size of increment. No increment gives no extra time, and the extra time given increases until an increment of 1% or more of remaining time gives 10% extra thinking time.

closes https://github.com/official-stockfish/Stockfish/pull/3702

Bench 6658747
2021-09-17 08:14:36 +02:00
SFisGOD
723f48dec0 Update default net to nn-13406b1dcbe0.nnue
SPSA 1: https://tests.stockfishchess.org/tests/view/6134abc425b9b35584838572
Parameters: A total of 64 net biases were tuned (hidden layer 1)
Base net: nn-6762d36ad265.nnue
New net: nn-c9fdeea14cb2.nnue

SPSA 2: https://tests.stockfishchess.org/tests/view/61355b7e25b9b3558483860e
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-c9fdeea14cb2.nnue
New net: nn-0ddc28184f4c.nnue

SPSA 3: https://tests.stockfishchess.org/tests/view/613737be0cd98ab40c0c9e4e
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-0ddc28184f4c.nnue
New net: nn-2419828bb394.nnue

SPSA 4: https://tests.stockfishchess.org/tests/view/613966ff689039fce12e0fe7
Parameters: A total of 64 net biases were tuned (hidden layer 1)
Base net: nn-2419828bb394.nnue
New net: nn-05d9b1ee3037.nnue

SPSA 5: https://tests.stockfishchess.org/tests/view/613b4a38689039fce12e1209
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-05d9b1ee3037.nnue
New net: nn-98c6ce0fc15f.nnue

SPSA 6: https://tests.stockfishchess.org/tests/view/613e331515591e7c9ebc3fe9
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-98c6ce0fc15f.nnue
New net: nn-13406b1dcbe0.nnue

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 82008 W: 21044 L: 20752 D: 40212
Ptnml(0-2): 264, 9341, 21525, 9587, 287
https://tests.stockfishchess.org/tests/view/613f7c6cf29dda16fcca870c

LTC:
LLR: 2.96 (-2.94,2.94) <0.50,3.50>
Total: 182928 W: 46258 L: 45602 D: 91068
Ptnml(0-2): 107, 19448, 51712, 20076, 121
https://tests.stockfishchess.org/tests/view/613fccb97315e7c73204a48c

Closes #3703

Bench: 6658747
2021-09-15 17:50:20 +02:00
xoto10
fd5e77950e Update 2 search parameters after tune.
A tuning run on 3 search parameters was done with 200k games, narrow ranges (50-150%) and a small value for A (3% of total games) :
https://tests.stockfishchess.org/tests/view/613b5f4b689039fce12e1220

STC 10+0.1 :
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 73112 W: 18800 L: 18520 D: 35792
Ptnml(0-2): 205, 8395, 19115, 8597, 244
https://tests.stockfishchess.org/tests/view/613cb8d2689039fce12e1308

LTC 60+0.6 :
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 45616 W: 11604 L: 11321 D: 22691
Ptnml(0-2): 24, 4769, 12946, 5038, 31
https://tests.stockfishchess.org/tests/view/613d07048253e53e97b55b32

closes https://github.com/official-stockfish/Stockfish/pull/3698

Bench 6504816
2021-09-12 18:03:56 +02:00
Michael Chaly
30fdbf4328 Decrease depth for cutnodes with no tt move
By analogy to existing logic of decreasing depth for PvNodes w/o tt move
do the same for cutNodes.

Passed STC
https://tests.stockfishchess.org/tests/view/613abf5a689039fce12e1155
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 90336 W: 23108 L: 22804 D: 44424
Ptnml(0-2): 286, 10316, 23642, 10656, 268

Passed LTC
https://tests.stockfishchess.org/tests/view/613ae330689039fce12e1172
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 37736 W: 9607 L: 9346 D: 18783
Ptnml(0-2): 21, 3917, 10730, 4180, 20

closes https://github.com/official-stockfish/Stockfish/pull/3697

bench 5891181
2021-09-10 11:50:43 +02:00
Stefan Geschwentner
b7b6b4ba18 Further improve history updates
Now even double history updates if a search failed low at an expected PV or CUT node.

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 30736 W: 7891 L: 7674 D: 15171
Ptnml(0-2): 90, 3477, 8017, 3694, 90
https://tests.stockfishchess.org/tests/view/61364ae30cd98ab40c0c9da5

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 73600 W: 18684 L: 18326 D: 36590
Ptnml(0-2): 41, 7734, 20899, 8078, 48
https://tests.stockfishchess.org/tests/view/6136940f0cd98ab40c0c9df3

closes https://github.com/official-stockfish/Stockfish/pull/3694

Bench: 6030657
2021-09-07 19:59:14 +02:00
Stefan Geschwentner
c31fc8d163 Improve history updates
If a search failed low at an expected PV or CUT node do greater history updates.

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 95112 W: 24293 L: 23982 D: 46837
Ptnml(0-2): 285, 10893, 24906, 11170, 302
https://tests.stockfishchess.org/tests/view/6132aa1a2ffb3c36aceb926f

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 116352 W: 29450 L: 28975 D: 57927
Ptnml(0-2): 93, 12263, 32984, 12748, 88
https://tests.stockfishchess.org/tests/view/613394d12ffb3c36aceb92f4

closes https://github.com/official-stockfish/Stockfish/pull/3693

Bench: 6130736
2021-09-06 14:19:47 +02:00
SFisGOD
be63ce1bb5 Update default net to nn-6762d36ad265.nnue
SPSA 1: https://tests.stockfishchess.org/tests/view/612cdb1fbb4956d8b78eb5ab
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-fe433fd8c7f6.nnue
New net: nn-5f134823db04.nnue

SPSA 2: https://tests.stockfishchess.org/tests/view/612fcde645091e810014af19
Parameters: A total of 64 net biases were tuned (hidden layer 1)
Base net: nn-5f134823db04.nnue
New net: nn-8eca5dd4e3f7.nnue

SPSA 3: https://tests.stockfishchess.org/tests/view/6130822345091e810014af61
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-8eca5dd4e3f7.nnue
New net: nn-4556108e4f00.nnue

SPSA 4: https://tests.stockfishchess.org/tests/view/613287652ffb3c36aceb923c
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-4556108e4f00.nnue
New net: nn-6762d36ad265.nnue

STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 162776 W: 41220 L: 40807 D: 80749
Ptnml(0-2): 517, 18800, 42359, 19177, 535
https://tests.stockfishchess.org/tests/view/6134107125b9b35584838559

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 41056 W: 10428 L: 10156 D: 20472
Ptnml(0-2): 30, 4288, 11618, 4564, 28
https://tests.stockfishchess.org/tests/view/6134ad6525b9b3558483857a

closes https://github.com/official-stockfish/Stockfish/pull/3691

Bench: 5812158
2021-09-06 14:08:22 +02:00
Michael Chaly
e404a7d97c Extend captures and promotions
This patch introduces extension for captures and promotions. Every capture or
promotion that is not the first move in the list gets extended at PvNodes and
cutNodes. Special thanks to @locutus2 - all my previous attepmts that failed
on this idea were done only for PvNodes - idea to include also cutNodes was
based on his latest passed patch.

STC
https://tests.stockfishchess.org/tests/view/6134abf325b9b35584838574
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 188920 W: 47754 L: 47304 D: 93862
Ptnml(0-2): 595, 21754, 49344, 22140, 627

LTC
https://tests.stockfishchess.org/tests/view/613521de25b9b355848385d7
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 8768 W: 2283 L: 2098 D: 4387
Ptnml(0-2): 7, 866, 2452, 1053, 6

closes https://github.com/official-stockfish/Stockfish/pull/3692

bench: 5564555
2021-09-06 13:59:17 +02:00
SFisGOD
2807dcfab6 Update default net to nn-735bba95dec0.nnue
SPSA 1: https://tests.stockfishchess.org/tests/view/61286d8b62d20cf82b5ad1bd
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-33495fe25081.nnue
New net: nn-83e3cf2af92b.nnue

SPSA 2: https://tests.stockfishchess.org/tests/view/6129cf2162d20cf82b5ad25f
Parameters: A total of 64 net biases were tuned (hidden layer 1)
Base net: nn-83e3cf2af92b.nnue
New net: nn-69a528eaef35.nnue

SPSA 3: https://tests.stockfishchess.org/tests/view/612a0dcb62d20cf82b5ad2a0
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-69a528eaef35.nnue
New net: nn-735bba95dec0.nnue

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 95144 W: 24310 L: 23999 D: 46835
Ptnml(0-2): 232, 11059, 24748, 11232, 301
https://tests.stockfishchess.org/tests/view/612bb3be0fdf40644b4b9996

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 33632 W: 8522 L: 8271 D: 16839
Ptnml(0-2): 18, 3511, 9516, 3744, 27
https://tests.stockfishchess.org/tests/view/612ce5b9bb4956d8b78eb5b3

Closes https://github.com/official-stockfish/Stockfish/pull/3685

Bench: 5600615
2021-08-31 12:56:19 +02:00
VoyagerOne
ad357e147a CMH Pruning Tweak
Tweak pruning formula by adding up CMH values.

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 14608 W: 3837 L: 3641 D: 7130
Ptnml(0-2): 27, 1681, 3723, 1815, 58
https://tests.stockfishchess.org/tests/view/612792f362d20cf82b5ad156

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 53520 W: 13580 L: 13276 D: 26664
Ptnml(0-2): 28, 5610, 15183, 5908, 31
https://tests.stockfishchess.org/tests/view/6127d27062d20cf82b5ad191

closes https://github.com/official-stockfish/Stockfish/pull/3682

Bench: 5186641
2021-08-27 21:41:32 +02:00
SFisGOD
69eede7d08 Update default net to nn-33495fe25081.nnue
STC:
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 37368 W: 9621 L: 9391 D: 18356
Ptnml(0-2): 117, 4287, 9664, 4481, 135
https://tests.stockfishchess.org/tests/view/612768165318138ee1204977

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 13328 W: 3446 L: 3246 D: 6636
Ptnml(0-2): 11, 1383, 3682, 1571, 17
https://tests.stockfishchess.org/tests/view/6127dc8d62d20cf82b5ad196

Closes https://github.com/official-stockfish/Stockfish/pull/3679

Bench: 5179347
2021-08-27 07:51:26 +02:00
ppigazzini
f30f231cbf Use "pedantic" flag also for mingw
This will avoid to run in fishtest a test where the linux machines exit from
the building process and only the windows machines run the test.

See:
https://tests.stockfishchess.org/tests/view/61122d732a8a49ac5be79996
4e422577d6 (comments)

closes https://github.com/official-stockfish/Stockfish/pull/3671

No functional change.
2021-08-27 07:49:26 +02:00
Joost VandeVondele
af0d82792e Fix empty EvalFile option
some GUIs send an empty string for EvalFile, in that case explicitly try the default name

fixes https://github.com/official-stockfish/Stockfish/issues/3675

closes https://github.com/official-stockfish/Stockfish/pull/3678

No functional change.
2021-08-27 07:48:18 +02:00
bmc4
d754ea50a8 Simplify Declaration on Pawn Move Generation
Removes possible micro-optimization in favor of readability.

STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 75432 W: 5824 L: 5777 D: 63831
Ptnml(0-2): 178, 4648, 28036, 4657, 197
https://tests.stockfishchess.org/tests/view/611fa7f84977aa1525c9cb75

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 41200 W: 1156 L: 1106 D: 38938
Ptnml(0-2): 13, 981, 18562, 1031, 13
https://tests.stockfishchess.org/tests/view/611fcc694977aa1525c9cb9b

Closes https://github.com/official-stockfish/Stockfish/pull/3669

No functional change
2021-08-22 09:15:19 +02:00
SFisGOD
590447d7a1 Update default net to nn-517c4f68b5df.nnue
SPSA: https://tests.stockfishchess.org/tests/view/611cf0da4977aa1525c9ca03
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-ac5605a608d6.nnue
New net: nn-517c4f68b5df.nnue

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 11600 W: 998 L: 851 D: 9751
Ptnml(0-2): 30, 705, 4186, 846, 33
https://tests.stockfishchess.org/tests/view/611f84524977aa1525c9cb5b

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 9360 W: 338 L: 243 D: 8779
Ptnml(0-2): 0, 220, 4151, 303, 6
https://tests.stockfishchess.org/tests/view/611f8c5b4977aa1525c9cb64

closes https://github.com/official-stockfish/Stockfish/pull/3667

Bench: 4844618
2021-08-22 09:09:58 +02:00
candirufish
939ffe454d do more LMR extensions for PV nodes
LMR Pv and depth 6 Extension tweak:

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 52488 W: 1542 L: 1394 D: 49552
Ptnml(0-2): 18, 1253, 23552, 1405, 16
https://tests.stockfishchess.org/tests/view/611e49c34977aa1525c9caa7

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 76216 W: 6000 L: 5784 D: 64432
Ptnml(0-2): 204, 4745, 28006, 4937, 216
https://tests.stockfishchess.org/tests/view/611e0e254977aa1525c9ca89

closes https://github.com/official-stockfish/Stockfish/pull/3666

Bench: 5046381
2021-08-22 09:05:53 +02:00
bmc4
e57d2d9d47 Simplify Null Move Search Reduction
slightly simpler formula for reduction computation.

first round of tests:
STC:
LLR: 2.97 (-2.94,2.94) <-2.50,0.50>
Total: 15632 W: 1319 L: 1204 D: 13109
Ptnml(0-2): 33, 956, 5733, 1051, 43
https://tests.stockfishchess.org/tests/view/60bd03c7457376eb8bcaa600

LTC:
LLR: 3.37 (-2.94,2.94) <-2.50,0.50>
Total: 86296 W: 2814 L: 2779 D: 80703
Ptnml(0-2): 33, 2500, 38039, 2551, 25
https://tests.stockfishchess.org/tests/view/60bd1ff0457376eb8bcaa653

recent tests:
STC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 23936 W: 1895 L: 1793 D: 20248
Ptnml(0-2): 40, 1470, 8869, 1526, 63
https://tests.stockfishchess.org/tests/view/611f9b7d4977aa1525c9cb6b

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 62568 W: 1750 L: 1713 D: 59105
Ptnml(0-2): 19, 1560, 28085, 1605, 15
https://tests.stockfishchess.org/tests/view/611fa4814977aa1525c9cb71

functional on high depth

closes https://github.com/official-stockfish/Stockfish/pull/3535

Bench: 5375286
2021-08-22 09:00:15 +02:00
Tomasz Sobczyk
18dcf1f097 Optimize and tidy up affine transform code.
The new network caused some issues initially due to the very narrow neuron set between the first two FC layers. Necessary changes were hacked together to make it work. This patch is a mature approach to make the affine transform code faster, more readable, and easier to maintain should the layer sizes change again.

The following changes were made:

* ClippedReLU always produces a multiple of 32 outputs. This is about as good of a solution for AffineTransform's SIMD requirements as it can get without a bigger rewrite.

* All self-contained simd helpers are moved to a separate file (simd.h). Inline asm is utilized to work around GCC's issues with code generation and register assignment. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101693, https://godbolt.org/z/da76fY1n7

* AffineTransform has 2 specializations. While it's more lines of code due to the boilerplate, the logic in both is significantly reduced, as these two are impossible to nicely combine into one.
 1) The first specialization is for cases when there's >=128 inputs. It uses a different approach to perform the affine transform and can make full use of AVX512 without any edge cases. Furthermore, it has higher theoretical throughput because less loads are needed in the hot path, requiring only a fixed amount of instructions for horizontal additions at the end, which are amortized by the large number of inputs.
 2) The second specialization is made to handle smaller layers where performance is still necessary but edge cases need to be handled. AVX512 implementation for this was ommited by mistake, a remnant from the temporary implementation for the new... This could be easily reintroduced if needed. A slightly more detailed description of both implementations is in the code.

Overall it should be a minor speedup, as shown on fishtest:

passed STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 51520 W: 4074 L: 3888 D: 43558
Ptnml(0-2): 111, 3136, 19097, 3288, 128

and various tests shown in the pull request

closes https://github.com/official-stockfish/Stockfish/pull/3663

No functional change
2021-08-20 08:50:25 +02:00
Tomasz Sobczyk
ccf0239bc4 Improve handling of the debug log file.
Fix handling of empty strings in uci options and reassigning of the log file

Fixes https://github.com/official-stockfish/Stockfish/issues/3650

Closes https://github.com/official-stockfish/Stockfish/pull/3655

No functional change
2021-08-20 07:57:09 +02:00
Torsten Hellwig
1946a67567 Update default net to nn-ac5605a608d6.nnue
This net was created with the nnue-pytorch trainer, it used the previous master net as a starting point.

The training data includes all T60 data (https://drive.google.com/drive/folders/1rzZkgIgw7G5vQMLr2hZNiUXOp7z80613), all T74 data (https://drive.google.com/drive/folders/1aFUv3Ih3-A8Vxw9064Kw_FU4sNhMHZU-) and the wrongNNUE_02_d9.binpack (https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq). The Leela data were randomly named and then concatenated. All data was merged into one binpack using interleave_binpacks.py.

python3 train.py \
    ../data/t60_t74_wrong.binpack \
    ../data/t60_t74_wrong.binpack \
    --resume-from-model ../data/nn-e8321e467bf6.pt \
    --gpus 1 \
    --threads 4 \
    --num-workers 1 \
    --batch-size 16384 \
    --progress_bar_refresh_rate 300 \
    --random-fen-skipping 3 \
    --features=HalfKAv2_hm^ \
    --lambda=1.0 \
    --max_epochs=600 \
    --seed $RANDOM \
    --default_root_dir ../output/exp_24

STC:
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 15320 W: 1415 L: 1257 D: 12648
Ptnml(0-2): 50, 1002, 5402, 1152, 54
https://tests.stockfishchess.org/tests/view/611c404a4977aa1525c9c97f

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 9440 W: 345 L: 248 D: 8847
Ptnml(0-2): 3, 222, 4175, 315, 5
https://tests.stockfishchess.org/tests/view/611c6c7d4977aa1525c9c996

LTC with UHO_XXL_+0.90_+1.19.epd:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 6232 W: 1638 L: 1459 D: 3135
Ptnml(0-2): 5, 592, 1744, 769, 6
https://tests.stockfishchess.org/tests/view/611c9b214977aa1525c9c9cb

closes https://github.com/official-stockfish/Stockfish/pull/3664

Bench: 5375286
2021-08-18 09:17:22 +02:00
Joost VandeVondele
f10ebc2bdf Regenerate dependencies on code change
fixes https://github.com/official-stockfish/Stockfish/issues/3658

dependencies are now regenerated for each code change, this adds some 1s overhead in compile time, but avoids potential miscompilations or build problems.

closes https://github.com/official-stockfish/Stockfish/pull/3659

No functional change
2021-08-17 21:08:34 +02:00
Tomasz Sobczyk
d61d38586e New NNUE architecture and net
Introduces a new NNUE network architecture and associated network parameters

The summary of the changes:

* Position for each perspective mirrored such that the king is on e..h files. Cuts the feature transformer size in half, while preserving enough knowledge to be good. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.b40q4rb1w7on.
* The number of neurons after the feature transformer increased two-fold, to 1024x2. This is possibly mostly due to the now very optimized feature transformer update code.
* The number of neurons after the second layer is reduced from 16 to 8, to reduce the speed impact. This, perhaps surprisingly, doesn't harm the strength much. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.6qkocr97fezq

The AffineTransform code did not work out-of-the box with the smaller number of neurons after the second layer, so some temporary changes have been made to add a special case for InputDimensions == 8. Also additional 0 padding is added to the output for some archs that cannot process inputs by <=8 (SSE2, NEON). VNNI uses an implementation that can keep all outputs in the registers while reducing the number of loads by 3 for each 16 inputs, thanks to the reduced number of output neurons. However GCC is particularily bad at optimization here (and perhaps why the current way the affine transform is done even passed sprt) (see https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit# for details) and more work will be done on this in the following days. I expect the current VNNI implementation to be improved and extended to other architectures.

The network was trained with a slightly modified version of the pytorch trainer (https://github.com/glinscott/nnue-pytorch); the changes are in https://github.com/glinscott/nnue-pytorch/pull/143

The training utilized 2 datasets.

    dataset A - https://drive.google.com/file/d/1VlhnHL8f-20AXhGkILujnNXHwy9T-MQw/view?usp=sharing
    dataset B - as described in ba01f4b954

The training process was as following:

    train on dataset A for 350 epochs, take the best net in terms of elo at 20k nodes per move (it's fine to take anything from later stages of training).
    convert the .ckpt to .pt
    --resume-from-model from the .pt file, train on dataset B for <600 epochs, take the best net. Lambda=0.8, applied before the loss function.

The first training command:

python3 train.py \
    ../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \
    ../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \
    --gpus "$3," \
    --threads 1 \
    --num-workers 1 \
    --batch-size 16384 \
    --progress_bar_refresh_rate 20 \
    --smart-fen-skipping \
    --random-fen-skipping 3 \
    --features=HalfKAv2_hm^ \
    --lambda=1.0 \
    --max_epochs=600 \
    --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2

The second training command:

python3 serialize.py \
    --features=HalfKAv2_hm^ \
    ../nnue-pytorch-training/experiment_131/run_6/default/version_0/checkpoints/epoch-499.ckpt \
    ../nnue-pytorch-training/experiment_$1/base/base.pt

python3 train.py \
    ../nnue-pytorch-training/data/michael_commit_b94a65.binpack \
    ../nnue-pytorch-training/data/michael_commit_b94a65.binpack \
    --gpus "$3," \
    --threads 1 \
    --num-workers 1 \
    --batch-size 16384 \
    --progress_bar_refresh_rate 20 \
    --smart-fen-skipping \
    --random-fen-skipping 3 \
    --features=HalfKAv2_hm^ \
    --lambda=0.8 \
    --max_epochs=600 \
    --resume-from-model ../nnue-pytorch-training/experiment_$1/base/base.pt \
    --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2

STC: https://tests.stockfishchess.org/tests/view/611120b32a8a49ac5be798c4

LLR: 2.97 (-2.94,2.94) <-0.50,2.50>
Total: 22480 W: 2434 L: 2251 D: 17795
Ptnml(0-2): 101, 1736, 7410, 1865, 128

LTC: https://tests.stockfishchess.org/tests/view/611152b32a8a49ac5be798ea

LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 9776 W: 442 L: 333 D: 9001
Ptnml(0-2): 5, 295, 4180, 402, 6

closes https://github.com/official-stockfish/Stockfish/pull/3646

bench: 5189338
2021-08-15 12:05:43 +02:00
Joost VandeVondele
dabaf2220f Revert futility pruning patches
reverts 09b6d28391 and
dbd7f602d3 that significantly impact mate
finding capabilities. For example on ChestUCI_23102018.epd, at 1M nodes,
the number of mates found is nearly reduced 2x without these depth conditions:

       sf6  2091
       sf7  2093
       sf8  2107
       sf9  2062
      sf10  2208
      sf11  2552
      sf12  2563
      sf13  2509
      sf14  2427
    master  1246
   patched  2467

(script for testing at https://github.com/official-stockfish/Stockfish/files/6936412/matecheck.zip)

closes https://github.com/official-stockfish/Stockfish/pull/3641

fixes https://github.com/official-stockfish/Stockfish/issues/3627

Bench: 5467570
2021-08-05 16:41:07 +02:00
VoyagerOne
a1a83f3869 SEE simplification
Simplified SEE formula by removing std::min. Should also be easier to tune.

STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 22656 W: 1836 L: 1729 D: 19091
Ptnml(0-2): 54, 1426, 8267, 1521, 60
https://tests.stockfishchess.org/tests/view/610ae62f2a8a49ac5be79449

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 26248 W: 806 L: 744 D: 24698
Ptnml(0-2): 6, 668, 11715, 728, 7
https://tests.stockfishchess.org/tests/view/610b17ad2a8a49ac5be79466

closes https://github.com/official-stockfish/Stockfish/pull/3643

bench:  4915145
2021-08-05 16:32:07 +02:00
SFisGOD
73ef5b8c4a Update default net to nn-46832cfbead3.nnue
SPSA 1: https://tests.stockfishchess.org/tests/view/6100e7f096b86d98abf6a832
Parameters: A total of 256 net weights and 8 net biases were tuned (output layer)
Base net: nn-56a5f1c4173a.nnue
New net: nn-ec3c8e029926.nnue

SPSA 2: https://tests.stockfishchess.org/tests/view/610733caafad2da4f4ae3da7
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-ec3c8e029926.nnue
New net: nn-46832cfbead3.nnue

STC:
LLR: 2.98 (-2.94,2.94) <-0.50,2.50>
Total: 50520 W: 3953 L: 3765 D: 42802
Ptnml(0-2): 138, 3063, 18678, 3235, 146
https://tests.stockfishchess.org/tests/view/610a79692a8a49ac5be793f4

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 57256 W: 1723 L: 1566 D: 53967
Ptnml(0-2): 12, 1442, 25568, 1589, 17
https://tests.stockfishchess.org/tests/view/610ac5bb2a8a49ac5be79434

Closes https://github.com/official-stockfish/Stockfish/pull/3642

Bench: 5359314
2021-08-05 08:52:07 +02:00
Stefan Geschwentner
5cd42f6b0b Simplify new cmh pruning thresholds by using directly a quadratic formula.
This decouples also the stat bonus updates from the threshold which creates less dependencies for tuning of stat bonus parameters.
Perhaps a further fine tuning of the now separated coefficients for constHist[0] and constHist[1] could give further gains.

STC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 78384 W: 6134 L: 6090 D: 66160
Ptnml(0-2): 207, 5013, 28705, 5063, 204
https://tests.stockfishchess.org/tests/view/6106d235afad2da4f4ae3d4b

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 38176 W: 1149 L: 1095 D: 35932
Ptnml(0-2): 6, 1000, 17030, 1038, 14
https://tests.stockfishchess.org/tests/view/6107a080afad2da4f4ae3def

closes https://github.com/official-stockfish/Stockfish/pull/3639

Bench: 5098146
2021-08-05 08:47:33 +02:00
VoyagerOne
31ebd918ea Futile pruning simplification
Remove CMH conditions in futile pruning.

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 93520 W: 7165 L: 7138 D: 79217
Ptnml(0-2): 222, 5923, 34427, 5982, 206
https://tests.stockfishchess.org/tests/view/61083104e50a153c346ef8df

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 59072 W: 1746 L: 1706 D: 55620
Ptnml(0-2): 13, 1562, 26353, 1588, 20
https://tests.stockfishchess.org/tests/view/610894f2e50a153c346ef913

closes https://github.com/official-stockfish/Stockfish/pull/3638

Bench: 5229673
2021-08-05 08:44:38 +02:00
VoyagerOne
a0fca67da4 CMH Pruning Tweak
replace CounterMovePruneThreshold by a depth dependent threshold

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 35512 W: 2718 L: 2552 D: 30242
Ptnml(0-2): 66, 2138, 13194, 2280, 78
https://tests.stockfishchess.org/tests/view/6104442fafad2da4f4ae3b94

LTC:
LLR: 2.96 (-2.94,2.94) <0.50,3.50>
Total: 36536 W: 1150 L: 1019 D: 34367
Ptnml(0-2): 10, 920, 16278, 1049, 11
https://tests.stockfishchess.org/tests/view/6104b033afad2da4f4ae3bbc

closes https://github.com/official-stockfish/Stockfish/pull/3636

Bench: 5848718
2021-07-31 15:29:19 +02:00
Tomasz Sobczyk
26edf9534a Avoid unnecessary stores in the affine transform
This patch improves the codegen in the AffineTransform::forward function for architectures >=SSSE3. Current code works directly on memory and the compiler cannot see that the stores through outptr do not alias the loads through weights and input32. The solution implemented is to perform the affine transform with local variables as accumulators and only store the result to memory at the end. The number of accumulators required is OutputDimensions / OutputSimdWidth, which means that for the 1024->16 affine transform it requires 4 registers with SSSE3, 2 with AVX2, 1 with AVX512. It also cuts the number of stores required by NumRegs * 256 for each node evaluated. The local accumulators are expected to be assigned to registers, but even if this cannot be done in some case due to register pressure it will help the compiler to see that there is no aliasing between the loads and stores and may still result in better codegen.

See https://godbolt.org/z/59aTKbbYc for codegen comparison.

passed STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 140328 W: 10635 L: 10358 D: 119335
Ptnml(0-2): 302, 8339, 52636, 8554, 333

closes https://github.com/official-stockfish/Stockfish/pull/3634

No functional change
2021-07-30 17:15:52 +02:00
SFisGOD
e973eee919 Update default net to nn-56a5f1c4173a.nnue
SPSA 1: https://tests.stockfishchess.org/tests/view/60fd24efd8a6b65b2f3a796e
Parameters: A total of 256 net biases were tuned (hidden layer 2)
New best values: Half of the changes from the tuning run
New net: nn-5992d3ba79f3.nnue

SPSA 2: https://tests.stockfishchess.org/tests/view/60fec7d6d8a6b65b2f3a7aa2
Parameters: A total of 128 net biases were tuned (hidden layer 1)
New best values: Half of the changes from the tuning run
New net: nn-56a5f1c4173a.nnue

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 140392 W: 10863 L: 10578 D: 118951
Ptnml(0-2): 347, 8754, 51718, 9021, 356
https://tests.stockfishchess.org/tests/view/610037e396b86d98abf6a79e

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 14216 W: 454 L: 355 D: 13407
Ptnml(0-2): 4, 323, 6356, 420, 5
https://tests.stockfishchess.org/tests/view/61019995afad2da4f4ae3a3c

Closes #3633

Bench: 4801359
2021-07-29 07:35:13 +02:00
SFisGOD
237ed1ef8f Update default net to nn-26abeed38351.nnue
SPSA: https://tests.stockfishchess.org/tests/view/60fba335d8a6b65b2f3a7891

New best values: Half of the changes from the tuning run.
Setting: nodestime=300 with 10+0.1 (approximate real TC is 2.5 seconds)
The rest is the same as described in #3593

The change from nodestime=600 to 300 was suggested by gekkehenker to prevent time losses for some slow workers
SFisGOD@94cd757#commitcomment-53324840

STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 67448 W: 5241 L: 5036 D: 57171
Ptnml(0-2): 151, 4198, 24827, 4391, 157
https://tests.stockfishchess.org/tests/view/60fd50f2d8a6b65b2f3a798e

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 48752 W: 1504 L: 1358 D: 45890
Ptnml(0-2): 13, 1226, 21754, 1368, 15
https://tests.stockfishchess.org/tests/view/60fd7bb2d8a6b65b2f3a79a9

Closes https://github.com/official-stockfish/Stockfish/pull/3630

Bench:  5124774
2021-07-26 07:52:59 +02:00
Giacomo Lorenzetti
910d26b5c3 Simplification in LMR
This commit removes the `!captureOrPromotion` condition from ttCapture reduction and from good/bad history reduction (similar to #3619).

passed STC:
https://tests.stockfishchess.org/tests/view/60fc734ad8a6b65b2f3a7922
LLR: 2.97 (-2.94,2.94) <-2.50,0.50>
Total: 48680 W: 3855 L: 3776 D: 41049
Ptnml(0-2): 118, 3145, 17744, 3206, 127

passed LTC:
https://tests.stockfishchess.org/tests/view/60fce7d5d8a6b65b2f3a794c
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 86528 W: 2471 L: 2450 D: 81607
Ptnml(0-2): 28, 2203, 38777, 2232, 24

closes https://github.com/official-stockfish/Stockfish/pull/3629

Bench: 4951406
2021-07-26 07:48:58 +02:00
MichaelB7
b939c80513 Update the default net to nn-76a8a7ffb820.nnue.
combined work by Serio Vieri, Michael Byrne, and Jonathan D (aka SFisGod) based on top of previous developments, by restarts from good nets.

Sergio generated the net https://tests.stockfishchess.org/api/nn/nn-d8609abe8caf.nnue:

The initial net nn-d8609abe8caf.nnue is trained by generating around 16B of training data from the last master net nn-9e3c6298299a.nnue, then trained, continuing from the master net, with lambda=0.2 and sampling ratio of 1. Starting with LR=2e-3, dropping LR with a factor of 0.5 until it reaches LR=5e-4. in_scaling is set to 361. No other significant changes made to the pytorch trainer.

Training data gen command (generates in chunks of 200k positions):

generate_training_data min_depth 9 max_depth 11 count 200000 random_move_count 10 random_move_max_ply 80 random_multi_pv 12 random_multi_pv_diff 100 random_multi_pv_depth 8 write_min_ply 10 eval_limit 1500 book noob_3moves.epd output_file_name gendata/$(date +"%Y%m%d-%H%M")_${HOSTNAME}.binpack

PyTorch trainer command (Note that this only trains for 20 epochs, repeatedly train until convergence):

python train.py --features "HalfKAv2^" --max_epochs 20 --smart-fen-skipping --random-fen-skipping 500 --batch-size 8192 --default_root_dir $dir --seed $RANDOM --threads 4 --num-workers 32 --gpus $gpuids --track_grad_norm 2 --gradient_clip_val 0.05 --lambda 0.2 --log_every_n_steps 50 $resumeopt $data $val

See https://github.com/sergiovieri/Stockfish/tree/tools_mod/rl for the scripts used to generate data.

Based on that Michael generated nn-76a8a7ffb820.nnue in the following way:

The net being submitted was trained with the pytorch trainer: https://github.com/glinscott/nnue-pytorch

python train.py i:/bin/all.binpack i:/bin/all.binpack --gpus 1 --threads 4 --num-workers 30 --batch-size 16384 --progress_bar_refresh_rate 30 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^ --auto_lr_find True --lambda=1.0 --max_epochs=240 --seed %random%%random% --default_root_dir exp/run_109 --resume-from-model ./pt/nn-d8609abe8caf.pt

This run is thus started from Segio Vieri's net nn-d8609abe8caf.nnue

all.binpack equaled 4 parts Wrong_NNUE_2.binpack https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq/view?usp=sharing plus two parts of Training_Data.binpack https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing
Each set was concatenated together - making one large Wrong_NNUE 2 binpack and one large Training so the were approximately equal in size. They were then interleaved together. The idea was to give Wrong_NNUE.binpack closer to equal weighting with the Training_Data binpack

model.py modifications:
loss = torch.pow(torch.abs(p - q), 2.6).mean()
LR = 8.0e-5 calculated as follows: 1.5e-3*(.992^360) - the idea here was to take a highly trained net and just use all.binpack as a finishing micro refinement touch for the last 2 Elo or so. This net was discovered on the 59th epoch.
optimizer = ranger.Ranger(train_params, betas=(.90, 0.999), eps=1.0e-7, gc_loc=False, use_gc=False)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.992)
For this micro optimization, I had set the period to "5" in train.py. This changes the checkpoint output so that every 5th checkpoint file is created

The final touches were to adjust the NNUE scale, as was done by Jonathan in tests running at the same time.

passed LTC
https://tests.stockfishchess.org/tests/view/60fa45aed8a6b65b2f3a77a4
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 53040 W: 1732 L: 1575 D: 49733
Ptnml(0-2): 14, 1432, 23474, 1583, 17

passed STC
https://tests.stockfishchess.org/tests/view/60f9fee2d8a6b65b2f3a7775
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 37928 W: 3178 L: 3001 D: 31749
Ptnml(0-2): 100, 2446, 13695, 2623, 100.

closes https://github.com/official-stockfish/Stockfish/pull/3626

Bench: 5169957
2021-07-24 18:04:59 +02:00
Giacomo Lorenzetti
a85928e7ec Apply good/bad history reduction also when inCheck
Main idea is that, in some cases, 'in check' situations are not so different from 'not in check' ones.
Trying to use piece count in order to select only a few 'in check' situations have failed LTC testing.
It could be interesting to apply one of those ideas in other parts of the search function.

passed STC:
https://tests.stockfishchess.org/tests/view/60f1b68dd1189bed71812d40
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 53472 W: 4078 L: 4008 D: 45386
Ptnml(0-2): 127, 3297, 19795, 3413, 104

passed LTC:
https://tests.stockfishchess.org/tests/view/60f291e6d1189bed71812de3
LLR: 2.92 (-2.94,2.94) <-2.50,0.50>
Total: 89712 W: 2651 L: 2632 D: 84429
Ptnml(0-2): 60, 2261, 40188, 2294, 53

closes https://github.com/official-stockfish/Stockfish/pull/3619

Bench: 5185789
2021-07-23 19:02:58 +02:00
pb00067
760b7462bc Simplify lowply-history scoring logic
STC:
https://tests.stockfishchess.org/tests/view/60eee559d1189bed71812b16
LLR: 2.97 (-2.94,2.94) <-2.50,0.50>
Total: 33976 W: 2523 L: 2431 D: 29022
Ptnml(0-2): 66, 2030, 12730, 2070, 92

LTC:
https://tests.stockfishchess.org/tests/view/60eefa12d1189bed71812b24
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 107240 W: 3053 L: 3046 D: 101141
Ptnml(0-2): 56, 2668, 48154, 2697, 45

closes https://github.com/official-stockfish/Stockfish/pull/3616

bench: 5199177
2021-07-23 18:53:03 +02:00
Vizvezdenec
d957179df7 Prune illegal moves in qsearch earlier
The main idea is that illegal moves influencing search or
qsearch obviously can't be any sort of good. The only reason
why initially legality checks for search and qsearch were done
after they actually can influence some heuristics is because
legality check is expensive computationally. Eventually in
search it was moved to the place where it makes sure that
illegal moves can't influence search.

This patch shows that the same can be done for qsearch + it
passed STC with elo-gaining bounds + it removes 3 lines of code
because one no longer needs to increment/decrement movecount
on illegal moves.

passed STC with elo-gaining bounds
https://tests.stockfishchess.org/tests/view/60f20aefd1189bed71812da0
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 61512 W: 4688 L: 4492 D: 52332
Ptnml(0-2): 139, 3730, 22848, 3874, 165

The same version functionally but with moving condition ever earlier
passed LTC with simplification bounds.
https://tests.stockfishchess.org/tests/view/60f292cad1189bed71812de9
LLR: 2.98 (-2.94,2.94) <-2.50,0.50>
Total: 60944 W: 1724 L: 1685 D: 57535
Ptnml(0-2): 11, 1556, 27298, 1597, 10

closes https://github.com/official-stockfish/Stockfish/pull/3618

bench 4709569
2021-07-23 18:47:30 +02:00
Liam Keegan
bc654257e7 Add macOS and windows to CI
- macOS
  - system clang
  - gcc
- windows / msys2
  - mingw 64-bit gcc
  - mingw 32-bit gcc
- minor code fixes to get new CI jobs to pass
  - code: suppress unused-parameter warning on 32-bit windows
  - Makefile: if arch=any on macos, don't specify arch at all

fixes https://github.com/official-stockfish/Stockfish/issues/2958

closes https://github.com/official-stockfish/Stockfish/pull/3623

No functional change
2021-07-23 18:16:05 +02:00
VoyagerOne
36f8d3806b Don't save excluded move eval in TT
STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 17544 W: 1384 L: 1236 D: 14924
Ptnml(0-2): 37, 1031, 6499, 1157, 48
https://tests.stockfishchess.org/tests/view/60ec8d9bd1189bed71812999

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 26136 W: 823 L: 707 D: 24606
Ptnml(0-2): 6, 643, 11656, 755, 8
https://tests.stockfishchess.org/tests/view/60ecb11ed1189bed718129ba

closes https://github.com/official-stockfish/Stockfish/pull/3614

Bench: 5505251
2021-07-13 17:35:20 +02:00
Vizvezdenec
dbd7f602d3 Remove second futility pruning depth limit
This patch removes futility pruning lmrDepth limit for futility pruning at parent nodes.
Since it's already capped by margin that is a function of lmrDepth there is no need to extra cap it with lmrDepth.

passed STC
https://tests.stockfishchess.org/tests/view/60e9b5dfd1189bed71812777
LLR: 2.97 (-2.94,2.94) <-2.50,0.50>
Total: 14872 W: 1264 L: 1145 D: 12463
Ptnml(0-2): 37, 942, 5369, 1041, 47

passed LTC
https://tests.stockfishchess.org/tests/view/60e9c635d1189bed71812790
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 40336 W: 1280 L: 1225 D: 37831
Ptnml(0-2): 24, 1057, 17960, 1094, 33

closes https://github.com/official-stockfish/Stockfish/pull/3612

bench: 5064969
2021-07-13 17:33:20 +02:00
pb00067
f4986f4596 SEE: simplify stm variable initialization
Pull #3458 removed the only usage of pos.see_ge() moving pieces that
don't belong to the side to move, so we can simplify this, adding an assert.

closes https://github.com/official-stockfish/Stockfish/pull/3607

No functional change
2021-07-13 17:31:15 +02:00
Vizvezdenec
09b6d28391 Remove futility pruning depth limit
This patch removes futility pruning depth limit for child node futility pruning.
In current master it was double capped by depth and by futility margin, which is also a function of depth, which didn't make much sense.

passed STC
https://tests.stockfishchess.org/tests/view/60e2418f9ea99d7c2d693e64
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 116168 W: 9100 L: 9097 D: 97971
Ptnml(0-2): 319, 7496, 42476, 7449, 344

passed LTC
https://tests.stockfishchess.org/tests/view/60e3374f9ea99d7c2d693f20
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 43304 W: 1282 L: 1231 D: 40791
Ptnml(0-2): 8, 1126, 19335, 1173, 10

closes https://github.com/official-stockfish/Stockfish/pull/3606

bench 4965493
2021-07-13 17:23:30 +02:00
SFisGOD
8fc297c506 Update default net to nn-9e3c6298299a.nnue
Optimization of nn-956480d8378f.nnue using SPSA
https://tests.stockfishchess.org/tests/view/60da2bf63beab81350ac9fe7

Same method as described in PR #3593

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 17792 W: 1525 L: 1372 D: 14895
Ptnml(0-2): 28, 1156, 6401, 1257, 54
https://tests.stockfishchess.org/tests/view/60deffc59ea99d7c2d693c19

LTC:
LLR: 2.96 (-2.94,2.94) <0.50,3.50>
Total: 36544 W: 1245 L: 1109 D: 34190
Ptnml(0-2): 12, 988, 16139, 1118, 15
https://tests.stockfishchess.org/tests/view/60df11339ea99d7c2d693c22

closes https://github.com/official-stockfish/Stockfish/pull/3601

Bench: 4687476
2021-07-03 10:03:32 +02:00
Paul Mulders
516ad1c9bf Allow passing RTLIB=compiler-rt to make
Not all linux users will have libatomic installed.
When using clang as the system compiler with compiler-rt as the default
runtime library instead of libgcc, atomic builtins may be provided by compiler-rt.
This change allows such users to pass RTLIB=compiler-rt to make sure
the build doesn't error out on the missing (unnecessary) libatomic.

closes https://github.com/official-stockfish/Stockfish/pull/3597

No functional change
2021-07-03 09:51:03 +02:00
candirufish
ec8dfe7315 no cut node reduction for killer moves.
stc:
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 44344 W: 3474 L: 3294 D: 37576
Ptnml(0-2): 117, 2710, 16338, 2890, 117
https://tests.stockfishchess.org/tests/view/60d8ea673beab81350ac9eb8

ltc:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 82600 W: 2638 L: 2441 D: 77521
Ptnml(0-2): 38, 2147, 36749, 2312, 54
https://tests.stockfishchess.org/tests/view/60d9048f3beab81350ac9eed

closes https://github.com/official-stockfish/Stockfish/pull/3600

Bench: 5160239
2021-07-03 09:44:05 +02:00
xoto10
d297d1d8a7 Simplify lazy_skip.
Small speedup by removing operations in lazy_skip.

STC 10+0.1 :
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 55088 W: 4553 L: 4482 D: 46053
Ptnml(0-2): 163, 3546, 20045, 3637, 153
https://tests.stockfishchess.org/tests/view/60daa2cb3beab81350aca04d

LTC 60+0.6 :
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 46136 W: 1457 L: 1407 D: 43272
Ptnml(0-2): 10, 1282, 20442, 1316, 18
https://tests.stockfishchess.org/tests/view/60db0e753beab81350aca08e

closes https://github.com/official-stockfish/Stockfish/pull/3599

Bench 5122403
2021-07-03 09:26:58 +02:00
Stéphane Nicolet
b51b094419 Simplify format_cp_aligned_dot()
closes https://github.com/official-stockfish/Stockfish/pull/3583

No functional change
2021-07-03 09:25:16 +02:00
Joost VandeVondele
7cfc1f9b15 Restore development version
No functional change
2021-07-03 09:20:06 +02:00
Joost VandeVondele
773dff0209 Stockfish 14
Official release version of Stockfish 14

Bench: 4770936

---

Today, we have the pleasure to announce Stockfish 14.

As usual, downloads will be freely available at https://stockfishchess.org

The engine is now significantly stronger than just a few months ago,
and wins four times more game pairs than it loses against the previous
release version [0]. Stockfish 14 is now at least 400 Elo ahead of
Stockfish 7, a top engine in 2016 [1]. During the last five years,
Stockfish has thus gained about 80 Elo per year.

Stockfish 14 evaluates positions more accurately than Stockfish 13 as
a result of two major steps forward in defining and training the
efficiently updatable neural network (NNUE) that provides the evaluation
for positions.

First, the collaboration with the Leela Chess Zero team - announced
previously [2] - has come to fruition. The LCZero team has provided a
collection of billions of positions evaluated by Leela that we have
combined with billions of positions evaluated by Stockfish to train the
NNUE net that powers Stockfish 14. The fact that we could use and combine
these datasets freely was essential for the progress made and demonstrates
the power of open source and open data [3].

Second, the architecture of the NNUE network was significantly updated:
the new network is not only larger, but more importantly, it deals better
with large material imbalances and can specialize for multiple phases of
the game [4]. A new project, kick-started by Gary Linscott and
Tomasz Sobczyk, led to a GPU accelerated net trainer written in
pytorch.[5] This tool allows for training high-quality nets in a couple
of hours.

Finally, this release features some search refinements, minor bug
fixes and additional improvements. For example, Stockfish is now about
90 Elo stronger for chess960 (Fischer random chess) at short time control.

The Stockfish project builds on a thriving community of enthusiasts
(thanks everybody!) that contribute their expertise, time, and resources
to build a free and open-source chess engine that is robust, widely
available, and very strong. We invite our chess fans to join the fishtest
testing framework and programmers to contribute to the project on
github [6].

Stay safe and enjoy chess!

The Stockfish team

[0] https://tests.stockfishchess.org/tests/view/60dae5363beab81350aca077
[1] https://nextchessmove.com/dev-builds
[2] https://stockfishchess.org/blog/2021/stockfish-13/
[3] https://lczero.org/blog/2021/06/the-importance-of-open-data/
[4] https://github.com/official-stockfish/Stockfish/commit/e8d64af1
[5] https://github.com/glinscott/nnue-pytorch/
[6] https://stockfishchess.org/get-involved/
2021-07-02 14:53:30 +02:00
Brad Knox
2275923d3c Update Top CPU Contributors
closes https://github.com/official-stockfish/Stockfish/pull/3595

No functional change
2021-06-29 10:24:54 +02:00
SFisGOD
49283d3a66 Update default net to nn-3475407dc199.nnue
Optimization of eight subnetwork output layers of Michael's nn-190f102a22c3.nnue using SPSA
https://tests.stockfishchess.org/tests/view/60d5510642a522cc50282ef3

Parameters: A total of 256 net weights and 8 net biases were tuned
New best values: The raw values at the end of the tuning run were used (800k games, 5 seconds TC)
Settings: default ck value and SPSA A is 30,000 (3.75% of the total number of games)

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 29064 W: 2435 L: 2269 D: 24360
Ptnml(0-2): 72, 1857, 10505, 2029, 69
https://tests.stockfishchess.org/tests/view/60d8ea123beab81350ac9eb6

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 61848 W: 2055 L: 1884 D: 57909
Ptnml(0-2): 18, 1708, 27310, 1861, 27
https://tests.stockfishchess.org/tests/view/60d8f0393beab81350ac9ec6

closes https://github.com/official-stockfish/Stockfish/pull/3593

Bench: 4770936
2021-06-28 21:31:58 +02:00
MichaelB7
b94a651878 Make net nn-956480d8378f.nnue the default
Trained with the pytorch trainer: https://github.com/glinscott/nnue-pytorch

python train.py i:/bin/all.binpack i:/bin/all.binpack --gpus 1 --threads 4 --num-workers 30 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^ --lambda=1.0 --max_epochs=440 --seed %random%%random% --default_root_dir exp/run_18 --resume-from-model ./pt/nn-75980ca503c6.pt

This run is thus started from a previous master net.

all.binpack equaled 4 parts Wrong_NNUE_2.binpack https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq/view?usp=sharing plus two parts of Training_Data.binpack https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing
Each set was concatenated together - making one large Wrong_NNUE 2 binpack and one large Training so the were approximately equal in size. They were then interleaved together. The idea was to give Wrong_NNUE.binpack closer to equal weighting with the Training_Data binpack

passed STC:
https://tests.stockfishchess.org/tests/view/60d0c0a7a8ec07dc34c072b2
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 18440 W: 1693 L: 1531 D: 15216
Ptnml(0-2): 67, 1225, 6464, 1407, 57

passed LTC:
https://tests.stockfishchess.org/tests/view/60d762793beab81350ac9d72
LLR: 2.98 (-2.94,2.94) <0.50,3.50>
Total: 93120 W: 3152 L: 2933 D: 87035
Ptnml(0-2): 48, 2581, 41076, 2814, 41

passed LTC (rebased branch to current master):
https://tests.stockfishchess.org/tests/view/60d85eeb3beab81350ac9e2b
LLR: 2.96 (-2.94,2.94) <0.50,3.50>
Total: 42688 W: 1347 L: 1206 D: 40135
Ptnml(0-2): 14, 1097, 18981, 1238, 14.

closes https://github.com/official-stockfish/Stockfish/pull/3592

Bench: 4906727
2021-06-28 21:20:05 +02:00
Joost VandeVondele
dc4983327d Update WDL model for NNUE
This updates the WDL model based on the LTC statistics in June this year (10M games),
so from pre-NNUE to NNUE based results.

(for old results see, https://github.com/official-stockfish/Stockfish/pull/2778)

As before the fit by the model to the data is quite good.

closes https://github.com/official-stockfish/Stockfish/pull/3582

No functional change
2021-06-28 21:13:30 +02:00
bmc4
e47b74457e Simplify Reductions Initialization
passed

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 45032 W: 3600 L: 3518 D: 37914
Ptnml(0-2): 111, 2893, 16435, 2957, 120
https://tests.stockfishchess.org/tests/view/60d2655d40925195e7a6c527

LTC:
LLR: 3.00 (-2.94,2.94) <-2.50,0.50>
Total: 25728 W: 786 L: 722 D: 24220
Ptnml(0-2): 5, 650, 11494, 706, 9
https://tests.stockfishchess.org/tests/view/60d2b14240925195e7a6c577

closes https://github.com/official-stockfish/Stockfish/pull/3584

bench: 4602977
2021-06-28 21:12:04 +02:00
Stéphane Nicolet
0470bcef0e Detect fortresses a little bit quicker
In the so-called "hybrid" method of evaluation of current master, we use the
classical eval (because of its speed) instead of the NNUE eval when the classical
material balance approximation hints that the position is "winning enough" to
rely on the classical eval.

This trade-off idea between speed and accuracy works well in general, but in
some fortress positions the classical eval is just bad. So in shuffling branches
of the search tree, we (slowly) increase the thresehold so that eventually we
don't trust classical anymore and switch to NNUE evaluation.

This patch increases that threshold faster, so that we switch to NNUE quicker
in shuffling branches. Idea is to incite Stockfish to spend less time in fortresses
lines in the search tree, and spend more time searching the critical lines.

passed STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 47872 W: 3908 L: 3720 D: 40244
Ptnml(0-2): 122, 3053, 17419, 3199, 143
https://tests.stockfishchess.org/tests/view/60cef34b457376eb8bcab79d

passed LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 73616 W: 2326 L: 2143 D: 69147
Ptnml(0-2): 21, 1940, 32705, 2119, 23
https://tests.stockfishchess.org/tests/view/60cf6d842114332881e73528

Retested at LTC against lastest master:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 18264 W: 642 L: 532 D: 17090
Ptnml(0-2): 6, 479, 8055, 583, 9
https://tests.stockfishchess.org/tests/view/60d18cd540925195e7a6c351

closes https://github.com/official-stockfish/Stockfish/pull/3578

Bench: 5139233
2021-06-22 11:51:03 +02:00
MichaelB7
9b82414b67 Make net nn-190f102a22c3.nnue the default net.
Trained with the pytorch trainer: https://github.com/glinscott/nnue-pytorch

python train.py i:/bin/all.binpack i:/bin/all.binpack --gpus 1 --threads 4 --num-workers 30 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^ --lambda=1.0 --max_epochs=440 --seed %random%%random% --default_root_dir exp/run_17 --resume-from-model ./pt/nn-75980ca503c6.pt

This run is thus started from the previous master net.

all.binpack equaled 4 parts Wrong_NNUE_2.binpack https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq/view?usp=sharing plus two parts of Training_Data.binpack https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing
Each set was concatenated together - making one large Wrong_NNUE 2 binpack and one large Training so the were approximately equal in size. They were then interleaved together. The idea was to give Wrong_NNUE.binpack closer to equal weighting with the Training_Data binpack

passed LTC
https://tests.stockfishchess.org/tests/view/60d09f52b4c17000d679517f
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 32184 W: 1100 L: 970 D: 30114
Ptnml(0-2): 10, 878, 14193, 994, 17

passed STC
https://tests.stockfishchess.org/tests/view/60d086c02114332881e7368e
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 11360 W: 1056 L: 906 D: 9398
Ptnml(0-2): 25, 735, 4026, 853, 41

closes https://github.com/official-stockfish/Stockfish/pull/3576

Bench: 4631244
2021-06-21 23:16:55 +02:00
Joost VandeVondele
2e2865d34b Fix build error on OSX
directly use integer version for cp calculation.

fixes https://github.com/official-stockfish/Stockfish/issues/3573

closes https://github.com/official-stockfish/Stockfish/pull/3574

No functional change
2021-06-21 23:14:58 +02:00
Stéphane Nicolet
ed436a36ba Remove the Contempt UCI option
This patch removes the UCI option for setting Contempt in classical evaluation.

It is exactly equivalent to using Contempt=0 for the UCI contempt value and keeping
the dynamic part in the algo (renaming this dynamic part `trend` to better describe
what it does). We have tried quite hard to implement a working Contempt feature for
NNUE but nothing really worked, so it is probably time to give up.

Interested chess fans wishing to keep playing with the UCI option for Contempt and
use it with the classical eval are urged to download the version tagged "SF_Classical"
of Stockfish (dated 31 July 2020), as it was the last version where our search
algorithm was tuned for the classical eval and is probably our strongest classical
player ever: https://github.com/official-stockfish/Stockfish/tags

Passed STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 72904 W: 6228 L: 6175 D: 60501
Ptnml(0-2): 221, 5006, 25971, 5007, 247
https://tests.stockfishchess.org/tests/view/60c98bf9457376eb8bcab18d

Passed LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 45168 W: 1601 L: 1547 D: 42020
Ptnml(0-2): 38, 1331, 19786, 1397, 32
https://tests.stockfishchess.org/tests/view/60c9c7fa457376eb8bcab1bb

closes https://github.com/official-stockfish/Stockfish/pull/3575

Bench: 4947716
2021-06-21 22:58:56 +02:00
Stéphane Nicolet
70ac5ecbb6 Keep more pawns and pieces when attacking
This patch increase the weight of pawns and pieces from 28 to 32
in the scaling formula we apply to the output of the NNUE pure eval.

Increasing this gradient for pawns and pieces means that Stockfish
will try a little harder to keep material when she has the advantage,
and try a little bit harder to escape into an endgame when she is
under pressure.

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 53168 W: 4371 L: 4177 D: 44620
Ptnml(0-2): 160, 3389, 19283, 3601, 151
https://tests.stockfishchess.org/tests/view/60cefd1d457376eb8bcab7ab

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 10888 W: 386 L: 288 D: 10214
Ptnml(0-2): 3, 260, 4821, 356, 4
https://tests.stockfishchess.org/tests/view/60cf709d2114332881e7352b

closes https://github.com/official-stockfish/Stockfish/pull/3571

Bench: 4965430
2021-06-20 23:17:07 +02:00
MichaelB7
ba01f4b954 Make net nn-75980ca503c6.nnue the default.
trained with the Python command

c:\nnue>python train.py i:/bin/all.binpack i:/bin/all.binpack --gpus 1 --threads 4 --num-workers 30 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^ --lambda=1.0 --max_epochs=440 --seed %random%%random% --default_root_dir exp/run_10 --resume-from-model ./pt/nn-3b20abec10c1.pt
`
all.binpack equaled 4 parts Wrong_NNUE_2.binpack https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq/view?usp=sharing plus two parts of Training_Data.binpack https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing
Each set was concatenated together - making one large Wrong_NNUE 2 binpack and one large Training so the were approximately equal in size. They were then interleaved together. The idea was to give Wrong_NNUE.binpack closer to equal weighting with the Training_Data binpack .

Net nn-3b20abec10c1.nnue was chosen as the --resume-from-model with the idea that through learning, the manually hex edited values will be learned and will not need to be manually adjusted going forward. They would also be fine tuned by the learning process.

passed STC:
https://tests.stockfishchess.org/tests/view/60cdf91e457376eb8bcab66f
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 18256 W: 1639 L: 1479 D: 15138
Ptnml(0-2): 59, 1179, 6505, 1313, 72

passed LTC:
https://tests.stockfishchess.org/tests/view/60ce2166457376eb8bcab6e1
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 18792 W: 654 L: 542 D: 17596
Ptnml(0-2): 9, 490, 8291, 592, 14

closes https://github.com/official-stockfish/Stockfish/pull/3570

Bench: 5020972
2021-06-19 23:24:35 +02:00
Tomasz Sobczyk
2e745956c0 Change trace with NNUE eval support
This patch adds some more output to the `eval` command. It adds a board display
with estimated piece values (method is remove-piece, evaluate, put-piece), and
splits the NNUE evaluation with (psqt,layers) for each bucket for the NNUE net.

Example:

```

./stockfish
position fen 3Qb1k1/1r2ppb1/pN1n2q1/Pp1Pp1Pr/4P2p/4BP2/4B1R1/1R5K b - - 11 40
eval

 Contributing terms for the classical eval:
+------------+-------------+-------------+-------------+
|    Term    |    White    |    Black    |    Total    |
|            |   MG    EG  |   MG    EG  |   MG    EG  |
+------------+-------------+-------------+-------------+
|   Material |  ----  ---- |  ----  ---- | -0.73 -1.55 |
|  Imbalance |  ----  ---- |  ----  ---- | -0.21 -0.17 |
|      Pawns |  0.35 -0.00 |  0.19 -0.26 |  0.16  0.25 |
|    Knights |  0.04 -0.08 |  0.12 -0.01 | -0.08 -0.07 |
|    Bishops | -0.34 -0.87 | -0.17 -0.61 | -0.17 -0.26 |
|      Rooks |  0.12  0.00 |  0.08  0.00 |  0.04  0.00 |
|     Queens |  0.00  0.00 | -0.27 -0.07 |  0.27  0.07 |
|   Mobility |  0.84  1.76 |  0.01  0.66 |  0.83  1.10 |
|King safety | -0.99 -0.17 | -0.72 -0.10 | -0.27 -0.07 |
|    Threats |  0.27  0.27 |  0.73  0.86 | -0.46 -0.59 |
|     Passed |  0.00  0.00 |  0.79  0.82 | -0.79 -0.82 |
|      Space |  0.61  0.00 |  0.24  0.00 |  0.37  0.00 |
|   Winnable |  ----  ---- |  ----  ---- |  0.00 -0.03 |
+------------+-------------+-------------+-------------+
|      Total |  ----  ---- |  ----  ---- | -1.03 -2.14 |
+------------+-------------+-------------+-------------+

 NNUE derived piece values:
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |   Q   |   b   |       |   k   |       |
|       |       |       | +12.4 | -1.62 |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |   r   |       |       |   p   |   p   |   b   |       |
|       | -3.89 |       |       | -0.84 | -1.19 | -3.32 |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|   p   |   N   |       |   n   |       |       |   q   |       |
| -1.81 | +3.71 |       | -4.82 |       |       | -5.04 |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|   P   |   p   |       |   P   |   p   |       |   P   |   r   |
| +1.16 | -0.91 |       | +0.55 | +0.12 |       | +0.50 | -4.02 |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |       |   P   |       |       |   p   |
|       |       |       |       | +2.33 |       |       | +1.17 |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |       |   B   |   P   |       |       |
|       |       |       |       | +4.79 | +1.54 |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |       |   B   |       |   R   |       |
|       |       |       |       | +4.54 |       | +6.03 |       |
+-------+-------+-------+-------+-------+-------+-------+-------+
|       |   R   |       |       |       |       |       |   K   |
|       | +4.81 |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+

 NNUE network contributions (Black to move)
+------------+------------+------------+------------+
|   Bucket   |  Material  | Positional |   Total    |
|            |   (PSQT)   |  (Layers)  |            |
+------------+------------+------------+------------+
|  0         |  +  0.32   |  -  1.46   |  -  1.13   |
|  1         |  +  0.25   |  -  0.68   |  -  0.43   |
|  2         |  +  0.46   |  -  1.72   |  -  1.25   |
|  3         |  +  0.55   |  -  1.80   |  -  1.25   |
|  4         |  +  0.48   |  -  1.77   |  -  1.29   |
|  5         |  +  0.40   |  -  2.00   |  -  1.60   |
|  6         |  +  0.57   |  -  2.12   |  -  1.54   | <-- this bucket is used
|  7         |  +  3.38   |  -  2.00   |  +  1.37   |
+------------+------------+------------+------------+

Classical evaluation   -1.00 (white side)
NNUE evaluation        +1.54 (white side)
Final evaluation       +2.38 (white side) [with scaled NNUE, hybrid, ...]

```

Also renames the export_net() function to save_eval() while there.

closes https://github.com/official-stockfish/Stockfish/pull/3562

No functional change
2021-06-19 11:57:01 +02:00
proukornew
0171b506ec Fix for Cygwin's environment build-profile (fixed)
The Cygwin environment has two g++ compilers, each with a different problem
for compiling  Stockfish at the moment:

(a) g++.exe : full posix build compiler, linked to cygwin dll.

    => This one has a problem embedding the net.

(b) x86_64-w64-mingw32-g++.exe : native Windows build compiler.

    => This one manages to embed the net, but has a problem related to libgcov
       when we use the profile-build target of Stockfish.

This patch solves the problem for compiler (b), so that our recommended command line
if you want to build an optimized version of Stockfish on Cygwin becomes something
like the following (you can change the ARCH value to whatever you want, but note
the COMP and CXX variables pointing at the right compiler):

```
   make -j profile-build ARCH=x86-64-modern COMP=mingw CXX=x86_64-w64-mingw32-c++.exe
```

closes https://github.com/official-stockfish/Stockfish/pull/3569

No functional change
2021-06-19 11:22:30 +02:00
Joost VandeVondele
adfb23c029 Make net nn-50144f835024.nnue the default
trained with the Python command

c:\nnue>python train.py i:/bin/all.binpack i:/bin/all.binpack --gpus 1 --threads 4 --num-workers 30 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^ --lambda=1.0 --max_epochs=440 --seed %random%%random% --default_root_dir exp/run_8 --resume-from-model ./pt/nn-6ad41a9207d0.pt
`
all.binpack equaled 4 parts Wrong_NNUE_2.binpack https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq/view?usp=sharing plus two parts of Training_Data.binpack https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing
Each set was concatenated together - make one large Wrong_NNUE 2 binpack and one large Training_Data of approximate size. They were then interleaved together. The idea was to give Wrong_NNUE.binpack closer to equal weighting with the Training _Data binpack .

nn-6ad41a9207d0.pt was derived from a net vondele ran which passed STC quickly,
but faltered in LTC. https://tests.stockfishchess.org/tests/view/60cba666457376eb8bcab443

STC:
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 18792 W: 2068 L: 1889 D: 14835
Ptnml(0-2): 82, 1480, 6117, 1611, 106
https://tests.stockfishchess.org/tests/view/60ccda8b457376eb8bcab568

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 11376 W: 574 L: 454 D: 10348
Ptnml(0-2): 4, 412, 4747, 510, 15
https://tests.stockfishchess.org/tests/view/60ccf952457376eb8bcab58d

closes https://github.com/official-stockfish/Stockfish/pull/3568

Bench: 4900906
2021-06-18 23:50:26 +02:00
Tomasz Sobczyk
07e6ceacd6 Add basic github workflow
move to github actions to replace travis CI.

First version, testing on linux using gcc and clang.
gcc build with sanitizers and valgrind.

No functional change
2021-06-18 22:05:56 +02:00
SFisGOD
86afb6a7cf Update default net to nn-aa9d7eeb397e.nnue
Optimization of vondele's nn-33c9d39e5eb6.nnue using SPSA
https://tests.stockfishchess.org/tests/view/60ca68be457376eb8bcab28b
Setting: ck values are default based on how large the parameters are
The new values for this net are the raw values at the end of the tuning (80k games)

The significant changes are in buckets 1 and 2 (5-12 pieces) so the main difference is in playing endgames if we compare it to nn-33c9. There is also change in bucket 7 (29-32 pieces) but not as substantial as the changes in buckets 1 and 2. If we interpret the changes based on an experiment a few months ago, this new net plays more optimistically during endgames and less optimistically during openings.

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 49504 W: 4246 L: 4053 D: 41205
Ptnml(0-2): 140, 3282, 17749, 3407, 174
https://tests.stockfishchess.org/tests/view/60cbd752457376eb8bcab478

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 88720 W: 4926 L: 4651 D: 79143
Ptnml(0-2): 105, 4048, 35793, 4295, 119
https://tests.stockfishchess.org/tests/view/60cc7828457376eb8bcab4fa

closes https://github.com/official-stockfish/Stockfish/pull/3566

Bench: 4758885
2021-06-18 21:29:14 +02:00
ap
14b673d90f New default net nn-3b20abec10c1.nnue
This net was created by @pleomati, who manually edited with an hex editor
10 values randomly chosen in the LCSFNet10 net (nn-6ad41a9207d0.nnue) to
create this one. The LCSFNet10 net was trained by Joost VandeVondele from
a dataset combining Stockfish games and Leela games (16x10^9 positions from
SF self-play at depth 9, and 6.3x10^9 positions from Leela games, so overall
72% of Stockfish positions and 28% of Leela positions).

passed STC 10+0.1:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 50888 W: 5881 L: 5654 D: 39353
Ptnml(0-2): 281, 4290, 16085, 4497, 291
https://tests.stockfishchess.org/tests/view/60cbfa68457376eb8bcab49a

passed LTC 60+0.6:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 25480 W: 1498 L: 1338 D: 22644
Ptnml(0-2): 36, 1155, 10193, 1325, 31
https://tests.stockfishchess.org/tests/view/60cc4af8457376eb8bcab4d4

closes https://github.com/official-stockfish/Stockfish/pull/3564

Bench: 4904930
2021-06-18 20:00:13 +02:00
Stéphane Nicolet
07c8448034 Revert "Fix for Cygwin's environment build-profile"
This reverts commit "Fix for Cygwin's environment build-profile", as it was
giving errors for "make clean" on some Windows environments. See comments in
68bf362ea2

Possibly somebody can propose a solution that would fix Cygwin builds and
not break on other system too, stay tuned! :-)

No functional change
2021-06-17 18:10:01 +02:00
bmc4
55e69dc88d Simplify reduction when best move doesn't change frequently.
STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 40400 W: 3468 L: 3377 D: 33555
Ptnml(0-2): 134, 2734, 14388, 2795, 149
https://tests.stockfishchess.org/tests/view/60c93e5a457376eb8bcab15f

LTC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 34200 W: 1190 L: 1128 D: 31882
Ptnml(0-2): 22, 998, 15001, 1054, 25
https://tests.stockfishchess.org/tests/view/60c96a1a457376eb8bcab180

closes https://github.com/official-stockfish/Stockfish/pull/3559

bench: 5629669
2021-06-17 02:08:33 +02:00
proukornew
68bf362ea2 Fix for Cygwin's environment build-profile
The Cygwin environment has two g++ compilers, each with a different problem
for compiling  Stockfish at the moment:

(a) g++.exe : full posix build compiler, linked to cygwin dll.

    => This one has a problem embedding the net.

(b) x86_64-w64-mingw32-g++.exe : native Windows build compiler.

    => This one manages to embed the net, but has a problem related to libgcov
       when we use the profile-build target of Stockfish.

This patch solves the problem for compiler (b), so that our recommended command line
if you want to build an optimized version of Stockfish on Cygwin becomes something
like the following (you can change the ARCH value to whatever you want, but note
the COMP and CXX variables pointing at the right compiler):

```
   make -j profile-build ARCH=x86-64-modern COMP=mingw CXX=x86_64-w64-mingw32-c++.exe
```

closes https://github.com/official-stockfish/Stockfish/pull/3463

No functional change
2021-06-17 01:14:20 +02:00
Joost VandeVondele
8ec9e10866 New default net nn-33c9d39e5eb6.nnue
As the previous net, this net is trained on Leela games as provided by borg.
See also https://lczero.org/blog/2021/06/the-importance-of-open-data/

The particular data set, which is a mix of T60 and T74 data, is now available as a single binpack:
https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing

The training command was:
python train.py ../../training_data_pylon.binpack ../../training_data_pylon.binpack --gpus 1 --threads 2 --num-workers 2 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 10 --features=HalfKAv2^   --lambda=1.0  --max_epochs=440 --seed $RANDOM --default_root_dir exp/run_2

passed STC:
https://tests.stockfishchess.org/tests/view/60c887cb457376eb8bcab054
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 12792 W: 1483 L: 1311 D: 9998
Ptnml(0-2): 62, 989, 4131, 1143, 71

passed LTC:
https://tests.stockfishchess.org/tests/view/60c8e5c4457376eb8bcab0f0
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 11272 W: 601 L: 477 D: 10194
Ptnml(0-2): 9, 421, 4657, 535, 14

also had strong LTC performance against another strong net of the series:
https://tests.stockfishchess.org/tests/view/60c8c40d457376eb8bcab0c6

closes https://github.com/official-stockfish/Stockfish/pull/3557

Bench: 5032320
2021-06-15 22:08:40 +02:00
J. Oster
4c4e104cad Fix a rare case of wrong TB ranking
of a root move leading to a 3-fold repetition.
With this small fix a draw ranking and thus a draw score is being applied.
This works for both, ranking by dtz or wdl tables.

Fixes https://github.com/official-stockfish/Stockfish/issues/3542

(No functional change without TBs.)
Bench: 4877339
2021-06-14 17:28:30 +02:00
Tomasz Sobczyk
900f249f59 Reduce the number of accumulator states
Reduce from 3 to 2. Make the intent of the states clearer.

STC: https://tests.stockfishchess.org/tests/view/60c50111457376eb8bcaad03
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 61888 W: 5007 L: 4944 D: 51937
Ptnml(0-2): 164, 3947, 22649, 4030, 154

LTC: https://tests.stockfishchess.org/tests/view/60c52b1c457376eb8bcaad2c
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 20248 W: 688 L: 618 D: 18942
Ptnml(0-2): 7, 551, 8946, 605, 15

closes https://github.com/official-stockfish/Stockfish/pull/3548

No functional change.
2021-06-14 11:22:08 +02:00
JWmer
f8c779dbe5 Update default net to nn-8e47cf062333.nnue
This net is the result of training on data used by the Leela project. More precisely,
we shuffled T60 and T74 data kindly provided by borg (for different Tnn, the data is
a result of Leela selfplay with differently sized Leela nets).

The data is available at vondele's google drive:
https://drive.google.com/drive/folders/1mftuzYdl9o6tBaceR3d_VBQIrgKJsFpl.

The Leela data comes in small chunks of .binpack files. To shuffle them, we simply
used a small python script to randomly rename the files, and then concatenated them
using `cat`. As validation data we picked a file of T60 data. We will further investigate
T74 data.

The training for the NNUE architecture used 200 epochs with the Python trainer from
the Stockfish project. Unlike the previous run we tried with this data, this run does
not have adjusted scaling — not because we didn't want to, but because we forgot.
However, this training randomly skips 40% more positions than previous run. The loss
was very spiky and decreased slower than it does usually.

Training loss: https://github.com/official-stockfish/images/blob/main/training-loss-8e47cf062333.png
Validation loss: https://github.com/official-stockfish/images/blob/main/validation-loss-8e47cf062333.png

This is the exact training command:
python train.py --smart-fen-skipping --random-fen-skipping 14 --batch-size 16384 --threads 4 --num-workers 4 --gpus 1 trainingdata\training_data.binpack validationdata\val.binpack

---

10k STC result:
ELO: 3.61 +-3.3 (95%) LOS: 98.4%
Total: 10000 W: 1241 L: 1137 D: 7622
Ptnml(0-2): 68, 841, 3086, 929, 76
https://tests.stockfishchess.org/tests/view/60c67e50457376eb8bcaae70

10k LTC result:
ELO: 2.71 +-2.4 (95%) LOS: 98.8%
Total: 10000 W: 659 L: 581 D: 8760
Ptnml(0-2): 22, 485, 3900, 579, 14
https://tests.stockfishchess.org/tests/view/60c69deb457376eb8bcaae98

Passed LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 9648 W: 685 L: 545 D: 8418
Ptnml(0-2): 22, 448, 3740, 596, 18
https://tests.stockfishchess.org/tests/view/60c6d41c457376eb8bcaaecf

---

closes https://github.com/official-stockfish/Stockfish/pull/3550

Bench: 4877339
2021-06-14 09:24:07 +02:00
Tomasz Sobczyk
ce4c523ad3 Register count for feature transformer
Compute optimal register count for feature transformer accumulation dynamically.
This also introduces a change where AVX512 would only use 8 registers instead of 16
(now possible due to a 2x increase in feature transformer size).

closes https://github.com/official-stockfish/Stockfish/pull/3543

No functional change
2021-06-13 13:10:56 +02:00
Vizvezdenec
e1f181ee64 Do less LMR extensions
This patch restricts LMR extensions (of non-transposition table moves) from being
used when the transposition table move was extended by two plies via singular
extension. This may serve to limit search explosions in certain positions.

This makes a lot of sense because the precondition for the tt-move to have been
singular extended by two plies is that the result of the alternate search (with
excluded the tt-move) has been a hard fail low: it is natural to later search less
for non tt-moves in this situation.

The current state of depth/extensions/reductions management is getting quite tricky
in our search algo, see https://github.com/official-stockfish/Stockfish/pull/3546#issuecomment-860174549
for some discussion. Suggestions welcome!

Passed STC
https://tests.stockfishchess.org/tests/view/60c3f293457376eb8bcaac8d
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 117984 W: 9698 L: 9430 D: 98856
Ptnml(0-2): 315, 7708, 42703, 7926, 340

passed LTC
https://tests.stockfishchess.org/tests/view/60c46ea5457376eb8bcaacc7
LLR: 2.97 (-2.94,2.94) <0.50,3.50>
Total: 11280 W: 401 L: 302 D: 10577
Ptnml(0-2): 2, 271, 4998, 364, 5

closes https://github.com/official-stockfish/Stockfish/pull/3546

Bench: 4709974
2021-06-13 12:00:20 +02:00
Stéphane Nicolet
7819412002 Clarify use of UCI options
Update README.md to clarify use of UCI options

closes https://github.com/official-stockfish/Stockfish/pull/3540

No functional change
2021-06-13 10:02:43 +02:00
Tomasz Sobczyk
b84fa04db6 Read NNUE net faster
Load feature transformer weights in bulk on little-endian machines.
This is in particular useful to test new nets with c-chess-cli,
see https://github.com/lucasart/c-chess-cli/issues/44

```
$ time ./stockfish.exe uci

Before : 0m0.914s
After  : 0m0.483s
```

No functional change
2021-06-13 09:39:03 +02:00
Joost VandeVondele
559942d64d Limit double extensions
Double extensions can lead to search explosions, for specific positions.
Currently, however, these double extensions are worth about 10Elo and cannot
be removed. This patch instead limits the number of double extensions given
to a maximum of 3.

This fixes https://github.com/official-stockfish/Stockfish/issues/3532
where the following testcase was shown to be problematic:

```
uci
setoption name Hash value 4
setoption name Contempt value 0
ucinewgame
position fen 8/Pk6/8/1p6/8/P1K5/8/6B1 w - - 37 130
go depth 20
```

passed STC:
https://tests.stockfishchess.org/tests/view/60c13161457376eb8bcaaa0f
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 73256 W: 6114 L: 6062 D: 61080
Ptnml(0-2): 222, 4912, 26306, 4968, 220

passed LTC:
https://tests.stockfishchess.org/tests/view/60c196fb457376eb8bcaaa6b
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 166440 W: 5559 L: 5594 D: 155287
Ptnml(0-2): 106, 4921, 73197, 4894, 102

closes https://github.com/official-stockfish/Stockfish/pull/3544

Bench: 5067605
2021-06-11 20:33:24 +02:00
bmc4
785b708097 Simplify promotion move generator
This patch removes Knight promotion checks from Captures. As a consequence,
it also removes this underpromotion from qsearch.

STC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 37776 W: 3113 L: 3023 D: 31640
Ptnml(0-2): 103, 2419, 13755, 2507, 104
https://tests.stockfishchess.org/tests/view/60be6a06457376eb8bcaa775

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 39760 W: 1257 L: 1203 D: 37300
Ptnml(0-2): 11, 1079, 17646, 1133, 11
https://tests.stockfishchess.org/tests/view/60beb972457376eb8bcaa7c5

closes https://github.com/official-stockfish/Stockfish/pull/3536

Bench: 5530620
2021-06-08 20:16:20 +02:00
bmc4
999e142c54 Reduce in LMR reduction on PvNode
reduce reduction in LMR by 1 on PvNode.

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 266080 W: 22438 L: 21996 D: 221646
Ptnml(0-2): 774, 17874, 95376, 18168, 848
https://tests.stockfishchess.org/tests/view/60bc0661457376eb8bcaa4bb

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 20144 W: 698 L: 587 D: 18859
Ptnml(0-2): 2, 529, 8906, 626, 9
https://tests.stockfishchess.org/tests/view/60bcc3f2457376eb8bcaa58d

closes https://github.com/official-stockfish/Stockfish/pull/3534

bench: 5173012
2021-06-06 21:22:39 +02:00
Guy Vreuls
3802cdf9b6 Makefile: Extend sanitize support
Enable compiling with multiple sanitizers at once.

Syntax:
make build ARCH=x86-64-avx512 debug=on sanitize="address undefined"

closes https://github.com/official-stockfish/Stockfish/pull/3524

No functional change.
2021-06-05 11:38:28 +02:00
Joost VandeVondele
98cbaa6c6b Enhance CI to error on leaks
Add flags to valgrind in our Continuous Integration scripts,
to error on memory leaks.

closes https://github.com/official-stockfish/Stockfish/pull/3525

No functional change.
2021-06-05 10:55:57 +02:00
Guy Vreuls
58307562b6 Revert "Simplify En Passant"
This reverts commit 9f8058bd26.

Fixes the memory leak discussed in pull request #3523
https://github.com/official-stockfish/Stockfish/pull/3523

Passed non-regression STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 76184 W: 6330 L: 6282 D: 63572
Ptnml(0-2): 202, 5047, 27564, 5059, 220
https://tests.stockfishchess.org/tests/view/60ba146c457376eb8bcaa2e2

closes https://github.com/official-stockfish/Stockfish/pull/3527

Benched to verify there is no functional change.

Bench: 4364128
2021-06-05 10:47:46 +02:00
Stéphane Nicolet
8f081c86f7 Clean SIMD code a bit
Cleaner vector code structure in feature transformer. This patch just
regroups the parts of the inner loop for each SIMD instruction set.

Tested for non-regression:
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 115760 W: 9835 L: 9831 D: 96094
Ptnml(0-2): 326, 7776, 41715, 7694, 369
https://tests.stockfishchess.org/tests/view/60b96b39457376eb8bcaa26e

It would be nice if a future patch could use some of the macros at
the top of the file to unify the code between the distincts SIMD
instruction sets (of course, unifying the Relu will be the challenge).

closes https://github.com/official-stockfish/Stockfish/pull/3506

No functional change
2021-06-04 14:07:46 +02:00
Stéphane Nicolet
4445965f97 Makefile: better "make clean" for Windows
Make clean should be really clean on Windows.

Fixes issue https://github.com/official-stockfish/Stockfish/issues/3291
Closes https://github.com/official-stockfish/Stockfish/pull/3517

No functional change
2021-06-04 01:32:11 +02:00
bmc4
0b7cc8bd2f Introducing NodeType Root
We transform rootNode into constexpr by adding a new NodeType `Root`,
which causes a speed up.

Local test:
```
Build Tester: 1.4.7.0
Windows 10 (Version 10.0, Build 0, 64-bit Edition)
Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
SafeMode: No
Running In VM: No
HyperThreading Enabled: Yes
CPU Warmup: Yes
Command Line: bench
Tests per Build: 25
ANOVA: n/a

                Engine# (NPS)                     Speedup     Sp     Conf. 95%    S.S.
patch  (920.179,4) ---> master  (906.329,2)  --->  1,528%  20.336,5     Yes        No
```

---------

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 98216 W: 8348 L: 8102 D: 81766
Ptnml(0-2): 295, 6357, 35549, 6621, 286
https://tests.stockfishchess.org/tests/view/60b797e2457376eb8bcaa0ab

Yellow LTC:
LLR: -2.95 (-2.94,2.94) <0.50,3.50>
Total: 76936 W: 2651 L: 2626 D: 71659
Ptnml(0-2): 29, 2233, 33916, 2264, 26
https://tests.stockfishchess.org/tests/view/60b80d6d457376eb8bcaa145

closes https://github.com/official-stockfish/Stockfish/pull/3522

No functional change
2021-06-04 01:23:49 +02:00
xoto10
9353e72103 Make extra time for bestMoveInstability dependent on rootdepth.
This change allocates more base time to moves and makes the additional time added for best move instability dependent on rootdepth.

STC 10+0.1 :
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 19432 W: 1711 L: 1553 D: 16168
Ptnml(0-2): 47, 1250, 6989, 1358, 72
https://tests.stockfishchess.org/tests/view/60b8cd41457376eb8bcaa1ad

LTC 60+0.6 :
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 22480 W: 810 L: 693 D: 20977
Ptnml(0-2): 9, 603, 9902, 714, 12
https://tests.stockfishchess.org/tests/view/60b8e5bf457376eb8bcaa1e6

closes https://github.com/official-stockfish/Stockfish/pull/3526

Bench 4364128
2021-06-03 21:22:56 +02:00
Joost VandeVondele
d53071eff4 Update default net to nn-7e66505906a6.nnue
Trained with pytorch using the master branch and recommended settings,
the data used is the previous 64B binpack enhanced with a 2B binpack
generated using an opening book of positions for with the static eval
is significantly different from d9 search.

book           : https://drive.google.com/file/d/1rHcKY5rv34kwku6g89OhnE8Bkfq3UWau/view?usp=sharing
book generation: 3ce43ab0c4
binpack        : https://drive.google.com/file/d/1rHcKY5rv34kwku6g89OhnE8Bkfq3UWau/view?usp=sharing

-------

Data generation command:

generate_training_data depth 9 count 31250000 random_multi_pv 2 random_multi_pv_diff 100 random_move_max_ply 8 random_move_count 3 set_recommended_uci_options eval_limit 32000 output_file_name output.binpack book wrongNNUE.epd seed ${RANDOM}${RANDOM}

Training command:

python train.py ../../all_d9_fishd9_d8_d10_wrong_shuffle.binpack ../../all_d9_fishd9_d8_d10_wrong_shuffle.binpack  --gpus 1 --threads 2 --num-workers 2 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^   --lambda=1.0  --max_epochs=400 --seed $RANDOM --default_root_dir exp/run_5

-------

passed STC:
https://tests.stockfishchess.org/tests/view/60b7c79a457376eb8bcaa104
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 64592 W: 6254 L: 6028 D: 52310
Ptnml(0-2): 255, 4785, 22020, 4951, 285

passed LTC:
https://tests.stockfishchess.org/tests/view/60b85307457376eb8bcaa182
LLR: 2.96 (-2.94,2.94) <0.50,3.50>
Total: 45560 W: 1998 L: 1826 D: 41736
Ptnml(0-2): 36, 1604, 19335, 1762, 43

closes https://github.com/official-stockfish/Stockfish/pull/3521

Bench: 4364128
2021-06-03 16:25:44 +02:00
Stéphane Nicolet
4ada291429
Typography change for bench 2021-06-02 08:37:00 +02:00
Stefan Geschwentner
95f73ff393 Remove formerPV variable.
STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 75672 W: 6546 L: 6496 D: 62630
Ptnml(0-2): 238, 5274, 26761, 5326, 237
https://tests.stockfishchess.org/tests/view/60b349c0ec0c03148cbed055

LTC:
LLR: 2.98 (-2.94,2.94) <-2.50,0.50>
Total: 137816 W: 4676 L: 4689 D: 128451
Ptnml(0-2): 52, 4237, 60354, 4202, 63
https://tests.stockfishchess.org/tests/view/60b38970ec0c03148cbed075

closes https://github.com/official-stockfish/Stockfish/pull/3515

Bench: 4892288
2021-06-01 23:21:00 +02:00
J. Oster
9fd5b44d60 Pre-initialize ss->ply
We pre-initialize ss->ply over the whole stack. There is no need
to re-assign the same value(s) over and over again while searching.
Probably a tiny speedup on longer searches.

Tested for no regression:

STC
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 25784 W: 2205 L: 2101 D: 21478
Ptnml(0-2): 62, 1660, 9368, 1716, 86
https://tests.stockfishchess.org/tests/view/60b516c6457376eb8bca9dfa

LTC
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 26200 W: 944 L: 878 D: 24378
Ptnml(0-2): 12, 732, 11545, 800, 11
https://tests.stockfishchess.org/tests/view/60b53652457376eb8bca9e0e

closes https://github.com/official-stockfish/Stockfish/pull/3516

No functional change.
2021-06-01 21:25:28 +02:00
candirufish
e8418bb1b9 Check Extension with Static Evaluation
extension for checking moves, at higher depth and more decisive positions.

stc:
LLR: 2.97 (-2.94,2.94) <-0.50,2.50>
Total: 87008 W: 7337 L: 7100 D: 72571
Ptnml(0-2): 264, 5737, 31270, 5964, 269
https://tests.stockfishchess.org/tests/view/60b1034787a1a67ae56c47b6

ltc:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 79320 W: 2629 L: 2432 D: 74259
Ptnml(0-2): 29, 2205, 35000, 2392, 34
https://tests.stockfishchess.org/tests/view/60b1ae0b87a1a67ae56c487c

closes https://github.com/official-stockfish/Stockfish/pull/3514

Bench: 4447112
2021-05-31 18:31:32 +02:00
Tomasz Sobczyk
5448cad29e Fix export of the feature transformer.
PSQT export was missing.

fixes #3507

closes https://github.com/official-stockfish/Stockfish/pull/3508

No functional change
2021-05-30 21:31:58 +02:00
Joost VandeVondele
4c02998325 Simplify NNUE / classical evaluation selection
for the new network architecture these rules can be simplified,
closer to the original PSQT difference based again.

passed STC
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 22656 W: 1979 L: 1868 D: 18809
Ptnml(0-2): 70, 1496, 8087, 1603, 72
https://tests.stockfishchess.org/tests/view/60b24579db3c4776cb89d122

passed LTC
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 30224 W: 1015 L: 953 D: 28256
Ptnml(0-2): 4, 860, 13330, 906, 12
https://tests.stockfishchess.org/tests/view/60b27613db3c4776cb89d145

closes https://github.com/official-stockfish/Stockfish/pull/3511

Bench: 3937626
2021-05-30 21:30:15 +02:00
VoyagerOne
6174a37a37 Remove Stat Reset at beta cutoff
STC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 63936 W: 5350 L: 5288 D: 53298
Ptnml(0-2): 184, 4295, 22954, 4345, 190
https://tests.stockfishchess.org/tests/view/60affb4c12066fd299795c64

LTC:
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 35856 W: 1201 L: 1142 D: 33513
Ptnml(0-2): 7, 1031, 15795, 1086, 9
https://tests.stockfishchess.org/tests/view/60b0537812066fd299795cc6

closes https://github.com/official-stockfish/Stockfish/pull/3505

bench: 3831936
2021-05-28 20:16:11 +02:00
Stéphane Nicolet
f193778446 Do not use lazy evaluation inside NNUE
This simplification patch implements two changes:

1. it simplifies away the so-called "lazy" path in the NNUE evaluation internals,
   where we trusted the psqt head alone to avoid the costly "positional" head in
   some cases;
2. it raises a little bit the NNUEThreshold1 in evaluate.cpp (from 682 to 800),
   which increases the limit where we switched from NNUE eval to Classical eval.

Both effects increase the number of positional evaluations done by our new net
architecture, but the results of our tests below seem to indicate that the loss
of speed will be compensated by the gain of eval quality.

STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 26280 W: 2244 L: 2137 D: 21899
Ptnml(0-2): 72, 1755, 9405, 1810, 98
https://tests.stockfishchess.org/tests/view/60ae73f112066fd299795a51

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 20592 W: 750 L: 677 D: 19165
Ptnml(0-2): 9, 614, 8980, 681, 12
https://tests.stockfishchess.org/tests/view/60ae88e812066fd299795a82

closes https://github.com/official-stockfish/Stockfish/pull/3503

Bench: 3817907
2021-05-27 01:21:56 +02:00
Stefan Geschwentner
1b325bf86d Less reduction for capture/promotions.
Exclude captures/promotions at expected cut nodes (which also not a
former PV node) from LMR if a response to the first previous
opponent move.

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 288656 W: 24886 L: 24413 D: 239357
Ptnml(0-2): 900, 19738, 102578, 20213, 899
https://tests.stockfishchess.org/tests/view/60ad505112066fd29979595b

LTC:
LLR: 2.97 (-2.94,2.94) <0.50,3.50>
Total: 31344 W: 1107 L: 975 D: 29262
Ptnml(0-2): 12, 879, 13757, 1013, 11
https://tests.stockfishchess.org/tests/view/60adffce12066fd2997959d2

closes https://github.com/official-stockfish/Stockfish/pull/3500

Bench: 3827710
2021-05-26 17:32:54 +02:00
IIvec
83e0af288a Simplify the thread term for reduction formula
Dependance on Threads.size() was removed Search::init() for the Reductions[] initialization.

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 17376 W: 1024 L: 929 D: 15423
Ptnml(0-2): 24, 781, 6989, 864, 30
https://tests.stockfishchess.org/tests/view/60ac110812066fd2997957dc

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 145552 W: 3656 L: 3673 D: 138223
Ptnml(0-2): 37, 3351, 66014, 3340, 34
https://tests.stockfishchess.org/tests/view/60ac267412066fd299795825

closes https://github.com/official-stockfish/Stockfish/pull/3502

Bench 3864295
2021-05-26 17:25:05 +02:00
Tomasz Sobczyk
9d53129075 Expose the lazy threshold for the feature transformer PSQT as a parameter.
Definition of the lazy threshold moved to evaluate.cpp where all others are.
Lazy threshold only used for real searches, not used for the "eval" call.
This preserves the purity of NNUE evaluation, which is useful to verify
consistency between the engine and the NNUE trainer.

closes https://github.com/official-stockfish/Stockfish/pull/3499

No functional change
2021-05-25 21:40:51 +02:00
bmc4
e044068b43 Increased reduction for captures in LMR
It now does, in LMR, an increased on reduction by 1 for captures in cut nodes.

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 30656 W: 2565 L: 2397 D: 25694
Ptnml(0-2): 63, 2012, 11029, 2142, 82
https://tests.stockfishchess.org/tests/view/60a96733ce8ea25a3ef04178

LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 124840 W: 4139 L: 3878 D: 116823
Ptnml(0-2): 48, 3480, 55100, 3747, 45
https://tests.stockfishchess.org/tests/view/60a995f5ce8ea25a3ef041b7

closes https://github.com/official-stockfish/Stockfish/pull/3494

bench: 3864295
2021-05-24 15:52:22 +02:00
Stéphane Nicolet
a2f01c07eb Sometimes change the (materialist, positional) balance
Our new nets output two values for the side to move in the last layer.
We can interpret the first value as a material evaluation of the
position, and the second one as the dynamic, positional value of the
location of pieces.

This patch changes the balance for the (materialist, positional) parts
of the score from (128, 128) to (121, 135) when the piece material is
equal between the two players, but keeps the standard (128, 128) balance
when one player is at least an exchange up.

Passed STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 15936 W: 1421 L: 1266 D: 13249
Ptnml(0-2): 37, 1037, 5694, 1134, 66
https://tests.stockfishchess.org/tests/view/60a82df9ce8ea25a3ef0408f

Passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 13904 W: 516 L: 410 D: 12978
Ptnml(0-2): 4, 374, 6088, 484, 2
https://tests.stockfishchess.org/tests/view/60a8bbf9ce8ea25a3ef04101

closes https://github.com/official-stockfish/Stockfish/pull/3492

Bench: 3856635
2021-05-22 21:09:22 +02:00
bmc4
ff4c22238a Tuning Search
This patch tunes constant in search.cpp

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 30648 W: 2580 L: 2410 D: 25658
Ptnml(0-2): 80, 1969, 11093, 2065, 117
https://tests.stockfishchess.org/tests/view/60a71d3cce8ea25a3ef03fae

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 52896 W: 1776 L: 1617 D: 49503
Ptnml(0-2): 13, 1462, 23347, 1605, 21
https://tests.stockfishchess.org/tests/view/60a794ddce8ea25a3ef0400a

closes https://github.com/official-stockfish/Stockfish/pull/3491

Bench: 4004731
2021-05-22 19:23:15 +02:00
bmc4
49c79aa15c Simplify reduction for consecutive fails
Revert the heuristic introduced in #3184, by which we reduced more
the late sons of the root position after consecutive fail highs.

---
Before new net architecture:

STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 226336 W: 20373 L: 20500 D: 185463
Ptnml(0-2): 755, 16087, 79595, 15992, 739
https://tests.stockfishchess.org/tests/view/609dec205085663412d08e9d

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 67432 W: 2411 L: 2375 D: 62646
Ptnml(0-2): 33, 1944, 29714, 2004, 21
https://tests.stockfishchess.org/tests/view/609ee30f5085663412d08fc3

---
After new net architecture:

STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 141752 W: 11591 L: 11617 D: 118544
Ptnml(0-2): 387, 9231, 51674, 9189, 395
https://tests.stockfishchess.org/tests/view/60a4320ace8ea25a3ef03cfd

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 294072 W: 9825 L: 9950 D: 274297
Ptnml(0-2): 121, 8610, 129681, 8521, 103
https://tests.stockfishchess.org/tests/view/60a51b5ece8ea25a3ef03dcd
---

closes https://github.com/official-stockfish/Stockfish/pull/3490

Bench: 3752892
2021-05-22 19:02:36 +02:00
Joost VandeVondele
fb2d175f97 Update default net to nn-7756374aaed3.nnue
trained with pytorch using the master branch and recommended settings,
same data set as previously used:

python train.py ../../all_d9_fishd9_d8_d10_shuffle.binpack ../../all_d9_fishd9_d8_d10_shuffle.binpack \
        --gpus 1 --threads 2 --num-workers 2 --batch-size 16384 --progress_bar_refresh_rate 300 \
        --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^   --lambda=1.0 \
        --max_epochs=400 --seed $RANDOM --default_root_dir exp/run_8

passed STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 21424 W: 2078 L: 1907 D: 17439
Ptnml(0-2): 80, 1512, 7385, 1627, 108
https://tests.stockfishchess.org/tests/view/60a6c749ce8ea25a3ef03f4d

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 67912 W: 2851 L: 2648 D: 62413
Ptnml(0-2): 40, 2348, 28984, 2537, 47
https://tests.stockfishchess.org/tests/view/60a722ecce8ea25a3ef03fb9

closes https://github.com/official-stockfish/Stockfish/pull/3489

Bench: 3779522
2021-05-22 07:35:39 +02:00
Guy Vreuls
f233ca1af4 Compact position structures
Reorder the structures data members in position.h to reduce padding.

Passed STC:
https://tests.stockfishchess.org/tests/view/60a8011fce8ea25a3ef04069
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 14120 W: 1214 L: 1067 D: 11839
Ptnml(0-2): 26, 857, 5161, 976, 40

---

Also tested for speed locally by Joost:

Result of  50 runs
==================
base (./stockfish.master       ) =    2254919  +/- 4439
test (./stockfish.patch        ) =    2274003  +/- 5278
diff                             =     +19084  +/- 6386
==================
speedup        = +0.0085
P(speedup > 0) =  1.0000

---

closes https://github.com/official-stockfish/Stockfish/pull/3488

No functional change.
2021-05-22 00:26:00 +02:00
Stéphane Nicolet
754fc8a8b5 Remove Tempo
The Tempo variable was introduced 10 years ago in our search because the
classical evaluation function was antisymmetrical in White and Black by design
to gain speed:

    Eval(White to play) = -Eval(Black to play)

Nowadays our neural networks know which side is to play in a position when
they evaluate a position and are trained on real games, so the neural network
encodes the advantage of moving as an output of search. This patch shows that
the Tempo variable is not necessary anymore.

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 33512 W: 2805 L: 2709 D: 27998
Ptnml(0-2): 80, 2209, 12095, 2279, 93
https://tests.stockfishchess.org/tests/view/60a44ceace8ea25a3ef03d30

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 53920 W: 1807 L: 1760 D: 50353
Ptnml(0-2): 16, 1617, 23650, 1658, 19
https://tests.stockfishchess.org/tests/view/60a477f0ce8ea25a3ef03d49

We also tried a match (20000 games) at STC using purely classical, result was neutral:
https://tests.stockfishchess.org/tests/view/60a4eebcce8ea25a3ef03db5

Note: there are two locations left in search.cpp where we assume antisymmetry
of evaluation (in relation with a speed optimization for null moves in lines
770 and 1439), but as the values are just used for heuristic pruning this
approximation should not hurt too much because the order of magnitude is still
true most of the time.

closes https://github.com/official-stockfish/Stockfish/pull/3481

Bench: 4015864
2021-05-19 20:34:37 +02:00
Vizvezdenec
2c3f7619f9 Simplify usage of LMR for captures
This patch simplifies a lot of "enablers" for LMR when move is a capture or promotion.
After it we will have only 2 conditions - if node is a cutNode
or if it's an allNode that was not in PV,
so all captures or promotions wouldn't go thru LMR at any PVnodes.

passed STC
https://tests.stockfishchess.org/tests/view/60a40117ce8ea25a3ef03ca7
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 58976 W: 4875 L: 4807 D: 49294
Ptnml(0-2): 176, 3897, 21270, 3973, 172

passed LTC
https://tests.stockfishchess.org/tests/view/60a43ff8ce8ea25a3ef03d18
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 65272 W: 2203 L: 2165 D: 60904
Ptnml(0-2): 28, 1936, 28668, 1978, 26

closes https://github.com/official-stockfish/Stockfish/pull/3480

bench 4110764
2021-05-19 20:08:51 +02:00
Prokop Randáček
6b9a70ace8 Use if instead of goto
This PR inverts the if and removes goto in the generate_all function.

closes https://github.com/official-stockfish/Stockfish/pull/3461

No functional change
2021-05-19 19:38:44 +02:00
Fanael Linithien
038487f954 Use packed 32-bit MMX operations for updating the PSQT accumulator
This improves the speed of NNUE by a bit on old hardware that code path
is intended for, like a Pentium III 1.13 GHz:

10 repeats of "./stockfish bench 16 1 13 default depth NNUE":

Before:
54 642 504 897 cycles (± 0.12%)
62 301 937 829 instructions (± 0.03%)

After:
54 320 821 928 cycles (± 0.13%)
62 084 742 699 instructions (± 0.02%)

Speed of go depth 20 from startpos:

Before: 53103 nps
After: 53856 nps

closes https://github.com/official-stockfish/Stockfish/pull/3476

No functional change.
2021-05-19 19:34:44 +02:00
Yohaan Seth Nathan
0faf81d1f6 Use Markdown syntax in the readme
provide direct links to the mentioned files.

closes https://github.com/official-stockfish/Stockfish/pull/3477

No Functional Change
2021-05-19 19:34:44 +02:00
Vizvezdenec
d37de3cb1d Do more continuation history based pruning
This patch increases lmrDepth threshold for continuation history based pruning in search.
This part of code for a long time was known to be really TC sensitive - decreasing
this threshold easily passed lower time controls but failed badly at LTC,
on the other hand it increase was part of a tuning that resulted
in being negative at STC but was +12 elo at 180+1.8.

After recent simplification of special conditions that sometimes
increase it from 4 to 5 it was logical to overall test at longer
time controls if 5 is better than 4 with deeper searches.

reduces strenght on STC
https://tests.stockfishchess.org/tests/view/60a3a8bbce8ea25a3ef03c74
ELO: -2.57 +-2.0 (95%) LOS: 0.6%
Total: 20000 W: 1820 L: 1968 D: 16212
Ptnml(0-2): 68, 1582, 6836, 1458, 56

Passed LTC with STC bounds
https://tests.stockfishchess.org/tests/view/60a027395085663412d090ce
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 175256 W: 6774 L: 6548 D: 161934
Ptnml(0-2): 91, 5808, 75604, 6034, 91

Passed VLTC with LTC bounds
https://tests.stockfishchess.org/tests/view/60a2bccce229097940a037a7
LLR: 2.96 (-2.94,2.94) <0.50,3.50>
Total: 65736 W: 1224 L: 1092 D: 63420
Ptnml(0-2): 5, 1012, 30706, 1136, 9

closes https://github.com/official-stockfish/Stockfish/pull/3473

bench 3689330
2021-05-19 19:34:37 +02:00
Tomasz Sobczyk
e8d64af123 New NNUE architecture and net
Introduces a new NNUE network architecture and associated network parameters,
as obtained by a new pytorch trainer.

The network is already very strong at short TC, without regression at longer TC,
and has potential for further improvements.

https://tests.stockfishchess.org/tests/view/60a159c65085663412d0921d
TC: 10s+0.1s, 1 thread
ELO: 21.74 +-3.4 (95%) LOS: 100.0%
Total: 10000 W: 1559 L: 934 D: 7507
Ptnml(0-2): 38, 701, 2972, 1176, 113

https://tests.stockfishchess.org/tests/view/60a187005085663412d0925b
TC: 60s+0.6s, 1 thread
ELO: 5.85 +-1.7 (95%) LOS: 100.0%
Total: 20000 W: 1381 L: 1044 D: 17575
Ptnml(0-2): 27, 885, 7864, 1172, 52

https://tests.stockfishchess.org/tests/view/60a2beede229097940a03806
TC: 20s+0.2s, 8 threads
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 34272 W: 1610 L: 1452 D: 31210
Ptnml(0-2): 30, 1285, 14350, 1439, 32

https://tests.stockfishchess.org/tests/view/60a2d687e229097940a03c72
TC: 60s+0.6s, 8 threads
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 45544 W: 1262 L: 1214 D: 43068
Ptnml(0-2): 12, 1129, 20442, 1177, 12

The network has been trained (by vondele) using the https://github.com/glinscott/nnue-pytorch/ trainer (started by glinscott),
specifically the branch https://github.com/Sopel97/nnue-pytorch/tree/experiment_56.
The data used are in 64 billion positions (193GB total) generated and scored with the current master net
d8: https://drive.google.com/file/d/1hOOYSDKgOOp38ZmD0N4DV82TOLHzjUiF/view?usp=sharing
d9: https://drive.google.com/file/d/1VlhnHL8f-20AXhGkILujnNXHwy9T-MQw/view?usp=sharing
d10: https://drive.google.com/file/d/1ZC5upzBYMmMj1gMYCkt6rCxQG0GnO3Kk/view?usp=sharing
fishtest_d9: https://drive.google.com/file/d/1GQHt0oNgKaHazwJFTRbXhlCN3FbUedFq/view?usp=sharing

This network also contains a few architectural changes with respect to the current master:

    Size changed from 256x2-32-32-1 to 512x2-16-32-1
        ~15-20% slower
        ~2x larger
        adds a special path for 16 valued ClippedReLU
        fixes affine transform code for 16 inputs/outputs, buy using InputDimensions instead of PaddedInputDimensions
            this is safe now because the inputs are processed in groups of 4 in the current affine transform code
    The feature set changed from HalfKP to HalfKAv2
        Includes information about the kings like HalfKA
        Packs king features better, resulting in 8% size reduction compared to HalfKA
    The board is flipped for the black's perspective, instead of rotated like in the current master
    PSQT values for each feature
        the feature transformer now outputs a part that is fowarded directly to the output and allows learning piece values more directly than the previous network architecture. The effect is visible for high imbalance positions, where the current master network outputs evaluations skewed towards zero.
        8 PSQT values per feature, chosen based on (popcount(pos.pieces()) - 1) / 4
        initialized to classical material values on the start of the training
    8 subnetworks (512x2->16->32->1), chosen based on (popcount(pos.pieces()) - 1) / 4
        only one subnetwork is evaluated for any position, no or marginal speed loss

A diagram of the network is available: https://user-images.githubusercontent.com/8037982/118656988-553a1700-b7eb-11eb-82ef-56a11cbebbf2.png
A more complete description: https://github.com/glinscott/nnue-pytorch/blob/master/docs/nnue.md

closes https://github.com/official-stockfish/Stockfish/pull/3474

Bench: 3806488
2021-05-18 18:06:23 +02:00
Stéphane Nicolet
f90274d8ce Small clean-ups
- Comment for Countemove pruning -> Continuation history
- Fix comment in input_slice.h
- Shorter lines in Makefile
- Comment for scale factor
- Fix comment for pinners in see_ge()
- Change Thread.id() signature to size_t
- Trailing space in reprosearch.sh
- Add Douglas Matos Gomes to the AUTHORS file
- Introduce comment for undo_null_move()
- Use Stockfish coding style for export_net()
- Change date in AUTHORS file

closes https://github.com/official-stockfish/Stockfish/pull/3416

No functional change
2021-05-17 10:47:14 +02:00
Vizvezdenec
61e1c66b7c Simplification for countermoves based pruning
Simplify away two extra conditions in countermoves based pruning.
These conditions (both of them) were introduced quite a long time ago
via speculative LTCs and seem to no longer bring any benefit.

passed STC
https://tests.stockfishchess.org/tests/view/609e81f35085663412d08f31
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 28488 W: 2487 L: 2382 D: 23619
Ptnml(0-2): 87, 1919, 10123, 2032, 83

passed LTC
https://tests.stockfishchess.org/tests/view/609e9c085085663412d08f59
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 33176 W: 1219 L: 1155 D: 30802
Ptnml(0-2): 13, 1036, 14423, 1106, 10

closes https://github.com/official-stockfish/Stockfish/pull/3468

Bench: 4749514
2021-05-15 10:29:39 +02:00
bmc4
c82f6f56a6 Simplify LMR rules for statScore
We simplify two parts of LMR which seem not to bring strength anymore.

---

Individual Tests:
https://tests.stockfishchess.org/tests/view/609d1cc15085663412d0856a
https://tests.stockfishchess.org/tests/view/609cb0cc7746e3dc74ffae8d
https://tests.stockfishchess.org/tests/view/609d1c9f5085663412d08568

---

LTC:
LLR: 2.97 (-2.94,2.94) <-2.50,0.50>
Total: 84184 W: 3093 L: 3066 D: 78025
Ptnml(0-2): 47, 2755, 36458, 2788, 44
https://tests.stockfishchess.org/tests/view/609d84615085663412d08e2f

---

While at it, we also update the Elo estimate of the previous rule in LMR, see:
https://tests.stockfishchess.org/tests/view/609a933c3a33eb67a844f7ca
https://tests.stockfishchess.org/tests/view/609a959c3a33eb67a844f7d5
https://tests.stockfishchess.org/tests/view/609afff73a33eb67a844f870

---

closes https://github.com/official-stockfish/Stockfish/pull/3464

Bench: 4156523
2021-05-15 10:16:01 +02:00
bmc4
24b8b3098b Remove early return in Probcut code
We simplify away early return in ProbCut, as it seems not to bring any strength anymore.

STC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 42632 W: 3705 L: 3617 D: 35310
Ptnml(0-2): 123, 2947, 15110, 2991, 145
https://tests.stockfishchess.org/tests/view/609c49da7746e3dc74ffae02

LTC:
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 35384 W: 1314 L: 1251 D: 32819
Ptnml(0-2): 11, 1130, 15355, 1177, 19
https://tests.stockfishchess.org/tests/view/609c71467746e3dc74ffae47

---

While at it, we also update the Elo estimate of ProbCut
(see https://tests.stockfishchess.org/tests/view/609bfb597746e3dc74ffabe3).

closes https://github.com/official-stockfish/Stockfish/pull/3462

bench: 3764662
2021-05-15 10:07:40 +02:00
Unai Corzo
bd756ee45c Remove BoolConditions from tuning code
Remove BoolConditions from tuning code, as the feature does not work
and the code has not be touched in years.

No functional change
2021-05-15 09:40:40 +02:00
bmc4
594e2ac999 Simplify LMR rule for non-checking captures
We simplify away the complicated rule in LMR for "non-checking captures
likely to be bad", as it seems not to bring any strength anymore.

STC:
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 55256 W: 4972 L: 4897 D: 45387
Ptnml(0-2): 177, 3976, 19234, 4077, 164
https://tests.stockfishchess.org/tests/view/609adf3b3a33eb67a844f842

LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 10344 W: 437 L: 353 D: 9554
Ptnml(0-2): 1, 322, 4449, 392, 8
https://tests.stockfishchess.org/tests/view/609b3dfa3a33eb67a844f88e

--

While at it, we also update the Elo estimate of the previous rule in LMR
(see https://tests.stockfishchess.org/tests/view/609af2a63a33eb67a844f867).

closes https://github.com/official-stockfish/Stockfish/pull/3460

Bench: 3840688
2021-05-12 17:13:52 +02:00
EntityFX
b62af7ac1e E2K: added support for MCST Elbrus 2000 CPU architecture
e2k (Elbrus 2000) - this is a VLIW/EPIC architecture,
the like Intel Itanium (IA-64) architecture.
The architecture has half native / half software support
for most Intel/AMD SIMD (e.g. MMX/SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AES/AVX/AVX2 & 3DNow!/SSE4a/XOP/FMA4) via intrinsics.

https://en.wikipedia.org/wiki/Elbrus_2000

closes https://github.com/official-stockfish/Stockfish/pull/3425

No functional change
2021-05-11 19:45:14 +02:00
bmc4
a0e2debe3f Remove coordination between searching threads
In summary, this revert #2204, as it seems not to bring any strength anymore, so it's no long needed.

STC (5+0.05 @ 8 threads):
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 105728 W: 6406 L: 6393 D: 92929
Ptnml(0-2): 154, 5479, 41599, 5464, 168
https://tests.stockfishchess.org/tests/view/6096994095e7f1852abd3154

LTC (20+0.2 @ 8 threads):
LLR: 2.96 (-2.94,2.94) <-2.50,0.50>
Total: 26336 W: 774 L: 712 D: 24850
Ptnml(0-2): 9, 641, 11810, 695, 13
https://tests.stockfishchess.org/tests/view/6097c62995e7f1852abd31e8

closes https://github.com/official-stockfish/Stockfish/pull/3459

No functional change.
2021-05-11 19:41:44 +02:00
bmc4
602687801b Simplify LMR
as it seems not to bring any strength and thus is no longer needed.

Tests for updating elo estimates:
https://tests.stockfishchess.org/tests/view/6099ff123a33eb67a844f789
https://tests.stockfishchess.org/tests/view/60953e6695e7f1852abd305b

Individual simplification tests:
https://tests.stockfishchess.org/tests/view/6098cfc73a33eb67a844f6a1
https://tests.stockfishchess.org/tests/view/6095539495e7f1852abd308b

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 96984 W: 3624 L: 3608 D: 89752
Ptnml(0-2): 45, 3222, 41939, 3244, 42
https://tests.stockfishchess.org/tests/view/6099921a3a33eb67a844f74f

closes https://github.com/official-stockfish/Stockfish/pull/3458

bench: 3836428
2021-05-11 19:37:39 +02:00
Tomasz Sobczyk
58054fd0fa Exporting the currently loaded network file
This PR adds an ability to export any currently loaded network.
The export_net command now takes an optional filename parameter.
If the loaded net is not the embedded net the filename parameter is required.

Two changes were required to support this:

* the "architecture" string, which is really just a some kind of description in the net, is now saved into netDescription on load and correctly saved on export.
* the AffineTransform scrambles weights for some architectures and sparsifies them, such that retrieving the index is hard. This is solved by having a temporary scrambled<->unscrambled index lookup table when loading the network, and the actual index is saved for each individual weight that makes it to canSaturate16. This increases the size of the canSaturate16 entries by 6 bytes.

closes https://github.com/official-stockfish/Stockfish/pull/3456

No functional change
2021-05-11 19:36:11 +02:00
Vizvezdenec
d777ea79ff Cleanup of likelyFailLow logic
This patch broadens and simplifies definition of PvNode that is likely to fail low.
New definition can be described as following "If node was already researched
at depth >= current depth and failed low there" which is more logical than the
previous version and takes less space + allows to not recompute it every time during move loop.

Passed simplification STC
https://tests.stockfishchess.org/tests/view/609148bf95e7f1852abd2e82
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 20128 W: 1865 L: 1751 D: 16512
Ptnml(0-2): 63, 1334, 7165, 1430, 72

Passed simplification LTC
https://tests.stockfishchess.org/tests/view/6091691295e7f1852abd2e8b
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 95128 W: 3498 L: 3481 D: 88149
Ptnml(0-2): 41, 2956, 41549, 2981, 37

closes https://github.com/official-stockfish/Stockfish/pull/3455

Bench: 3933037
2021-05-07 09:47:17 +02:00
Tomasz Sobczyk
ca250e969c Add an UCI level command "export_net".
This command writes the embedded net to the file `EvalFileDefaultName`.
If there is no embedded net the command does nothing.

fixes #3453

closes https://github.com/official-stockfish/Stockfish/pull/3454

No functional change
2021-05-07 09:45:08 +02:00
Unai Corzo
b1c8840f10 Simplify check extension
Simplify check extension, as it seems not to bring any strength and thus is no longer needed.

STC https://tests.stockfishchess.org/tests/view/608c18e995e7f1852abd2b81
LLR: 2.94 (-2.94,2.94) <-2.50,0.50>
Total: 54544 W: 4891 L: 4815 D: 44838
Ptnml(0-2): 186, 3889, 19081, 3895, 221

LTC https://tests.stockfishchess.org/tests/view/608c6ab195e7f1852abd2bc6
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 51008 W: 1845 L: 1794 D: 47369
Ptnml(0-2): 31, 1591, 22206, 1648, 28

closes https://github.com/official-stockfish/Stockfish/pull/3452

bench: 3993071
2021-05-02 17:48:57 +02:00
Joost VandeVondele
33fadb5118 Add some more information on the UCI protocol
Improve README.md: provide a link to the protocol,
and document some non-standard options.

fixes https://github.com/official-stockfish/Stockfish/issues/3446

closes https://github.com/official-stockfish/Stockfish/pull/3450

No functional change
2021-05-02 17:43:02 +02:00
xoto10
6ad4f485d3 Change tempo with time and threads
Introduce variable tempo for nnue depending on logarithm of estimated
strength, where strength is the product of time and number of threads.

The original idea here was that NNUE is best with a slightly different
tempo value to classical, since its style of play is slightly different.
It turns out that the best tempo for NNUE varies with strength of play,
so a formula is used which gives about 19 for STC and 24 for LTC under
current fishtest settings.

STC 10+0.1:
LLR: 2.94 (-2.94,2.94) {-0.20,1.10}
Total: 120816 W: 11155 L: 10861 D: 98800
Ptnml(0-2): 406, 8728, 41933, 8848, 493
https://tests.stockfishchess.org/tests/view/60735b3a8141753378960534

LTC 60+0.6:
LLR: 2.94 (-2.94,2.94) {0.20,0.90}
Total: 35688 W: 1392 L: 1234 D: 33062
Ptnml(0-2): 23, 1079, 15473, 1255, 14
https://tests.stockfishchess.org/tests/view/6073ffbc814175337896057f

Passed non-regression SMP test at LTC 20+0.2 (8 threads):
LLR: 2.95 (-2.94,2.94) {-0.70,0.20}
Total: 11008 W: 317 L: 267 D: 10424
Ptnml(0-2): 2, 245, 4962, 291, 4
https://tests.stockfishchess.org/tests/view/60749ea881417533789605a4

closes https://github.com/official-stockfish/Stockfish/pull/3426

Bench 4075325
2021-04-28 13:58:46 +02:00
bmc4
84b42b3ab3 Simplify pawn moves generator
This patch simplifies QUIET_CHECKS pawn move generator by merging discovery check
move generator with direct check move generator. It also simplifies emptySquares
instantiation. In addition, I added a comment in generate_moves() to clarify Check
branches.

STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 112648 W: 9952 L: 9945 D: 92751
Ptnml(0-2): 369, 7682, 40195, 7729, 349
https://tests.stockfishchess.org/tests/view/6088226895e7f1852abd2978

LTC:
LLR: 2.93 (-2.94,2.94) <-2.50,0.50>
Total: 74656 W: 2797 L: 2765 D: 69094
Ptnml(0-2): 38, 2328, 32554, 2380, 28
https://tests.stockfishchess.org/tests/view/60884e5095e7f1852abd2994

closes https://github.com/official-stockfish/Stockfish/pull/3447

No functional change
2021-04-28 13:38:28 +02:00
lonfom169
33a858eaa1 More extensions if SE search is very low.
More extensions for non-PV nodes if value from singular extension search is significantly below singularBeta.

Passed STC:
LLR: 2.97 (-2.94,2.94) <-0.50,2.50>
Total: 25064 W: 2334 L: 2162 D: 20568
Ptnml(0-2): 82, 1720, 8768, 1868, 94
https://tests.stockfishchess.org/tests/view/6084ba7995e7f1852abd27e3

Passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 67136 W: 2644 L: 2450 D: 62042
Ptnml(0-2): 46, 2134, 28990, 2376, 22
https://tests.stockfishchess.org/tests/view/6084d79195e7f1852abd27ee

closes https://github.com/official-stockfish/Stockfish/pull/3445

Bench: 4075325
2021-04-25 13:26:22 +02:00
Stefan Geschwentner
c0ff241464 Thread based reduction tweak.
For PV nodes at the first two plies no reductions are done for each fourth thread.

STC (8 threads):
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 53992 W: 3334 L: 3167 D: 47491
Ptnml(0-2): 64, 2713, 21285, 2860, 74
https://tests.stockfishchess.org/tests/view/6083b2d695e7f1852abd277a

LTC (8 threads):
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 64888 W: 1888 L: 1725 D: 61275
Ptnml(0-2): 14, 1556, 29146, 1709, 19
https://tests.stockfishchess.org/tests/view/6084249595e7f1852abd2795

closes https://github.com/official-stockfish/Stockfish/pull/3443

No functional change (for one thread)
2021-04-25 13:21:57 +02:00
Tomasz Sobczyk
b748b46714 Cleanup and simplify NNUE code.
A lot of optimizations happend since the NNUE was introduced
and since then some parts of the code were left unused. This
got to the point where asserts were have to be made just to
let people know that modifying something will not have any
effects or may even break everything due to the assumptions
being made. Removing these parts removes those inexisting
"false dependencies". Additionally:

 * append_changed_indices now takes the king pos and stateinfo
   explicitly, no more misleading pos parameter
 * IndexList is removed in favor of a generic ValueList.
   Feature transformer just instantiates the type it needs.
 * The update cost and refresh requirement is deferred to the
   feature set once again, but now doesn't go through the whole
   FeatureSet machinery and just calls HalfKP directly.
 * accumulator no longer has a singular dimension.
 * The PS constants and the PieceSquareIndex array are made local
   to the HalfKP feature set because they are specific to it and
   DO differ for other feature sets.
 * A few names are changed to more descriptive

Passed STC non-regression:
https://tests.stockfishchess.org/tests/view/608421dd95e7f1852abd2790
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 180008 W: 16186 L: 16258 D: 147564
Ptnml(0-2): 587, 12593, 63725, 12503, 596

closes https://github.com/official-stockfish/Stockfish/pull/3441

No functional change
2021-04-25 13:16:30 +02:00
bmc4
32d781769d Merge all move generators
Merging `generate<EVASIONS>` and `generate<QUIET_CHECKS>` into `generate_all()`.

verified to yield correct perft results, even though bench changes due to different order of generated moves.

No regresion playing games:

passed STC:
LLR: 2.94 (-2.94,2.94) {-1.00,0.20}
Total: 161800 W: 14585 L: 14624 D: 132591
Ptnml(0-2): 577, 11681, 56451, 11586, 605
https://tests.stockfishchess.org/tests/view/606532732b2df919fd5f026d

passed LTC:
LLR: 2.98 (-2.94,2.94) {-0.70,0.20}
Total: 188504 W: 6906 L: 6961 D: 174637
Ptnml(0-2): 87, 6272, 81610, 6175, 108
https://tests.stockfishchess.org/tests/view/6065b0772b2df919fd5f02ae

closes https://github.com/official-stockfish/Stockfish/pull/3418

Bench: 4536129
2021-04-24 12:55:33 +02:00
Tomasz Sobczyk
fbbd4adc3c Unify naming convention of the NNUE code
matches the rest of the stockfish code base

closes https://github.com/official-stockfish/Stockfish/pull/3437

No functional change
2021-04-24 12:49:29 +02:00
dsmsgms
a7ab92ec25 Use classical eval for Bishop vs Pawns
NNUE evaluation is incapable of recognizing trivially drawn bishop endgames
(the wrong-colored rook pawn), which are in fact ubiquitous and stock standard
in chess analysis. Switching off NNUE evaluation in KBPs vs KPs endgames is
a measure that stops Stockfish from trading down to a drawn version of these
endings when we presumably have advantage. The patch is able to edge over master
in endgame positions.

Patch tested for Elo gain with the "endgame.epd" book, and verified for
non-regression with our usual book (see the pull request for details).

STC:
LLR: 2.93 (-2.94,2.94) {-0.20,1.10}
Total: 33232 W: 6655 L: 6497 D: 20080
Ptnml(0-2): 4, 2342, 11769, 2494, 7
https://tests.stockfishchess.org/tests/view/6074a52981417533789605b8

LTC:
LLR: 2.93 (-2.94,2.94) {0.20,0.90}
Total: 159056 W: 29799 L: 29378 D: 99879
Ptnml(0-2): 7, 9004, 61085, 9425, 7
https://tests.stockfishchess.org/tests/view/6074c39a81417533789605ca

Closes https://github.com/official-stockfish/Stockfish/pull/3427

Bench: 4503918

blah
2021-04-15 12:45:39 +02:00
Tomasz Sobczyk
255514fb29 Documentation patch: AppendChangedIndices
Clarify the assumptions on the position passed to the AppendChangedIndices().

Closes https://github.com/official-stockfish/Stockfish/pull/3428

No functional change
2021-04-15 12:21:30 +02:00
Vizvezdenec
14d162d9f4 Simplification: last capture extension
The code for last capture extension can be removed in current master.

Passed STC
LLR: 2.95 (-2.94,2.94) {-1.00,0.20}
Total: 85024 W: 7754 L: 7707 D: 69563
Ptnml(0-2): 293, 5991, 29914, 6004, 310
https://tests.stockfishchess.org/tests/view/607690f1814175337896068f

Passed LTC
LLR: 2.96 (-2.94,2.94) {-0.70,0.20}
Total: 39880 W: 1503 L: 1453 D: 36924
Ptnml(0-2): 17, 1281, 17293, 1333, 16
https://tests.stockfishchess.org/tests/view/6076ccbe814175337896069e

Closes https://github.com/official-stockfish/Stockfish/pull/3430

Bench: 4202264
2021-04-15 11:41:30 +02:00
Stéphane Nicolet
4889cf22bb Revert previous patch
Revert the previous patch about move generation, as it unexpectedly
changed the bench. Better to take the time to understand the issue.

Bench: 4191632
2021-04-15 11:19:44 +02:00
bmc4
79bb28281c Merge all move generators
Merging `generate<EVASIONS>` and `generate<QUIET_CHECKS>` into `generate_all()`.

STC:
LLR: 2.94 (-2.94,2.94) {-1.00,0.20}
Total: 161800 W: 14585 L: 14624 D: 132591
Ptnml(0-2): 577, 11681, 56451, 11586, 605
https://tests.stockfishchess.org/tests/view/606532732b2df919fd5f026d

LTC:
LLR: 2.98 (-2.94,2.94) {-0.70,0.20}
Total: 188504 W: 6906 L: 6961 D: 174637
Ptnml(0-2): 87, 6272, 81610, 6175, 108
https://tests.stockfishchess.org/tests/view/6065b0772b2df919fd5f02ae

------------

Verified for correctness of `EVASIONS` by running perft:
```
./stockfish b3nch 16 1 6 default perft          (replace 3 by e in b3nch)
Nodes searched  : 71608931810
```

Also tested for correctness on Chess960 with a similar code shown here:
https://github.com/official-stockfish/Stockfish/pull/3418#issuecomment-816630295

```
./stockfish b3nch 16 1 6 fischer.txt perft
Nodes searched  : 506736009395
```

------------

Closes https://github.com/official-stockfish/Stockfish/pull/3418

No functional change
2021-04-15 10:53:51 +02:00
Vizvezdenec
3dfda1b28e Replace distanceFromPv with a better logic
This patch removes the recently introduced distanceFromPv logic, and replaces
it with following logic: if reduction of moves with low movecount is really
negative, we search them deeper than the first move.

passed STC:
LLR: 2.95 (-2.94,2.94) {-0.20,1.10}
Total: 153008 W: 13913 L: 13579 D: 125516
Ptnml(0-2): 547, 10811, 53470, 11113, 563
https://tests.stockfishchess.org/tests/view/6069c9d02b2df919fd5f04d2

passed LTC:
LLR: 2.94 (-2.94,2.94) {0.20,0.90}
Total: 101920 W: 3964 L: 3699 D: 94257
Ptnml(0-2): 55, 3279, 44019, 3560, 47
https://tests.stockfishchess.org/tests/view/606a99fd2b2df919fd5f0532

Closes https://github.com/official-stockfish/Stockfish/pull/3421

Bench: 4191632
2021-04-06 18:23:35 +02:00
Stéphane Nicolet
f40913f7f6 Keep more pawns
This patch increases the weight of pawns in the scale factor applied
to the output of the NNUE evaluation. This has the effect that Stockfish
will try a little bit harder to keep more pawns in position where the
engine has the advantage, and exchange more pawns in bad positions.

STC:
LLR: 2.93 (-2.94,2.94) {-0.20,1.10}
Total: 42552 W: 3858 L: 3668 D: 35026
Ptnml(0-2): 152, 2956, 14876, 3134, 158
https://tests.stockfishchess.org/tests/view/606a06dd2b2df919fd5f0504

LTC:
LLR: 2.95 (-2.94,2.94) {0.20,0.90}
Total: 44328 W: 1703 L: 1531 D: 41094
Ptnml(0-2): 20, 1373, 19207, 1543, 21
https://tests.stockfishchess.org/tests/view/606aa4ec2b2df919fd5f053e

Closes https://github.com/official-stockfish/Stockfish/pull/3420

Bench: 4310076
2021-04-06 09:07:20 +02:00
Stéphane Nicolet
b862c8d4be Small clean-up
Bench: 4321677
2021-03-31 08:12:25 +02:00
bmc4
c489df6f5b Simplify King Evasion
Simplify away the removal of some illegal `KING`-evasion moves during move
generation. Verified for correctness by running perft on the following positions:

```
./stockfish
bench 16 1 6 default perft
Nodes searched: 71608931810

./stockfish
position fen 4rrk1/1p1nq3/p7/2p1P1pp/3P2bp/3Q1Bn1/PPPB4/1K2R1NR w - - 40 21
go perft 6
Nodes searched: 6136386434
```

Passed STC:
LLR: 2.94 (-2.94,2.94) {-1.00,0.20}
Total: 16072 W: 1473 L: 1349 D: 13250
Ptnml(0-2): 57, 1047, 5710, 1159, 63
https://tests.stockfishchess.org/tests/view/60629e7ef183b42957b423b1

Passed LTC:
LLR: 2.94 (-2.94,2.94) {-0.70,0.20}
Total: 59064 W: 2214 L: 2177 D: 54673
Ptnml(0-2): 26, 1944, 25556, 1979, 27
https://tests.stockfishchess.org/tests/view/6062dce4f183b42957b423de

closes https://github.com/official-stockfish/Stockfish/pull/3415

No functional change
2021-03-31 07:47:15 +02:00
mstembera
62a0b65ff8 Simplify and unify FRC cornered bishop.
tested locally as fishtest doesn't support FRC:

STC NNUE
9646 - 9647 - 20707 [0.500] 40000 -0.0 +/- 2.4, LOS: 49.7 %, DrawRatio: 51.8 %

STC classical
9678 - 9609 - 20713 [0.501] 40000 0.6 +/- 2.4, LOS: 69.0 %, DrawRatio: 51.8 %

and verified independently:

Score of master vs patch: 6463 - 6580 - 34957 [0.499] 48000

closes https://github.com/official-stockfish/Stockfish/pull/3413

bench: 4321677
2021-03-27 17:03:10 +01:00
Tomasz Sobczyk
f28303d214 Allow using Intel SDE for PGO builds.
The software development emulator (SDE) allows to run binaries compiled
for architectures not supported by the actual CPU. This is useful to
do PGO builds for newer architectures. The SDE can currently be obtained from
https://software.intel.com/content/www/us/en/develop/articles/intel-software-development-emulator.html

This patch introduces a new optional makefile argument SDE_PATH.
If not empty it should contain the path to the sde executable

closes https://github.com/official-stockfish/Stockfish/pull/3373

No functional change.
2021-03-27 16:56:05 +01:00
Stéphane Nicolet
83eac08e75 Small cleanups (march 2021)
With help of @BM123499, @mstembera, @gvreuls, @noobpwnftw and @Fanael
Thanks!

Closes https://github.com/official-stockfish/Stockfish/pull/3405

No functional change
2021-03-24 17:11:06 +01:00
Guy Vreuls
ec42154ef2 Use reference instead of pointer for pop_lsb() signature
This patch changes the pop_lsb() signature from Square pop_lsb(Bitboard*) to
Square pop_lsb(Bitboard&). This is more idomatic for C++ style signatures.

Passed a non-regression STC test:
LLR: 2.93 (-2.94,2.94) {-1.25,0.25}
Total: 21280 W: 1928 L: 1847 D: 17505
Ptnml(0-2): 71, 1427, 7558, 1518, 66
https://tests.stockfishchess.org/tests/view/6053a1e22433018de7a38e2f

We have verified that the generated binary is identical on gcc-10.

Closes https://github.com/official-stockfish/Stockfish/pull/3404

No functional change.
2021-03-19 20:28:57 +01:00
Vizvezdenec
ace9632c67 Add a specific FRC correction from classical to NNUE
our net currently is not trained on FRC games, and so doesn't know about the important pattern of a bishop that is cornered in FRC.
This patch introduces a term we have in the classical evaluation for this case, and adds it to the NNUE eval.

Since fishtest doesn't support FRC right now, the patch was tested locally at STC conditions,
starting from the book of FRC starting positions.

Score of master vs patch: 993 - 2226 - 6781  [0.438] 10000

Which corresponds to approximately 40 Elo

The patch passes non-regression testing for traditional chess (where it adds one branch).

passed STC:
https://tests.stockfishchess.org/tests/view/604fa2532433018de7a38b67
LLR: 2.95 (-2.94,2.94) {-1.25,0.25}
Total: 30560 W: 2701 L: 2636 D: 25223
Ptnml(0-2): 88, 2056, 10921, 2133, 82

passed STC also in an earlier version:
https://tests.stockfishchess.org/tests/view/604f61282433018de7a38b4d

closes https://github.com/official-stockfish/Stockfish/pull/3398

No functional change
2021-03-19 11:58:17 +01:00
bmc4
5089061659 Change definition of between_bb()
We remark that in current master, most of our use cases for between_bb() can be
optimized if the second parameter of the function is added to the segment. So we
change the definition of between_bb(s1, s2) such that it excludes s1 but includes s2.

We also use a precomputed array for between_bb() for another small speed gain
(see https://tests.stockfishchess.org/tests/view/604d09f72433018de7a389fb).

Passed STC:
LLR: 2.96 (-2.94,2.94) {-0.25,1.25}
Total: 18736 W: 1746 L: 1607 D: 15383
Ptnml(0-2): 61, 1226, 6644, 1387, 50
https://tests.stockfishchess.org/tests/view/60428c84ddcba5f0627bb6e4

Yellow LTC:
LTC:
LLR: -3.00 (-2.94,2.94) {0.25,1.25}
Total: 39144 W: 1431 L: 1413 D: 36300
Ptnml(0-2): 13, 1176, 17184, 1178, 21
https://tests.stockfishchess.org/tests/view/605128702433018de7a38ca1

Closes https://github.com/official-stockfish/Stockfish/pull/3397

---------

Verified for correctness by running perft on the following position:

./stockfish
position fen 4rrk1/1p1nq3/p7/2p1P1pp/3P2bp/3Q1Bn1/PPPB4/1K2R1NR w - - 40 21
go perft 6

Nodes searched: 6136386434

--------

No functional change
2021-03-18 00:21:41 +01:00
Vizvezdenec
d58e83695f Remove advanced_pawn_push()
Continuation of work by @topologist: we now do futility pruning and movecount
pruning in qsearch() for pawn pushes up to the 7th rank. So the condition to
avoid the pruning is if the move is a promotion or not. This allows to get rid
of the advanced_pawn_push() function in position.h alltogether.

Passed STC
https://tests.stockfishchess.org/tests/view/6048c5842433018de7a387e6
LLR: 2.93 (-2.94,2.94) {-1.25,0.25}
Total: 34424 W: 3081 L: 3015 D: 28328
Ptnml(0-2): 110, 2442, 12052, 2488, 120

Passed LTC
https://tests.stockfishchess.org/tests/view/6048f7d22433018de7a387f0
LLR: 2.94 (-2.94,2.94) {-0.75,0.25}
Total: 142024 W: 5170 L: 5202 D: 131652
Ptnml(0-2): 50, 4678, 61613, 4596, 75

Closes https://github.com/official-stockfish/Stockfish/pull/3390

Bench: 4339126
2021-03-17 10:34:02 +01:00
bmc4
830f597134 Simplify move generation (2/2)
STC:
LLR: 2.97 (-2.94,2.94) {-1.25,0.25}
Total: 39352 W: 3551 L: 3493 D: 32308
Ptnml(0-2): 143, 2695, 13928, 2781, 129
https://tests.stockfishchess.org/tests/view/6050007a2433018de7a38bbb

LTC:
LLR: 2.96 (-2.94,2.94) {-0.75,0.25}
Total: 44944 W: 1629 L: 1596 D: 41719
Ptnml(0-2): 22, 1319, 19762, 1342, 27
https://tests.stockfishchess.org/tests/view/60500e892433018de7a38bc4

Closes https://github.com/official-stockfish/Stockfish/pull/3399

No functional change
2021-03-16 22:34:23 +01:00
bmc4
4b509559fb Simplify move generation (1/2)
STC:
LLR: 2.95 (-2.94,2.94) {-1.25,0.25}
Total: 29792 W: 2611 L: 2545 D: 24636
Ptnml(0-2): 94, 1982, 10659, 2086, 75
https://tests.stockfishchess.org/tests/view/604fe5b62433018de7a38ba8

LTC:
LLR: 2.92 (-2.94,2.94) {-0.75,0.25}
Total: 22040 W: 826 L: 777 D: 20437
Ptnml(0-2): 8, 646, 9664, 693, 9
https://tests.stockfishchess.org/tests/view/604fec892433018de7a38bac

Closes https://github.com/official-stockfish/Stockfish/pull/3399

No functional change
2021-03-16 22:32:53 +01:00
bmc4
939395729c Introduce least_significant_square_bb()
Introducing least_significant_square_bb(). It is a function that returns a value equal
to square_bb(lsb(bb)), but it uses fewer instruction. It should speed up more on older
processors like armv7-a Clang.

Passed STC:
LLR: 2.93 (-2.94,2.94) {-0.25,1.25}
Total: 213200 W: 19171 L: 18753 D: 175276
Ptnml(0-2): 680, 14513, 75831, 14861, 715
https://tests.stockfishchess.org/tests/view/604bc7632433018de7a38982

Closes https://github.com/official-stockfish/Stockfish/pull/3391

No functional change
2021-03-16 20:54:52 +01:00
Topologist
f3b296c2e2 Change advanced pawn push threshold
A pawn push is now considered to be "advanced" if the relative destination
rank is > 6 (previously it was > 5). This affects the search heuristic.

Also remove an assert concerning en passant moves in qsearch().

STC:
LLR: 2.97 (-2.94,2.94) {-0.25,1.25}
Total: 46744 W: 4224 L: 4040 D: 38480
Ptnml(0-2): 165, 3206, 16451, 3380, 170
https://tests.stockfishchess.org/tests/view/604746082433018de7a3872e

LTC:
LLR: 2.94 (-2.94,2.94) {0.25,1.25}
Total: 107840 W: 4198 L: 3892 D: 99750
Ptnml(0-2): 58, 3472, 46557, 3772, 61
https://tests.stockfishchess.org/tests/view/60475eae2433018de7a38737

Closes https://github.com/official-stockfish/Stockfish/pull/3389

Bench: 4796780
2021-03-10 12:32:53 +01:00
bmc4
b74274628c Use Bitboard over Square in movegen
It uses pos.checkers() on target when movegen is the type of EVASION.
It simplify the code. And it's also expected a slightly speed up,
because Bitboard is more direct when doing bitwise.

Passed STC:
LLR: 2.93 (-2.94,2.94) {-1.25,0.25}
Total: 28176 W: 2506 L: 2437 D: 23233
Ptnml(0-2): 80, 1904, 10063, 1949, 92
https://tests.stockfishchess.org/tests/view/60421d18ddcba5f0627bb6a9

Passed LTC:
LLR: 2.93 (-2.94,2.94) {-0.75,0.25}
Total: 9704 W: 402 L: 341 D: 8961
Ptnml(0-2): 3, 279, 4230, 334, 6
https://tests.stockfishchess.org/tests/view/60422823ddcba5f0627bb6ae

closes https://github.com/official-stockfish/Stockfish/pull/3383

No functional change
2021-03-07 21:16:38 +01:00
mattginsberg
5346f1c6c7 Deal with commented lines in UCI input
commands starting with '#' as the first character will be ignored

closes https://github.com/official-stockfish/Stockfish/pull/3378

No functional change
2021-03-07 21:10:04 +01:00
noobpwnftw
d4b864ff12 Do not try to use large pages on 32 bit Windows.
verified to work on windows XP.

fixes  #3379

closes https://github.com/official-stockfish/Stockfish/pull/3380

No functional change.
2021-03-07 20:02:11 +01:00
Dieter Dobbelaere
7ffae17f85 Add Stockfish namespace.
fixes #3350 and is a small cleanup that might make it easier to use SF
in separate projects, like a NNUE trainer or similar.

closes https://github.com/official-stockfish/Stockfish/pull/3370

No functional change.
2021-03-07 14:26:54 +01:00
Antoine Champion
9b1274aba3 Clean functions returning by const values
The codebase contains multiple functions returning by const-value.
This patch is a small cleanup making those function returns
by value instead, removing the const specifier.

closes https://github.com/official-stockfish/Stockfish/pull/3328

No functional change
2021-03-07 14:05:01 +01:00
Stéphane Nicolet
0f3f5d85fb Introduce DistanceFromPV
We introduce a metric for each internal node in search, called DistanceFromPV.
This distance indicated how far the current node is from the principal variation.

We then use this distance to search the nodes which are close to the PV a little
deeper (up to 4 plies deeper than the PV): this improves the quality of the search
at these nodes and bring better updates for the PV during search.

STC:
LLR: 2.96 (-2.94,2.94) {-0.25,1.25}
Total: 54936 W: 5047 L: 4850 D: 45039
Ptnml(0-2): 183, 3907, 19075, 4136, 167
https://tests.stockfishchess.org/tests/view/6037b88e7f517a561bc4a392

LTC:
LLR: 2.95 (-2.94,2.94) {0.25,1.25}
Total: 49608 W: 1880 L: 1703 D: 46025
Ptnml(0-2): 22, 1514, 21555, 1691, 22
https://tests.stockfishchess.org/tests/view/6038271b7f517a561bc4a3cb

Closes https://github.com/official-stockfish/Stockfish/pull/3369

Bench: 5037279
2021-02-26 19:45:29 +01:00
67 changed files with 3969 additions and 2682 deletions

333
.github/workflows/stockfish.yml vendored Normal file
View file

@ -0,0 +1,333 @@
name: Stockfish
on:
push:
branches:
- master
- tools
- github_ci
- github_ci_armv7
pull_request:
branches:
- master
- tools
jobs:
Stockfish:
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.os }}
env:
COMPILER: ${{ matrix.config.compiler }}
COMP: ${{ matrix.config.comp }}
CXXFLAGS: "-Werror"
strategy:
matrix:
config:
# set the variable for the required tests:
# run_expensive_tests: true
# run_32bit_tests: true
# run_64bit_tests: true
# run_armv8_tests: true
# run_armv7_tests: true
- {
name: "Ubuntu 20.04 GCC",
os: ubuntu-20.04,
compiler: g++,
comp: gcc,
run_expensive_tests: true,
run_32bit_tests: true,
run_64bit_tests: true,
shell: 'bash {0}'
}
- {
name: "Ubuntu 20.04 Clang",
os: ubuntu-20.04,
compiler: clang++,
comp: clang,
run_32bit_tests: true,
run_64bit_tests: true,
shell: 'bash {0}'
}
- {
name: "Ubuntu 20.04 NDK armv8",
os: ubuntu-20.04,
compiler: aarch64-linux-android21-clang++,
comp: ndk,
run_armv8_tests: true,
shell: 'bash {0}'
}
- {
name: "Ubuntu 20.04 NDK armv7",
os: ubuntu-20.04,
compiler: armv7a-linux-androideabi21-clang++,
comp: ndk,
run_armv7_tests: true,
shell: 'bash {0}'
}
- {
name: "MacOS 10.15 Apple Clang",
os: macos-10.15,
compiler: clang++,
comp: clang,
run_64bit_tests: true,
shell: 'bash {0}'
}
- {
name: "MacOS 10.15 GCC 10",
os: macos-10.15,
compiler: g++-10,
comp: gcc,
run_64bit_tests: true,
shell: 'bash {0}'
}
- {
name: "Windows 2022 Mingw-w64 GCC x86_64",
os: windows-2022,
compiler: g++,
comp: gcc,
run_64bit_tests: true,
msys_sys: 'mingw64',
msys_env: 'x86_64',
shell: 'msys2 {0}'
}
- {
name: "Windows 2022 Mingw-w64 GCC i686",
os: windows-2022,
compiler: g++,
comp: gcc,
run_32bit_tests: true,
msys_sys: 'mingw32',
msys_env: 'i686',
shell: 'msys2 {0}'
}
- {
name: "Windows 2022 Mingw-w64 Clang x86_64",
os: windows-2022,
compiler: clang++,
comp: clang,
run_64bit_tests: true,
msys_sys: 'clang64',
msys_env: 'clang-x86_64',
shell: 'msys2 {0}'
}
defaults:
run:
working-directory: src
shell: ${{ matrix.config.shell }}
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Download required linux packages
if: runner.os == 'Linux'
run: |
sudo apt update
sudo apt install expect valgrind g++-multilib qemu-user
- name: Setup msys and install required packages
if: runner.os == 'Windows'
uses: msys2/setup-msys2@v2
with:
msystem: ${{matrix.config.msys_sys}}
install: mingw-w64-${{matrix.config.msys_env}}-${{matrix.config.comp}} make git expect
- name: Download the used network from the fishtest framework
run: |
make net
- name: Extract the bench number from the commit history
run: |
git log HEAD | grep "\b[Bb]ench[ :]\+[0-9]\{7\}" | head -n 1 | sed "s/[^0-9]*\([0-9]*\).*/\1/g" > git_sig
[ -s git_sig ] && echo "benchref=$(cat git_sig)" >> $GITHUB_ENV && echo "Reference bench:" $(cat git_sig) || echo "No bench found"
- name: Check compiler
run: |
export PATH=$PATH:$ANDROID_NDK_HOME/toolchains/llvm/prebuilt/linux-x86_64/bin
$COMPILER -v
- name: Test help target
run: |
make help
# x86-32 tests
- name: Test debug x86-32 build
if: ${{ matrix.config.run_32bit_tests }}
run: |
export CXXFLAGS="-Werror -D_GLIBCXX_DEBUG"
make clean
make -j2 ARCH=x86-32 optimize=no debug=yes build
../tests/signature.sh $benchref
- name: Test x86-32 build
if: ${{ matrix.config.run_32bit_tests }}
run: |
make clean
make -j2 ARCH=x86-32 build
../tests/signature.sh $benchref
- name: Test x86-32-sse41-popcnt build
if: ${{ matrix.config.run_32bit_tests }}
run: |
make clean
make -j2 ARCH=x86-32-sse41-popcnt build
../tests/signature.sh $benchref
- name: Test x86-32-sse2 build
if: ${{ matrix.config.run_32bit_tests }}
run: |
make clean
make -j2 ARCH=x86-32-sse2 build
../tests/signature.sh $benchref
- name: Test general-32 build
if: ${{ matrix.config.run_32bit_tests }}
run: |
make clean
make -j2 ARCH=general-32 build
../tests/signature.sh $benchref
# x86-64 tests
- name: Test debug x86-64-modern build
if: ${{ matrix.config.run_64bit_tests }}
run: |
export CXXFLAGS="-Werror -D_GLIBCXX_DEBUG"
make clean
make -j2 ARCH=x86-64-modern optimize=no debug=yes build
../tests/signature.sh $benchref
- name: Test x86-64-modern build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-modern build
../tests/signature.sh $benchref
- name: Test x86-64-ssse3 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-ssse3 build
../tests/signature.sh $benchref
- name: Test x86-64-sse3-popcnt build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-sse3-popcnt build
../tests/signature.sh $benchref
- name: Test x86-64 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64 build
../tests/signature.sh $benchref
- name: Test general-64 build
if: matrix.config.run_64bit_tests
run: |
make clean
make -j2 ARCH=general-64 build
../tests/signature.sh $benchref
# x86-64 with newer extensions tests
- name: Compile x86-64-avx2 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-avx2 build
- name: Compile x86-64-bmi2 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-bmi2 build
- name: Compile x86-64-avx512 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-avx512 build
- name: Compile x86-64-vnni512 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-vnni512 build
- name: Compile x86-64-vnni256 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-vnni256 build
# armv8 tests
- name: Test armv8 build
if: ${{ matrix.config.run_armv8_tests }}
run: |
export PATH=$ANDROID_NDK_HOME/toolchains/llvm/prebuilt/linux-x86_64/bin:$PATH
export LDFLAGS="-static -Wno-unused-command-line-argument"
make clean
make -j2 ARCH=armv8 build
../tests/signature.sh $benchref
# armv7 tests
- name: Test armv7 build
if: ${{ matrix.config.run_armv7_tests }}
run: |
export PATH=$ANDROID_NDK_HOME/toolchains/llvm/prebuilt/linux-x86_64/bin:$PATH
export LDFLAGS="-static -Wno-unused-command-line-argument"
make clean
make -j2 ARCH=armv7 build
../tests/signature.sh $benchref
- name: Test armv7-neon build
if: ${{ matrix.config.run_armv7_tests }}
run: |
export PATH=$ANDROID_NDK_HOME/toolchains/llvm/prebuilt/linux-x86_64/bin:$PATH
export LDFLAGS="-static -Wno-unused-command-line-argument"
make clean
make -j2 ARCH=armv7-neon build
../tests/signature.sh $benchref
# Other tests
- name: Check perft and search reproducibility
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-modern build
../tests/perft.sh
../tests/reprosearch.sh
# Sanitizers
- name: Run under valgrind
if: ${{ matrix.config.run_expensive_tests }}
run: |
export CXXFLAGS="-O1 -fno-inline"
make clean
make -j2 ARCH=x86-64-modern debug=yes optimize=no build > /dev/null
../tests/instrumented.sh --valgrind
../tests/instrumented.sh --valgrind-thread
- name: Run with UB sanitizer
if: ${{ matrix.config.run_expensive_tests }}
run: |
export CXXFLAGS="-O1 -fno-inline"
make clean
make -j2 ARCH=x86-64-modern sanitize=undefined optimize=no debug=yes build > /dev/null
../tests/instrumented.sh --sanitizer-undefined
- name: Run with thread sanitizer
if: ${{ matrix.config.run_expensive_tests }}
run: |
export CXXFLAGS="-O1 -fno-inline"
make clean
make -j2 ARCH=x86-64-modern sanitize=thread optimize=no debug=yes build > /dev/null
../tests/instrumented.sh --sanitizer-thread

View file

@ -1,101 +0,0 @@
language: cpp
dist: bionic
matrix:
include:
- os: linux
compiler: gcc
addons:
apt:
packages: ['g++-8', 'g++-8-multilib', 'g++-multilib', 'valgrind', 'expect', 'curl']
env:
- COMPILER=g++-8
- COMP=gcc
- os: linux
compiler: clang
addons:
apt:
packages: ['clang-10', 'llvm-10-dev', 'g++-multilib', 'valgrind', 'expect', 'curl']
env:
- COMPILER=clang++-10
- COMP=clang
- os: osx
osx_image: xcode12
compiler: gcc
env:
- COMPILER=g++
- COMP=gcc
- os: osx
osx_image: xcode12
compiler: clang
env:
- COMPILER=clang++
- COMP=clang
branches:
only:
- master
before_script:
- cd src
script:
# Download net
- make net
# Obtain bench reference from git log
- git log HEAD | grep "\b[Bb]ench[ :]\+[0-9]\{7\}" | head -n 1 | sed "s/[^0-9]*\([0-9]*\).*/\1/g" > git_sig
- export benchref=$(cat git_sig)
- echo "Reference bench:" $benchref
# Compiler version string
- $COMPILER -v
# test help target
- make help
# Verify bench number against various builds
- export CXXFLAGS="-Werror -D_GLIBCXX_DEBUG"
- make clean && make -j2 ARCH=x86-64-modern optimize=no debug=yes build && ../tests/signature.sh $benchref
- export CXXFLAGS="-Werror"
- make clean && make -j2 ARCH=x86-64-modern build && ../tests/signature.sh $benchref
- make clean && make -j2 ARCH=x86-64-ssse3 build && ../tests/signature.sh $benchref
- make clean && make -j2 ARCH=x86-64-sse3-popcnt build && ../tests/signature.sh $benchref
- make clean && make -j2 ARCH=x86-64 build && ../tests/signature.sh $benchref
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make clean && make -j2 ARCH=general-64 build && ../tests/signature.sh $benchref; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make clean && make -j2 ARCH=x86-32 optimize=no debug=yes build && ../tests/signature.sh $benchref; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make clean && make -j2 ARCH=x86-32-sse41-popcnt build && ../tests/signature.sh $benchref; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make clean && make -j2 ARCH=x86-32-sse2 build && ../tests/signature.sh $benchref; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make clean && make -j2 ARCH=x86-32 build && ../tests/signature.sh $benchref; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make clean && make -j2 ARCH=general-32 build && ../tests/signature.sh $benchref; fi
# workaround: exclude a custom version of llvm+clang, which doesn't find llvm-profdata on ubuntu
- if [[ "$TRAVIS_OS_NAME" != "linux" || "$COMP" == "gcc" ]]; then make clean && make -j2 ARCH=x86-64-modern profile-build && ../tests/signature.sh $benchref; fi
# compile only for some more advanced architectures (might not run in travis)
- make clean && make -j2 ARCH=x86-64-avx2 build
- make clean && make -j2 ARCH=x86-64-bmi2 build
- make clean && make -j2 ARCH=x86-64-avx512 build
- make clean && make -j2 ARCH=x86-64-vnni512 build
- make clean && make -j2 ARCH=x86-64-vnni256 build
#
# Check perft and reproducible search
- make clean && make -j2 ARCH=x86-64-modern build
- ../tests/perft.sh
- ../tests/reprosearch.sh
#
# Valgrind
#
- export CXXFLAGS="-O1 -fno-inline"
- if [ -x "$(command -v valgrind )" ]; then make clean && make -j2 ARCH=x86-64-modern debug=yes optimize=no build > /dev/null && ../tests/instrumented.sh --valgrind; fi
- if [ -x "$(command -v valgrind )" ]; then ../tests/instrumented.sh --valgrind-thread; fi
#
# Sanitizer
#
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make clean && make -j2 ARCH=x86-64-modern sanitize=undefined optimize=no debug=yes build > /dev/null && ../tests/instrumented.sh --sanitizer-undefined; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make clean && make -j2 ARCH=x86-64-modern sanitize=thread optimize=no debug=yes build > /dev/null && ../tests/instrumented.sh --sanitizer-thread; fi

16
AUTHORS
View file

@ -1,4 +1,4 @@
# List of authors for Stockfish, as of August 4, 2020
# List of authors for Stockfish
# Founders of the Stockfish project and fishtest infrastructure
Tord Romstad (romstad)
@ -21,11 +21,14 @@ Alexander Kure
Alexander Pagel (Lolligerhans)
Alfredo Menezes (lonfom169)
Ali AlZhrani (Cooffe)
Andrei Vetrov (proukornew)
Andrew Grant (AndyGrant)
Andrey Neporada (nepal)
Andy Duplain
Antoine Champion (antoinechampion)
Aram Tumanian (atumanian)
Arjun Temurnikar
Artem Solopiy (EntityFX)
Auguste Pop
Balint Pfliegel
Ben Koshy (BKSpurgeon)
@ -50,6 +53,7 @@ Dieter Dobbelaere (ddobbelaere)
DiscanX
Dominik Schlösser (domschl)
double-beep
Douglas Matos Gomes (dsmsgms)
Eduardo Cáceres (eduherminio)
Eelco de Groot (KingDefender)
Elvin Liu (solarlight2)
@ -66,6 +70,7 @@ gamander
Gary Heckman (gheckman)
George Sobala (gsobala)
gguliash
Giacomo Lorenzetti (G-Lorenz)
Gian-Carlo Pascutto (gcp)
Gontran Lemaire (gonlem)
Goodkov Vasiliy Aleksandrovich (goodkov)
@ -93,6 +98,7 @@ Joost VandeVondele (vondele)
Jörg Oster (joergoster)
Joseph Ellis (jhellis3)
Joseph R. Prostko
Julian Willemer (NightlyKing)
jundery
Justin Blanchard (UncombedCoconut)
Kelly Wilson
@ -103,6 +109,7 @@ Kojirion
Krystian Kuzniarek (kuzkry)
Leonardo Ljubičić (ICCF World Champion)
Leonid Pechenik (lp--)
Liam Keegan (lkeegan)
Linus Arver (listx)
loco-loco
Lub van den Berg (ElbertoOne)
@ -125,6 +132,7 @@ Michael Whiteley (protonspring)
Michel Van den Bergh (vdbergh)
Miguel Lahoz (miguel-l)
Mikael Bäckman (mbootsector)
Mike Babigian (Farseer)
Mira
Miroslav Fontán (Hexik)
Moez Jellouli (MJZ1977)
@ -137,6 +145,7 @@ Nikolay Kostov (NikolayIT)
Nguyen Pham (nguyenpham)
Norman Schmidt (FireFather)
notruck
Ofek Shochat (OfekShochat, ghostway)
Ondrej Mosnáček (WOnder93)
Oskar Werkelin Ahlin
Pablo Vazquez
@ -157,6 +166,7 @@ Rodrigo Exterckötter Tjäder
Ron Britvich (Britvich)
Ronald de Man (syzygy1, syzygy)
rqs
Rui Coelho (ruicoelhopedro)
Ryan Schmitt
Ryan Takker
Sami Kiminki (skiminki)
@ -167,10 +177,12 @@ Sergio Vieri (sergiovieri)
sf-x
Shane Booth (shane31)
Shawn Varghese (xXH4CKST3RXx)
Siad Daboul (Topologist)
Stefan Geschwentner (locutus2)
Stefano Cardanobile (Stefano80)
Steinar Gunderson (sesse)
Stéphane Nicolet (snicolet)
Prokop Randáček (ProkopRandacek)
Thanar2
thaspel
theo77186
@ -178,11 +190,13 @@ Tom Truscott
Tom Vijlbrief (tomtor)
Tomasz Sobczyk (Sopel97)
Torsten Franz (torfranz, tfranzer)
Torsten Hellwig (Torom)
Tracey Emery (basepr1me)
tttak
Unai Corzo (unaiic)
Uri Blass (uriblass)
Vince Negri (cuddlestmonkey)
xefoci7612
zz4032

View file

@ -2,7 +2,7 @@ Modified stockfish to play the worst move. Play against the bot at https://liche
## Overview
[![Build Status](https://travis-ci.org/official-stockfish/Stockfish.svg?branch=master)](https://travis-ci.org/official-stockfish/Stockfish)
[![Build Status](https://github.com/official-stockfish/Stockfish/actions/workflows/stockfish.yml/badge.svg)](https://github.com/official-stockfish/Stockfish/actions)
[![Build Status](https://ci.appveyor.com/api/projects/status/github/official-stockfish/Stockfish?branch=master&svg=true)](https://ci.appveyor.com/project/mcostalba/stockfish/branch/master)
[Stockfish](https://stockfishchess.org) is a free, powerful UCI chess engine
@ -23,21 +23,28 @@ intrinsics available on most CPUs (sse2, avx2, neon, or similar).
This distribution of Stockfish consists of the following files:
* Readme.md, the file you are currently reading.
* [Readme.md](https://github.com/official-stockfish/Stockfish/blob/master/README.md), the file you are currently reading.
* Copying.txt, a text file containing the GNU General Public License version 3.
* AUTHORS, a text file with the list of authors for the project
* [Copying.txt](https://github.com/official-stockfish/Stockfish/blob/master/Copying.txt), a text file containing the GNU General Public License version 3.
* src, a subdirectory containing the full source code, including a Makefile
* [AUTHORS](https://github.com/official-stockfish/Stockfish/blob/master/AUTHORS), a text file with the list of authors for the project
* [src](https://github.com/official-stockfish/Stockfish/tree/master/src), a subdirectory containing the full source code, including a Makefile
that can be used to compile Stockfish on Unix-like systems.
* a file with the .nnue extension, storing the neural network for the NNUE
* a file with the .nnue extension, storing the neural network for the NNUE
evaluation. Binary distributions will have this file embedded.
## UCI options
## The UCI protocol and available options
Currently, Stockfish has the following UCI options:
The Universal Chess Interface (UCI) is a standard protocol used to communicate with
a chess engine, and is the recommended way to do so for typical graphical user interfaces
(GUI) or chess tools. Stockfish implements the majority of it options as described
in [the UCI protocol](https://www.shredderchess.com/download/div/uci.zip).
Developers can see the default values for UCI options available in Stockfish by typing
`./stockfish uci` in a terminal, but the majority of users will typically see them and
change them via a chess GUI. This is a list of available UCI options in Stockfish:
* #### Threads
The number of CPU threads used for searching a position. For best performance, set
@ -115,14 +122,6 @@ Currently, Stockfish has the following UCI options:
Limit Syzygy tablebase probing to positions with at most this many pieces left
(including kings and pawns).
* #### Contempt
A positive value for contempt favors middle game positions and avoids draws,
effective for the classical evaluation only.
* #### Analysis Contempt
By default, contempt is set to prefer the side to move. Set this option to "White"
or "Black" to analyse with contempt for that side, or "Off" to disable contempt.
* #### Move Overhead
Assume a time delay of x ms due to network and GUI overheads. This is useful to
avoid losses on time in those cases.
@ -138,6 +137,34 @@ Currently, Stockfish has the following UCI options:
* #### Debug Log File
Write all communication to and from the engine into a text file.
For developers the following non-standard commands might be of interest, mainly useful for debugging:
* #### bench *ttSize threads limit fenFile limitType evalType*
Performs a standard benchmark using various options. The signature of a version (standard node
count) is obtained using all defaults. `bench` is currently `bench 16 1 13 default depth mixed`.
* #### compiler
Give information about the compiler and environment used for building a binary.
* #### d
Display the current position, with ascii art and fen.
* #### eval
Return the evaluation of the current position.
* #### export_net [filename]
Exports the currently loaded network to a file.
If the currently loaded network is the embedded network and the filename
is not specified then the network is saved to the file matching the name
of the embedded network, as defined in evaluate.h.
If the currently loaded network is not the embedded network (some net set
through the UCI setoption) then the filename parameter is required and the
network is saved into that file.
* #### flip
Flips the side to move.
## A note on classical evaluation versus NNUE evaluation
Both approaches assign a value to a position that is used in alpha-beta (PVS) search
@ -150,8 +177,12 @@ on the evaluations of millions of positions at moderate search depth.
The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward.
It can be evaluated efficiently on CPUs, and exploits the fact that only parts
of the neural network need to be updated after a typical chess move.
[The nodchip repository](https://github.com/nodchip/Stockfish) provides additional
tools to train and develop the NNUE networks. On CPUs supporting modern vector instructions
[The nodchip repository](https://github.com/nodchip/Stockfish) provided the first version of
the needed tools to train and develop the NNUE networks. Today, more advanced training tools are available
in [the nnue-pytorch repository](https://github.com/glinscott/nnue-pytorch/), while data generation tools
are available in [a dedicated branch](https://github.com/official-stockfish/Stockfish/tree/tools).
On CPUs supporting modern vector instructions
(avx2 and similar), the NNUE evaluation results in much stronger playing strength, even
if the nodes per second computed by the engine is somewhat lower (roughly 80% of nps
is typical).
@ -164,7 +195,7 @@ Stockfish binary, but the default value of the EvalFile UCI option is the name o
that is guaranteed to be compatible with that binary.
2) to use the NNUE evaluation, the additional data file with neural network parameters
needs to be available. Normally, this file is already embedded in the binary or it
needs to be available. Normally, this file is already embedded in the binary or it
can be downloaded. The filename for the default (recommended) net can be found as the default
value of the `EvalFile` UCI option, with the format `nn-[SHA256 first 12 digits].nnue`
(for instance, `nn-c157e0a5755b.nnue`). This file can be downloaded from
@ -177,7 +208,7 @@ replacing `[filename]` as needed.
If the engine is searching a position that is not in the tablebases (e.g.
a position with 8 pieces), it will access the tablebases during the search.
If the engine reports a very large score (typically 153.xx), this means
If the engine reports a very large score (typically 153.xx), this means
it has found a winning line into a tablebase position.
If the engine is given a position to search that is in the tablebases, it
@ -244,9 +275,9 @@ When not using the Makefile to compile (for instance, with Microsoft MSVC) you
need to manually set/unset some switches in the compiler command line; see
file *types.h* for a quick reference.
When reporting an issue or a bug, please tell us which version and
compiler you used to create your executable. These informations can
be found by typing the following commands in a console:
When reporting an issue or a bug, please tell us which Stockfish version
and which compiler you used to create your executable. This information
can be found by typing the following command in a console:
```
./stockfish compiler
@ -254,8 +285,8 @@ be found by typing the following commands in a console:
## Understanding the code base and participating in the project
Stockfish's improvement over the last couple of years has been a great
community effort. There are a few ways to help contribute to its growth.
Stockfish's improvement over the last decade has been a great community
effort. There are a few ways to help contribute to its growth.
### Donating hardware
@ -299,4 +330,4 @@ you are distributing. If you make any changes to the source code,
these changes must also be made available under the GPL.
For full details, read the copy of the GPL v3 found in the file named
*Copying.txt*.
[*Copying.txt*](https://github.com/official-stockfish/Stockfish/blob/master/Copying.txt).

View file

@ -1,189 +1,230 @@
Contributors to Fishtest with >10,000 CPU hours, as of Feb 15, 2021.
Contributors to Fishtest with >10,000 CPU hours, as of 2022-02-05.
Thank you!
Username CPU Hours Games played
----------------------------------------------------
noobpwnftw 23930906 1560559941
dew 1169948 70333008
mlang 957168 61657446
mibere 703840 46867607
tvijlbrief 517888 33379462
JojoM 515404 30334272
cw 443276 29385549
crunchy 427035 27344275
grandphish2 425794 26347253
fastgm 414133 24519696
gvreuls 377843 24708884
CSU_Dynasty 338718 23030006
Fisherman 326795 21820747
TueRens 313730 19490246
ctoks 298442 20052551
velislav 270519 17355456
bcross 241064 17196165
glinscott 217799 13780820
nordlandia 211692 13484886
bking_US 198894 11876016
drabel 191096 13129722
leszek 189170 11446821
mgrabiak 187153 12013300
robal 181389 11539242
Thanar 179852 12365359
vdv 175274 9889046
spams 157128 10319326
marrco 150292 9401741
sqrt2 147963 9724586
CoffeeOne 137086 5022516
vdbergh 137041 8926915
malala 136182 8002293
mhoram 132780 8398229
xoto 124729 8652088
davar 122092 7960001
dsmith 122059 7570238
Data 113305 8220352
BrunoBanani 112960 7436849
pemo 109598 5036441
Dantist 106768 6431396
MaZePallas 102741 6630419
ElbertoOne 99028 7023771
brabos 92118 6186135
linrock 90903 6708639
psk 89957 5984901
sunu 88614 6020673
sterni1971 86948 5613788
Vizvezdenec 83761 5344740
BRAVONE 81239 5054681
nssy 76497 5259388
cuistot 76366 4370584
racerschmacer 75753 5442626
teddybaer 75125 5407666
Pking_cda 73776 5293873
0x3C33 73133 4670293
jromang 72117 5054915
solarlight 70517 5028306
dv8silencer 70287 3883992
Bobo1239 68515 4652287
manap 66273 4121774
tinker 64321 4268390
robnjr 57262 4053117
Freja 56938 3733019
ttruscott 56010 3680085
rkl 54986 4150767
renouve 53811 3501516
finfish 51360 3370515
eva42 51272 3599691
rap 49985 3219146
pb00067 49727 3298270
amicic 49691 3042481
ronaldjerum 47654 3240695
bigpen0r 47278 3291647
biffhero 46564 3111352
VoyagerOne 45476 3452465
eastorwest 45033 3071805
speedycpu 43842 3003273
jbwiebe 43305 2805433
Antihistamine 41788 2761312
mhunt 41735 2691355
homyur 39893 2850481
gri 39871 2515779
oryx 38282 2944400
Spprtr 38157 2470529
SC 37290 2731014
csnodgrass 36207 2688994
jmdana 36157 2210661
strelock 34716 2074055
Garf 33800 2747562
skiminki 33515 2055584
EthanOConnor 33370 2090311
slakovv 32915 2021889
yurikvelo 32600 2255966
Prcuvu 30377 2170122
manapbk 30326 1770143
anst 30301 2190091
jkiiski 30136 1904470
hyperbolic.tom 29840 2017394
Pyafue 29650 1902349
qurashee 27758 1509620
OuaisBla 27636 1578800
chriswk 26902 1868317
achambord 26582 1767323
Fifis 26376 1776853
Patrick_G 26276 1801617
yorkman 26193 1992080
SFTUser 25182 1675689
nabildanial 24942 1519409
Sharaf_DG 24765 1786697
ncfish1 24411 1520927
agg177 23890 1395014
JanErik 23408 1703875
Isidor 23388 1680691
Norabor 23164 1591830
cisco2015 22895 1762069
Zirie 22542 1472937
team-oh 22272 1636708
MazeOfGalious 21978 1629593
sg4032 21945 1643065
ianh2105 21725 1632562
xor12 21628 1680365
dex 21612 1467203
nesoneg 21494 1463031
jjoshua2 20997 1422689
horst.prack 20878 1465656
0xB00B1ES 20590 1208666
sphinx 20515 1352368
j3corre 20405 941444
Adrian.Schmidt123 20316 1281436
Ente 20017 1432602
wei 19973 1745989
rstoesser 19569 1293588
eudhan 19274 1283717
jundery 18445 1115855
iisiraider 18247 1101015
ville 17883 1384026
chris 17698 1487385
purplefishies 17595 1092533
DMBK 17357 1279152
DragonLord 17014 1162790
dju 16515 929427
IgorLeMasson 16064 1147232
ako027ako 15671 1173203
Nikolay.IT 15154 1068349
Andrew Grant 15114 895539
OssumOpossum 14857 1007129
enedene 14476 905279
bpfliegel 14298 884523
jpulman 13982 870599
joster 13794 950160
Nesa92 13786 1114691
crocogoat 13753 1114622
Hjax 13535 915487
Dark_wizzie 13422 1007152
mpx86 12941 693640
mabichito 12903 749391
thijsk 12886 722107
AdrianSA 12860 804972
Flopzee 12698 894821
fatmurphy 12547 853210
scuzzi 12511 845761
Karby 12429 735880
SapphireBrand 12416 969604
modolief 12386 896470
pgontarz 12151 848794
stocky 11954 699440
mschmidt 11941 803401
infinity 11470 727027
torbjo 11395 729145
Thomas A. Anderson 11372 732094
d64 11263 789184
Maxim 11129 804704
snicolet 11106 869170
MooTheCow 11008 694942
savage84 10965 641068
Rudolphous 10915 741268
Wolfgang 10809 580032
rpngn 10712 688203
basepi 10637 744851
michaelrpg 10409 735127
dzjp 10343 732529
ali-al-zhrani 10324 726502
ols 10259 570669
lbraesch 10252 647825
Username CPU Hours Games played
------------------------------------------------------------------
noobpwnftw 30730952 2158431735
mlang 2729669 187335452
technologov 1696847 74478658
dew 1635640 97483012
grandphish2 1062754 64955639
tvijlbrief 795993 51894442
okrout 773704 63465204
TueRens 766198 47770388
mibere 703840 46867607
JojoM 703005 42689868
pemo 634102 29868807
linrock 626939 17408017
gvreuls 517442 33605006
cw 503905 33850487
fastgm 482847 29004732
crunchy 427035 27344275
CSU_Dynasty 415864 28116776
ctoks 403102 26737127
oz 357710 26490208
bcross 331095 23165889
Fisherman 327231 21829379
velislav 321708 20729264
leszek 303654 19063973
Dantist 251015 15843226
mgrabiak 231973 15162494
glinscott 217799 13780820
robal 213960 13665726
nordlandia 211692 13484886
drabel 200914 13755384
bking_US 198894 11876016
mhoram 180229 11610075
Thanar 179852 12365359
vdv 175544 9904472
spams 157128 10319326
marrco 150300 9402229
sqrt2 147963 9724586
vdbergh 137429 8955089
CoffeeOne 137100 5024116
malala 136182 8002293
xoto 133759 9159372
rpngn 131285 8657757
davar 122661 7996937
dsmith 122059 7570238
amicic 119659 7937885
Data 113305 8220352
BrunoBanani 112960 7436849
CypressChess 108321 7759588
MaZePallas 102823 6633619
sterni1971 100532 5880772
sunu 100167 7040199
DesolatedDodo 99038 6414626
ElbertoOne 99028 7023771
skiminki 98123 6478402
brabos 92118 6186135
cuistot 90358 5351004
psk 89957 5984901
racerschmacer 85712 6119648
Vizvezdenec 83761 5344740
sschnee 83003 4840890
0x3C33 82614 5271253
BRAVONE 81239 5054681
nssy 76497 5259388
teddybaer 75125 5407666
Pking_cda 73776 5293873
zeryl 73335 4774257
jromang 72192 5057715
solarlight 70517 5028306
dv8silencer 70287 3883992
Bobo1239 68515 4652287
manap 66273 4121774
tinker 64333 4268790
yurikvelo 63371 4335060
qurashee 61208 3429862
robnjr 57262 4053117
Wolfgang 57014 3561352
Freja 56938 3733019
ttruscott 56010 3680085
rkl 55132 4164467
renouve 53811 3501516
finfish 51360 3370515
eva42 51272 3599691
Calis007 51182 3131552
eastorwest 51058 3451555
rap 49985 3219146
pb00067 49727 3298270
Spprtr 48260 3141959
bigpen0r 47667 3336927
ronaldjerum 47654 3240695
MaxKlaxxMiner 47584 2972142
biffhero 46564 3111352
megaman7de 45992 2952006
Fifis 45843 3088497
VoyagerOne 45476 3452465
speedycpu 43842 3003273
jbwiebe 43305 2805433
Antihistamine 41788 2761312
mhunt 41735 2691355
homyur 39893 2850481
gri 39871 2515779
oryx 38867 2976992
SC 37299 2731694
Garf 37213 2986270
csnodgrass 36207 2688994
jmdana 36157 2210661
strelock 34716 2074055
EthanOConnor 33370 2090311
slakovv 32915 2021889
armo9494 32129 2551682
tolkki963 32114 1932256
manapbk 30987 1810399
DMBK 30675 2383552
Prcuvu 30377 2170122
anst 30301 2190091
jkiiski 30136 1904470
gopeto 29886 1979118
hyperbolic.tom 29840 2017394
chuckstablers 29659 2093438
Pyafue 29650 1902349
OuaisBla 27636 1578800
chriswk 26902 1868317
achambord 26582 1767323
Patrick_G 26276 1801617
yorkman 26193 1992080
SFTUser 25182 1675689
nabildanial 24942 1519409
Sharaf_DG 24765 1786697
ncfish1 24411 1520927
rodneyc 24275 1410450
agg177 23890 1395014
belzedar94 23707 1593860
JanErik 23408 1703875
Isidor 23388 1680691
Norabor 23339 1602636
Ente 23093 1642458
cisco2015 22897 1762669
Zirie 22542 1472937
team-oh 22272 1636708
MazeOfGalious 21978 1629593
sg4032 21947 1643265
ianh2105 21725 1632562
xor12 21628 1680365
dex 21612 1467203
nesoneg 21494 1463031
sphinx 21211 1384728
jjoshua2 21001 1423089
horst.prack 20878 1465656
user213718 20783 1379584
0xB00B1ES 20590 1208666
j3corre 20405 941444
Adrian.Schmidt123 20316 1281436
wei 19973 1745989
Roady 19848 1335928
rstoesser 19569 1293588
eudhan 19274 1283717
vulcan 18871 1729392
jundery 18445 1115855
iisiraider 18247 1101015
ville 17883 1384026
chris 17698 1487385
purplefishies 17595 1092533
dju 17353 978595
kdave 17183 1242754
DragonLord 17014 1162790
thirdlife 16996 447356
spcc 16932 1130940
fishtester 16644 1123000
Ulysses 16490 1184400
IgorLeMasson 16064 1147232
ako027ako 15671 1173203
Nikolay.IT 15154 1068349
Andrew Grant 15114 895539
OssumOpossum 14857 1007129
Karby 14808 867120
AndreasKrug 14608 1152093
enedene 14476 905279
jsys14 14340 844792
bpfliegel 14298 884523
mpx86 14019 759568
jpulman 13982 870599
crocogoat 13803 1117422
joster 13794 950160
Nesa92 13786 1114691
mbeier 13650 1044928
Hjax 13535 915487
Dark_wizzie 13422 1007152
Rudolphous 13244 883140
MarcusTullius 13221 843169
Machariel 13010 863104
mabichito 12903 749391
thijsk 12886 722107
AdrianSA 12860 804972
infinigon 12807 937332
Flopzee 12698 894821
fatmurphy 12547 853210
scuzzi 12511 845761
SapphireBrand 12416 969604
modolief 12386 896470
Farseer 12249 694108
pgontarz 12151 848794
stocky 11954 699440
mschmidt 11941 803401
dbernier 11609 818636
Maxim 11543 836024
pirt 11516 894513
infinity 11470 727027
aga 11409 695071
torbjo 11395 729145
Thomas A. Anderson 11372 732094
savage84 11358 670860
markkulix 11331 739098
FormazChar 11308 847735
d64 11263 789184
MooTheCow 11237 720174
snicolet 11106 869170
ali-al-zhrani 11098 768494
whelanh 11067 235676
basepi 10637 744851
Cubox 10621 826448
michaelrpg 10509 739239
OIVAS7572 10420 995586
dzjp 10343 732529
Garruk 10332 703905
ols 10259 570669
lbraesch 10252 647825
Jackfish 10098 682338

View file

@ -1,88 +0,0 @@
version: 1.0.{build}
clone_depth: 50
branches:
only:
- master
# Operating system (build VM template)
os: Visual Studio 2019
# Build platform, i.e. x86, x64, AnyCPU. This setting is optional.
platform:
- x86
- x64
# build Configuration, i.e. Debug, Release, etc.
configuration:
- Debug
- Release
matrix:
# The build fail immediately once one of the job fails
fast_finish: true
# Scripts that are called at very beginning, before repo cloning
init:
- cmake --version
- msbuild /version
before_build:
- ps: |
# Get sources
$src = get-childitem -Path *.cpp -Recurse | select -ExpandProperty FullName
$src = $src -join ' '
$src = $src.Replace("\", "/")
# Build CMakeLists.txt
$t = 'cmake_minimum_required(VERSION 3.17)',
'project(Stockfish)',
'set(CMAKE_CXX_STANDARD 17)',
'set(CMAKE_CXX_STANDARD_REQUIRED ON)',
'set (CMAKE_CXX_EXTENSIONS OFF)',
'set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/src)',
'set(source_files', $src, ')',
'add_executable(stockfish ${source_files})'
# Write CMakeLists.txt withouth BOM
$MyPath = (Get-Item -Path "." -Verbose).FullName + '\CMakeLists.txt'
$Utf8NoBomEncoding = New-Object System.Text.UTF8Encoding $False
[System.IO.File]::WriteAllLines($MyPath, $t, $Utf8NoBomEncoding)
# Obtain bench reference from git log
$b = git log HEAD | sls "\b[Bb]ench[ :]+[0-9]{7}" | select -first 1
$bench = $b -match '\D+(\d+)' | % { $matches[1] }
Write-Host "Reference bench:" $bench
$g = "Visual Studio 16 2019"
If (${env:PLATFORM} -eq 'x64') { $a = "x64" }
If (${env:PLATFORM} -eq 'x86') { $a = "Win32" }
cmake -G "${g}" -A ${a} .
Write-Host "Generated files for: " $g $a
build_script:
- cmake --build . --config %CONFIGURATION% -- /verbosity:minimal
- ps: |
# Download default NNUE net from fishtest
$nnuenet = Get-Content -Path src\evaluate.h | Select-String -CaseSensitive -Pattern "EvalFileDefaultName" | Select-String -CaseSensitive -Pattern "nn-[a-z0-9]{12}.nnue"
$dummy = $nnuenet -match "(?<nnuenet>nn-[a-z0-9]{12}.nnue)"
$nnuenet = $Matches.nnuenet
Write-Host "Default net:" $nnuenet
$nnuedownloadurl = "https://tests.stockfishchess.org/api/nn/$nnuenet"
$nnuefilepath = "src\${env:CONFIGURATION}\$nnuenet"
if (Test-Path -Path $nnuefilepath) {
Write-Host "Already available."
} else {
Write-Host "Downloading $nnuedownloadurl to $nnuefilepath"
Invoke-WebRequest -Uri $nnuedownloadurl -OutFile $nnuefilepath
}
before_test:
- cd src/%CONFIGURATION%
- stockfish bench 2> out.txt >NUL
- ps: |
# Verify bench number
$s = (gc "./out.txt" | out-string)
$r = ($s -match 'Nodes searched \D+(\d+)' | % { $matches[1] })
Write-Host "Engine bench:" $r
Write-Host "Reference bench:" $bench
If ($r -ne $bench) { exit 1 }

View file

@ -1,5 +1,5 @@
# Stockfish, a UCI chess playing engine derived from Glaurung 2.1
# Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
# Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
#
# Stockfish is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
@ -19,11 +19,29 @@
### Section 1. General Configuration
### ==========================================================================
### Establish the operating system name
KERNEL = $(shell uname -s)
ifeq ($(KERNEL),Linux)
OS = $(shell uname -o)
endif
### Target Windows OS
ifeq ($(OS),Windows_NT)
ifneq ($(COMP),ndk)
target_windows = yes
endif
else ifeq ($(COMP),mingw)
target_windows = yes
ifeq ($(WINE_PATH),)
WINE_PATH = $(shell which wine)
endif
endif
### Executable name
ifeq ($(COMP),mingw)
EXE = stockfish.exe
ifeq ($(target_windows),yes)
EXE = stockfish.exe
else
EXE = stockfish
EXE = stockfish
endif
### Installation dir definitions
@ -31,24 +49,22 @@ PREFIX = /usr/local
BINDIR = $(PREFIX)/bin
### Built-in benchmark for pgo-builds
PGOBENCH = ./$(EXE) bench
ifeq ($(SDE_PATH),)
PGOBENCH = $(WINE_PATH) ./$(EXE) bench
else
PGOBENCH = $(SDE_PATH) -- $(WINE_PATH) ./$(EXE) bench
endif
### Source and object files
SRCS = benchmark.cpp bitbase.cpp bitboard.cpp endgame.cpp evaluate.cpp main.cpp \
material.cpp misc.cpp movegen.cpp movepick.cpp pawns.cpp position.cpp psqt.cpp \
search.cpp thread.cpp timeman.cpp tt.cpp uci.cpp ucioption.cpp tune.cpp syzygy/tbprobe.cpp \
nnue/evaluate_nnue.cpp nnue/features/half_kp.cpp
nnue/evaluate_nnue.cpp nnue/features/half_ka_v2_hm.cpp
OBJS = $(notdir $(SRCS:.cpp=.o))
VPATH = syzygy:nnue:nnue/features
### Establish the operating system name
KERNEL = $(shell uname -s)
ifeq ($(KERNEL),Linux)
OS = $(shell uname -o)
endif
### ==========================================================================
### Section 2. High-level Configuration
### ==========================================================================
@ -57,9 +73,11 @@ endif
# ----------------------------------------------------------------------------
#
# debug = yes/no --- -DNDEBUG --- Enable/Disable debug mode
# sanitize = undefined/thread/no (-fsanitize )
# sanitize = none/<sanitizer> ... (-fsanitize )
# --- ( undefined ) --- enable undefined behavior checks
# --- ( thread ) --- enable threading error checks
# --- ( thread ) --- enable threading error checks
# --- ( address ) --- enable memory access checks
# --- ...etc... --- see compiler documentation for supported sanitizers
# optimize = yes/no --- (-O3/-fast etc.) --- Enable/Disable optimizations
# arch = (name) --- (-arch) --- Target architecture
# bits = 64/32 --- -DIS_64BIT --- 64-/32-bit operating system
@ -72,6 +90,7 @@ endif
# ssse3 = yes/no --- -mssse3 --- Use Intel Supplemental Streaming SIMD Extensions 3
# sse41 = yes/no --- -msse4.1 --- Use Intel Streaming SIMD Extensions 4.1
# avx2 = yes/no --- -mavx2 --- Use Intel Advanced Vector Extensions 2
# avxvnni = yes/no --- -mavxvnni --- Use Intel Vector Neural Network Instructions AVX
# avx512 = yes/no --- -mavx512bw --- Use Intel Advanced Vector Extensions 512
# vnni256 = yes/no --- -mavx512vnni --- Use Intel Vector Neural Network Instructions 256
# vnni512 = yes/no --- -mavx512vnni --- Use Intel Vector Neural Network Instructions 512
@ -80,6 +99,10 @@ endif
# Note that Makefile is space sensitive, so when adding new architectures
# or modifying existing flags, you have to make sure there are no extra spaces
# at the end of the line for flag values.
#
# Example of use for these flags:
# make build ARCH=x86-64-avx512 debug=yes sanitize="address undefined"
### 2.1. General and architecture defaults
@ -90,9 +113,9 @@ endif
# explicitly check for the list of supported architectures (as listed with make help),
# the user can override with `make ARCH=x86-32-vnni256 SUPPORTED_ARCH=true`
ifeq ($(ARCH), $(filter $(ARCH), \
x86-64-vnni512 x86-64-vnni256 x86-64-avx512 x86-64-bmi2 x86-64-avx2 \
x86-64-sse41-popcnt x86-64-modern x86-64-ssse3 x86-64-sse3-popcnt \
x86-64 x86-32-sse41-popcnt x86-32-sse2 x86-32 ppc-64 ppc-32 \
x86-64-vnni512 x86-64-vnni256 x86-64-avx512 x86-64-avxvnni x86-64-bmi2 \
x86-64-avx2 x86-64-sse41-popcnt x86-64-modern x86-64-ssse3 x86-64-sse3-popcnt \
x86-64 x86-32-sse41-popcnt x86-32-sse2 x86-32 ppc-64 ppc-32 e2k \
armv7 armv7-neon armv8 apple-silicon general-64 general-32))
SUPPORTED_ARCH=true
else
@ -101,7 +124,7 @@ endif
optimize = yes
debug = no
sanitize = no
sanitize = none
bits = 64
prefetch = no
popcnt = no
@ -112,10 +135,12 @@ sse2 = no
ssse3 = no
sse41 = no
avx2 = no
avxvnni = no
avx512 = no
vnni256 = no
vnni512 = no
neon = no
arm_version = 0
STRIP = strip
### 2.2 Architecture specific
@ -127,7 +152,7 @@ ifeq ($(findstring x86,$(ARCH)),x86)
ifeq ($(findstring x86-32,$(ARCH)),x86-32)
arch = i386
bits = 32
sse = yes
sse = no
mmx = yes
else
arch = x86_64
@ -182,6 +207,17 @@ ifeq ($(findstring -avx2,$(ARCH)),-avx2)
avx2 = yes
endif
ifeq ($(findstring -avxvnni,$(ARCH)),-avxvnni)
popcnt = yes
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
avx2 = yes
avxvnni = yes
pext = yes
endif
ifeq ($(findstring -bmi2,$(ARCH)),-bmi2)
popcnt = yes
sse = yes
@ -252,6 +288,7 @@ ifeq ($(ARCH),armv7)
arch = armv7
prefetch = yes
bits = 32
arm_version = 7
endif
ifeq ($(ARCH),armv7-neon)
@ -260,6 +297,7 @@ ifeq ($(ARCH),armv7-neon)
popcnt = yes
neon = yes
bits = 32
arm_version = 7
endif
ifeq ($(ARCH),armv8)
@ -267,6 +305,7 @@ ifeq ($(ARCH),armv8)
prefetch = yes
popcnt = yes
neon = yes
arm_version = 8
endif
ifeq ($(ARCH),apple-silicon)
@ -274,6 +313,7 @@ ifeq ($(ARCH),apple-silicon)
prefetch = yes
popcnt = yes
neon = yes
arm_version = 8
endif
ifeq ($(ARCH),ppc-32)
@ -287,6 +327,17 @@ ifeq ($(ARCH),ppc-64)
prefetch = yes
endif
ifeq ($(findstring e2k,$(ARCH)),e2k)
arch = e2k
mmx = yes
bits = 64
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
popcnt = yes
endif
endif
### ==========================================================================
@ -326,29 +377,27 @@ ifeq ($(COMP),gcc)
endif
endif
ifeq ($(target_windows),yes)
LDFLAGS += -static
endif
ifeq ($(COMP),mingw)
comp=mingw
ifeq ($(KERNEL),Linux)
ifeq ($(bits),64)
ifeq ($(shell which x86_64-w64-mingw32-c++-posix),)
CXX=x86_64-w64-mingw32-c++
else
CXX=x86_64-w64-mingw32-c++-posix
endif
ifeq ($(bits),64)
ifeq ($(shell which x86_64-w64-mingw32-c++-posix 2> /dev/null),)
CXX=x86_64-w64-mingw32-c++
else
ifeq ($(shell which i686-w64-mingw32-c++-posix),)
CXX=i686-w64-mingw32-c++
else
CXX=i686-w64-mingw32-c++-posix
endif
CXX=x86_64-w64-mingw32-c++-posix
endif
else
CXX=g++
ifeq ($(shell which i686-w64-mingw32-c++-posix 2> /dev/null),)
CXX=i686-w64-mingw32-c++
else
CXX=i686-w64-mingw32-c++-posix
endif
endif
CXXFLAGS += -Wextra -Wshadow
LDFLAGS += -static
CXXFLAGS += -pedantic -Wextra -Wshadow
endif
ifeq ($(COMP),icc)
@ -360,11 +409,15 @@ endif
ifeq ($(COMP),clang)
comp=clang
CXX=clang++
ifeq ($(target_windows),yes)
CXX=x86_64-w64-mingw32-clang++
endif
CXXFLAGS += -pedantic -Wextra -Wshadow
ifneq ($(KERNEL),Darwin)
ifneq ($(KERNEL),OpenBSD)
ifneq ($(KERNEL),FreeBSD)
ifeq ($(filter $(KERNEL),Darwin OpenBSD FreeBSD),)
ifeq ($(target_windows),)
ifneq ($(RTLIB),compiler-rt)
LDFLAGS += -latomic
endif
endif
@ -382,8 +435,12 @@ ifeq ($(COMP),clang)
endif
ifeq ($(KERNEL),Darwin)
CXXFLAGS += -arch $(arch) -mmacosx-version-min=10.14
LDFLAGS += -arch $(arch) -mmacosx-version-min=10.14
CXXFLAGS += -mmacosx-version-min=10.14
LDFLAGS += -mmacosx-version-min=10.14
ifneq ($(arch),any)
CXXFLAGS += -arch $(arch)
LDFLAGS += -arch $(arch)
endif
XCRUN = xcrun
endif
@ -396,11 +453,19 @@ ifeq ($(COMP),ndk)
ifeq ($(arch),armv7)
CXX=armv7a-linux-androideabi16-clang++
CXXFLAGS += -mthumb -march=armv7-a -mfloat-abi=softfp -mfpu=neon
STRIP=arm-linux-androideabi-strip
ifneq ($(shell which arm-linux-androideabi-strip 2>/dev/null),)
STRIP=arm-linux-androideabi-strip
else
STRIP=llvm-strip
endif
endif
ifeq ($(arch),armv8)
CXX=aarch64-linux-android21-clang++
STRIP=aarch64-linux-android-strip
ifneq ($(shell which aarch64-linux-android-strip 2>/dev/null),)
STRIP=aarch64-linux-android-strip
else
STRIP=llvm-strip
endif
endif
LDFLAGS += -static-libstdc++ -pie -lm -latomic
endif
@ -414,6 +479,9 @@ else ifeq ($(comp),clang)
else
profile_make = gcc-profile-make
profile_use = gcc-profile-use
ifeq ($(KERNEL),Darwin)
EXTRAPROFILEFLAGS = -fvisibility=hidden
endif
endif
### Travis CI script uses COMPILER to overwrite CXX
@ -458,9 +526,9 @@ else
endif
### 3.2.2 Debugging with undefined behavior sanitizers
ifneq ($(sanitize),no)
CXXFLAGS += -g3 -fsanitize=$(sanitize)
LDFLAGS += -fsanitize=$(sanitize)
ifneq ($(sanitize),none)
CXXFLAGS += -g3 $(addprefix -fsanitize=,$(sanitize))
LDFLAGS += $(addprefix -fsanitize=,$(sanitize))
endif
### 3.3 Optimization
@ -474,11 +542,17 @@ ifeq ($(optimize),yes)
endif
endif
ifeq ($(comp),$(filter $(comp),gcc clang icc))
ifeq ($(KERNEL),Darwin)
CXXFLAGS += -mdynamic-no-pic
endif
endif
ifeq ($(KERNEL),Darwin)
ifeq ($(comp),$(filter $(comp),clang icc))
CXXFLAGS += -mdynamic-no-pic
endif
ifeq ($(comp),gcc)
ifneq ($(arch),arm64)
CXXFLAGS += -mdynamic-no-pic
endif
endif
endif
ifeq ($(comp),clang)
CXXFLAGS += -fexperimental-new-pass-manager
@ -490,7 +564,7 @@ ifeq ($(bits),64)
CXXFLAGS += -DIS_64BIT
endif
### 3.5 prefetch
### 3.5 prefetch and popcount
ifeq ($(prefetch),yes)
ifeq ($(sse),yes)
CXXFLAGS += -msse
@ -499,7 +573,6 @@ else
CXXFLAGS += -DNO_PREFETCH
endif
### 3.6 popcnt
ifeq ($(popcnt),yes)
ifeq ($(arch),$(filter $(arch),ppc64 armv7 armv8 arm64))
CXXFLAGS += -DUSE_POPCNT
@ -510,7 +583,7 @@ ifeq ($(popcnt),yes)
endif
endif
### 3.6 SIMD architectures
ifeq ($(avx2),yes)
CXXFLAGS += -DUSE_AVX2
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
@ -518,6 +591,13 @@ ifeq ($(avx2),yes)
endif
endif
ifeq ($(avxvnni),yes)
CXXFLAGS += -DUSE_VNNI -DUSE_AVXVNNI
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -mavxvnni
endif
endif
ifeq ($(avx512),yes)
CXXFLAGS += -DUSE_AVX512
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
@ -568,7 +648,7 @@ ifeq ($(mmx),yes)
endif
ifeq ($(neon),yes)
CXXFLAGS += -DUSE_NEON
CXXFLAGS += -DUSE_NEON=$(arm_version)
ifeq ($(KERNEL),Linux)
ifneq ($(COMP),ndk)
ifneq ($(arch),armv8)
@ -593,9 +673,7 @@ ifeq ($(optimize),yes)
ifeq ($(debug), no)
ifeq ($(comp),clang)
CXXFLAGS += -flto
ifneq ($(findstring MINGW,$(KERNEL)),)
CXXFLAGS += -fuse-ld=lld
else ifneq ($(findstring MSYS,$(KERNEL)),)
ifeq ($(target_windows),yes)
CXXFLAGS += -fuse-ld=lld
endif
LDFLAGS += $(CXXFLAGS)
@ -606,25 +684,17 @@ ifeq ($(debug), no)
ifeq ($(gccisclang),)
CXXFLAGS += -flto
LDFLAGS += $(CXXFLAGS) -flto=jobserver
ifneq ($(findstring MINGW,$(KERNEL)),)
LDFLAGS += -save-temps
else ifneq ($(findstring MSYS,$(KERNEL)),)
LDFLAGS += -save-temps
endif
else
CXXFLAGS += -flto
LDFLAGS += $(CXXFLAGS)
endif
# To use LTO and static linking on windows, the tool chain requires a recent gcc:
# gcc version 10.1 in msys2 or TDM-GCC version 9.2 are known to work, older might not.
# So, only enable it for a cross from Linux by default.
# To use LTO and static linking on Windows,
# the tool chain requires gcc version 10.1 or later.
else ifeq ($(comp),mingw)
ifeq ($(KERNEL),Linux)
ifneq ($(arch),i386)
CXXFLAGS += -flto
LDFLAGS += $(CXXFLAGS) -flto=jobserver
endif
LDFLAGS += $(CXXFLAGS) -save-temps
endif
endif
endif
@ -663,6 +733,7 @@ help:
@echo "x86-64-vnni512 > x86 64-bit with vnni support 512bit wide"
@echo "x86-64-vnni256 > x86 64-bit with vnni support 256bit wide"
@echo "x86-64-avx512 > x86 64-bit with avx512 support"
@echo "x86-64-avxvnni > x86 64-bit with avxvnni support"
@echo "x86-64-bmi2 > x86 64-bit with bmi2 support"
@echo "x86-64-avx2 > x86 64-bit with avx2 support"
@echo "x86-64-sse41-popcnt > x86 64-bit with sse41 and popcnt support"
@ -678,6 +749,7 @@ help:
@echo "armv7 > ARMv7 32-bit"
@echo "armv7-neon > ARMv7 32-bit with popcnt and neon"
@echo "armv8 > ARMv8 64-bit with popcnt and neon"
@echo "e2k > Elbrus 2000"
@echo "apple-silicon > Apple silicon ARM64"
@echo "general-64 > unspecified 64-bit"
@echo "general-32 > unspecified 32-bit"
@ -724,7 +796,7 @@ profile-build: net config-sanity objclean profileclean
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) $(profile_make)
@echo ""
@echo "Step 2/4. Running benchmark for pgo-build ..."
$(PGOBENCH) > /dev/null
$(PGOBENCH) 2>&1 | tail -n 4
@echo ""
@echo "Step 3/4. Building optimized executable ..."
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) objclean
@ -739,7 +811,7 @@ strip:
install:
-mkdir -p -m 755 $(BINDIR)
-cp $(EXE) $(BINDIR)
-strip $(BINDIR)/$(EXE)
$(STRIP) $(BINDIR)/$(EXE)
# clean all
clean: objclean profileclean
@ -771,13 +843,17 @@ net:
# clean binaries and objects
objclean:
@rm -f $(EXE) *.o ./syzygy/*.o ./nnue/*.o ./nnue/features/*.o
@rm -f stockfish stockfish.exe *.o ./syzygy/*.o ./nnue/*.o ./nnue/features/*.o
# clean auxiliary profiling files
profileclean:
@rm -rf profdir
@rm -f bench.txt *.gcda *.gcno ./syzygy/*.gcda ./nnue/*.gcda ./nnue/features/*.gcda *.s
@rm -f stockfish.profdata *.profraw
@rm -f stockfish.*args*
@rm -f stockfish.*lt*
@rm -f stockfish.res
@rm -f ./-lstdc++.res
default:
help
@ -807,10 +883,12 @@ config-sanity: net
@echo "ssse3: '$(ssse3)'"
@echo "sse41: '$(sse41)'"
@echo "avx2: '$(avx2)'"
@echo "avxvnni: '$(avxvnni)'"
@echo "avx512: '$(avx512)'"
@echo "vnni256: '$(vnni256)'"
@echo "vnni512: '$(vnni512)'"
@echo "neon: '$(neon)'"
@echo "arm_version: '$(arm_version)'"
@echo ""
@echo "Flags:"
@echo "CXX: $(CXX)"
@ -820,11 +898,10 @@ config-sanity: net
@echo "Testing config sanity. If this fails, try 'make help' ..."
@echo ""
@test "$(debug)" = "yes" || test "$(debug)" = "no"
@test "$(sanitize)" = "undefined" || test "$(sanitize)" = "thread" || test "$(sanitize)" = "address" || test "$(sanitize)" = "no"
@test "$(optimize)" = "yes" || test "$(optimize)" = "no"
@test "$(SUPPORTED_ARCH)" = "true"
@test "$(arch)" = "any" || test "$(arch)" = "x86_64" || test "$(arch)" = "i386" || \
test "$(arch)" = "ppc64" || test "$(arch)" = "ppc" || \
test "$(arch)" = "ppc64" || test "$(arch)" = "ppc" || test "$(arch)" = "e2k" || \
test "$(arch)" = "armv7" || test "$(arch)" = "armv8" || test "$(arch)" = "arm64"
@test "$(bits)" = "32" || test "$(bits)" = "64"
@test "$(prefetch)" = "yes" || test "$(prefetch)" = "no"
@ -860,14 +937,17 @@ clang-profile-use:
all
gcc-profile-make:
@mkdir -p profdir
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
EXTRACXXFLAGS='-fprofile-generate' \
EXTRACXXFLAGS='-fprofile-generate=profdir' \
EXTRACXXFLAGS+=$(EXTRAPROFILEFLAGS) \
EXTRALDFLAGS='-lgcov' \
all
gcc-profile-use:
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
EXTRACXXFLAGS='-fprofile-use -fno-peel-loops -fno-tracer' \
EXTRACXXFLAGS='-fprofile-use=profdir -fno-peel-loops -fno-tracer' \
EXTRACXXFLAGS+=$(EXTRAPROFILEFLAGS) \
EXTRALDFLAGS='-lgcov' \
all
@ -882,7 +962,7 @@ icc-profile-use:
EXTRACXXFLAGS='-prof_use -prof_dir ./profdir' \
all
.depend:
.depend: $(SRCS)
-@$(CXX) $(DEPENDFLAGS) -MM $(SRCS) > $@ 2> /dev/null
-include .depend

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -87,11 +87,14 @@ const vector<string> Defaults = {
// Chess 960
"setoption name UCI_Chess960 value true",
"bbqnnrkr/pppppppp/8/8/8/8/PPPPPPPP/BBQNNRKR w HFhf - 0 1 moves g2g3 d7d5 d2d4 c8h3 c1g5 e8d6 g5e7 f7f6",
"nqbnrkrb/pppppppp/8/8/8/8/PPPPPPPP/NQBNRKRB w KQkq - 0 1",
"setoption name UCI_Chess960 value false"
};
} // namespace
namespace Stockfish {
/// setup_bench() builds a list of UCI commands to be run by bench. There
/// are five parameters: TT size in MB, number of search threads that
/// should be used, the limit value spent for each position, a file name
@ -168,3 +171,5 @@ vector<string> setup_bench(const Position& current, istream& is) {
return list;
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,6 +23,8 @@
#include "bitboard.h"
#include "types.h"
namespace Stockfish {
namespace {
// There are 24 possible pawn squares: files A to D and ranks from 2 to 7.
@ -66,7 +68,6 @@ namespace {
} // namespace
bool Bitbases::probe(Square wksq, Square wpsq, Square bksq, Color stm) {
assert(file_of(wpsq) <= FILE_D);
@ -96,7 +97,6 @@ void Bitbases::init() {
KPKBitbase.set(idx);
}
namespace {
KPKPosition::KPKPosition(unsigned idx) {
@ -150,8 +150,8 @@ namespace {
Bitboard b = attacks_bb<KING>(ksq[stm]);
while (b)
r |= stm == WHITE ? db[index(BLACK, ksq[BLACK] , pop_lsb(&b), psq)]
: db[index(WHITE, pop_lsb(&b), ksq[WHITE], psq)];
r |= stm == WHITE ? db[index(BLACK, ksq[BLACK], pop_lsb(b), psq)]
: db[index(WHITE, pop_lsb(b), ksq[WHITE], psq)];
if (stm == WHITE)
{
@ -168,3 +168,5 @@ namespace {
}
} // namespace
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -22,11 +22,14 @@
#include "bitboard.h"
#include "misc.h"
namespace Stockfish {
uint8_t PopCnt16[1 << 16];
uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
Bitboard SquareBB[SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
@ -42,7 +45,6 @@ namespace {
}
/// safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard.
@ -55,7 +57,7 @@ inline Bitboard safe_destination(Square s, int step) {
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
/// to be printed to standard output. Useful for debugging.
const std::string Bitboards::pretty(Bitboard b) {
std::string Bitboards::pretty(Bitboard b) {
std::string s = "+---+---+---+---+---+---+---+---+\n";
@ -106,12 +108,17 @@ void Bitboards::init() {
for (PieceType pt : { BISHOP, ROOK })
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (PseudoAttacks[pt][s1] & s2)
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
{
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = (attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
}
BetweenBB[s1][s2] |= s2;
}
}
}
namespace {
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
@ -123,7 +130,7 @@ namespace {
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
{
Square s = sq;
while(safe_destination(s, d) && !(occupied & s))
while (safe_destination(s, d) && !(occupied & s))
attacks |= (s += d);
}
@ -211,3 +218,5 @@ namespace {
}
}
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,19 +23,21 @@
#include "types.h"
namespace Stockfish {
namespace Bitbases {
void init();
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
}
} // namespace Stockfish::Bitbases
namespace Bitboards {
void init();
const std::string pretty(Bitboard b);
std::string pretty(Bitboard b);
}
} // namespace Stockfish::Bitboards
constexpr Bitboard AllSquares = ~Bitboard(0);
constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
@ -73,6 +75,7 @@ extern uint8_t PopCnt16[1 << 16];
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard SquareBB[SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
@ -209,23 +212,29 @@ constexpr Bitboard adjacent_files_bb(Square s) {
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
}
/// between_bb() returns a bitboard representing squares that are linearly
/// between the two given squares (excluding the given squares). If the given
/// squares are not on a same file/rank/diagonal, we return 0. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5 and E6.
/// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open
/// segment between the squares s1 and s2 (excluding s1 but including s2). If the
/// given squares are not on a same file/rank/diagonal, it returns s2. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but
/// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick
/// allows to generate non-king evasion moves faster: the defending piece must either
/// interpose itself to cover the check or capture the checking piece.
inline Bitboard between_bb(Square s1, Square s2) {
Bitboard b = line_bb(s1, s2) & ((AllSquares << s1) ^ (AllSquares << s2));
return b & (b - 1); //exclude lsb
assert(is_ok(s1) && is_ok(s2));
return BetweenBB[s1][s2];
}
/// forward_ranks_bb() returns a bitboard representing the squares on the ranks
/// in front of the given one, from the point of view of the given color. For instance,
/// forward_ranks_bb() returns a bitboard representing the squares on the ranks in
/// front of the given one, from the point of view of the given color. For instance,
/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
constexpr Bitboard forward_ranks_bb(Color c, Square s) {
@ -412,13 +421,20 @@ inline Square msb(Bitboard b) {
#endif
/// least_significant_square_bb() returns the bitboard of the least significant
/// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b);
return b & -b;
}
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard* b) {
assert(*b);
const Square s = lsb(*b);
*b &= *b - 1;
inline Square pop_lsb(Bitboard& b) {
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
}
@ -430,4 +446,6 @@ inline Square frontmost_sq(Color c, Bitboard b) {
return c == WHITE ? msb(b) : lsb(b);
}
} // namespace Stockfish
#endif // #ifndef BITBOARD_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -22,6 +22,8 @@
#include "endgame.h"
#include "movegen.h"
namespace Stockfish {
namespace {
// Used to drive the king towards the edge of the board
@ -741,3 +743,5 @@ ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const {
// it's probably at least a draw even with the pawn.
return Bitbases::probe(strongKing, strongPawn, weakKing, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -28,6 +28,7 @@
#include "position.h"
#include "types.h"
namespace Stockfish {
/// EndgameCode lists all supported endgame functions by corresponding codes
@ -120,4 +121,6 @@ namespace Endgames {
}
}
} // namespace Stockfish
#endif // #ifndef ENDGAME_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,6 +33,7 @@
#include "misc.h"
#include "pawns.h"
#include "thread.h"
#include "timeman.h"
#include "uci.h"
#include "incbin/incbin.h"
@ -54,12 +55,13 @@
using namespace std;
using namespace Eval::NNUE;
namespace Stockfish {
namespace Eval {
bool useNNUE;
string eval_file_loaded = "None";
string currentEvalFileName = "None";
/// NNUE::init() tries to load a NNUE network at startup time, or when the engine
/// receives a UCI command "setoption name EvalFile value nn-[a-z0-9]{12}.nnue"
@ -76,6 +78,8 @@ namespace Eval {
return;
string eval_file = string(Options["EvalFile"]);
if (eval_file.empty())
eval_file = EvalFileDefaultName;
#if defined(DEFAULT_NNUE_DIRECTORY)
#define stringify2(x) #x
@ -86,13 +90,13 @@ namespace Eval {
#endif
for (string directory : dirs)
if (eval_file_loaded != eval_file)
if (currentEvalFileName != eval_file)
{
if (directory != "<internal>")
{
ifstream stream(directory + eval_file, ios::binary);
if (load_eval(eval_file, stream))
eval_file_loaded = eval_file;
currentEvalFileName = eval_file;
}
if (directory == "<internal>" && eval_file == EvalFileDefaultName)
@ -104,10 +108,11 @@ namespace Eval {
MemoryBuffer buffer(const_cast<char*>(reinterpret_cast<const char*>(gEmbeddedNNUEData)),
size_t(gEmbeddedNNUESize));
(void) gEmbeddedNNUEEnd; // Silence warning on unused variable
istream stream(&buffer);
if (load_eval(eval_file, stream))
eval_file_loaded = eval_file;
currentEvalFileName = eval_file;
}
}
}
@ -116,16 +121,16 @@ namespace Eval {
void NNUE::verify() {
string eval_file = string(Options["EvalFile"]);
if (eval_file.empty())
eval_file = EvalFileDefaultName;
if (useNNUE && eval_file_loaded != eval_file)
if (useNNUE && currentEvalFileName != eval_file)
{
UCI::OptionsMap defaults;
UCI::init(defaults);
string msg1 = "If the UCI option \"Use NNUE\" is set to true, network evaluation parameters compatible with the engine must be available.";
string msg2 = "The option is set to true, but the network file " + eval_file + " was not loaded successfully.";
string msg3 = "The UCI option EvalFile might need to specify the full path, including the directory name, to the network file.";
string msg4 = "The default net can be downloaded from: https://tests.stockfishchess.org/api/nn/" + string(defaults["EvalFile"]);
string msg4 = "The default net can be downloaded from: https://tests.stockfishchess.org/api/nn/" + std::string(EvalFileDefaultName);
string msg5 = "The engine will be terminated now.";
sync_cout << "info string ERROR: " << msg1 << sync_endl;
@ -178,7 +183,7 @@ namespace Trace {
else
os << scores[t][WHITE] << " | " << scores[t][BLACK];
os << " | " << scores[t][WHITE] - scores[t][BLACK] << "\n";
os << " | " << scores[t][WHITE] - scores[t][BLACK] << " |\n";
return os;
}
}
@ -188,11 +193,9 @@ using namespace Trace;
namespace {
// Threshold for lazy and space evaluation
constexpr Value LazyThreshold1 = Value(1565);
constexpr Value LazyThreshold2 = Value(1102);
constexpr Value SpaceThreshold = Value(11551);
constexpr Value NNUEThreshold1 = Value(682);
constexpr Value NNUEThreshold2 = Value(176);
constexpr Value LazyThreshold1 = Value(3631);
constexpr Value LazyThreshold2 = Value(2084);
constexpr Value SpaceThreshold = Value(11551);
// KingAttackWeights[PieceType] contains king attack weights by piece type
constexpr int KingAttackWeights[PIECE_TYPE_NB] = { 0, 0, 81, 52, 44, 10 };
@ -255,11 +258,12 @@ namespace {
S(0, 0), S(3, 44), S(37, 68), S(42, 60), S(0, 39), S(58, 43)
};
constexpr Value CorneredBishop = Value(50);
// Assorted bonuses and penalties
constexpr Score UncontestedOutpost = S( 1, 10);
constexpr Score BishopOnKingRing = S( 24, 0);
constexpr Score BishopXRayPawns = S( 4, 5);
constexpr Score CorneredBishop = S( 50, 50);
constexpr Score FlankAttacks = S( 8, 0);
constexpr Score Hanging = S( 69, 36);
constexpr Score KnightOnQueen = S( 16, 11);
@ -394,8 +398,9 @@ namespace {
attackedBy[Us][Pt] = 0;
while (b1) {
Square s = pop_lsb(&b1);
while (b1)
{
Square s = pop_lsb(b1);
// Find attacked squares, including x-ray attacks for bishops and rooks
b = Pt == BISHOP ? attacks_bb<BISHOP>(s, pos.pieces() ^ pos.pieces(QUEEN))
@ -475,9 +480,8 @@ namespace {
{
Direction d = pawn_push(Us) + (file_of(s) == FILE_A ? EAST : WEST);
if (pos.piece_on(s + d) == make_piece(Us, PAWN))
score -= !pos.empty(s + d + pawn_push(Us)) ? CorneredBishop * 4
: pos.piece_on(s + d + d) == make_piece(Us, PAWN) ? CorneredBishop * 2
: CorneredBishop;
score -= !pos.empty(s + d + pawn_push(Us)) ? 4 * make_score(CorneredBishop, CorneredBishop)
: 3 * make_score(CorneredBishop, CorneredBishop);
}
}
}
@ -656,11 +660,11 @@ namespace {
{
b = (defended | weak) & (attackedBy[Us][KNIGHT] | attackedBy[Us][BISHOP]);
while (b)
score += ThreatByMinor[type_of(pos.piece_on(pop_lsb(&b)))];
score += ThreatByMinor[type_of(pos.piece_on(pop_lsb(b)))];
b = weak & attackedBy[Us][ROOK];
while (b)
score += ThreatByRook[type_of(pos.piece_on(pop_lsb(&b)))];
score += ThreatByRook[type_of(pos.piece_on(pop_lsb(b)))];
if (weak & attackedBy[Us][KING])
score += ThreatByKing;
@ -758,7 +762,7 @@ namespace {
while (b)
{
Square s = pop_lsb(&b);
Square s = pop_lsb(b);
assert(!(pos.pieces(Them, PAWN) & forward_file_bb(Us, s + Up)));
@ -904,7 +908,7 @@ namespace {
Color strongSide = eg > VALUE_DRAW ? WHITE : BLACK;
int sf = me->scale_factor(pos, strongSide);
// If scale factor is not already specific, scale down via general heuristics
// If scale factor is not already specific, scale up/down via general heuristics
if (sf == SCALE_FACTOR_NORMAL)
{
if (pos.opposite_bishops())
@ -977,7 +981,7 @@ namespace {
// Initialize score by reading the incrementally updated scores included in
// the position object (material + piece square tables) and the material
// imbalance. Score is computed internally from the white point of view.
Score score = pos.psq_score() + me->imbalance() + pos.this_thread()->contempt;
Score score = pos.psq_score() + me->imbalance() + pos.this_thread()->trend;
// Probe the pawn hash table
pe = Pawns::probe(pos);
@ -985,7 +989,9 @@ namespace {
// Early exit if score is high
auto lazy_skip = [&](Value lazyThreshold) {
return abs(mg_value(score) + eg_value(score)) / 2 > lazyThreshold + pos.non_pawn_material() / 64;
return abs(mg_value(score) + eg_value(score)) > lazyThreshold
+ std::abs(pos.this_thread()->bestValue) * 5 / 4
+ pos.non_pawn_material() / 32;
};
if (lazy_skip(LazyThreshold1))
@ -1031,12 +1037,44 @@ make_v:
v = (v / 16) * 16;
// Side to move point of view
v = (pos.side_to_move() == WHITE ? v : -v) + Tempo;
v = (pos.side_to_move() == WHITE ? v : -v);
return v;
}
} // namespace
/// Fisher Random Chess: correction for cornered bishops, to fix chess960 play with NNUE
Value fix_FRC(const Position& pos) {
constexpr Bitboard Corners = 1ULL << SQ_A1 | 1ULL << SQ_H1 | 1ULL << SQ_A8 | 1ULL << SQ_H8;
if (!(pos.pieces(BISHOP) & Corners))
return VALUE_ZERO;
int correction = 0;
if ( pos.piece_on(SQ_A1) == W_BISHOP
&& pos.piece_on(SQ_B2) == W_PAWN)
correction -= CorneredBishop;
if ( pos.piece_on(SQ_H1) == W_BISHOP
&& pos.piece_on(SQ_G2) == W_PAWN)
correction -= CorneredBishop;
if ( pos.piece_on(SQ_A8) == B_BISHOP
&& pos.piece_on(SQ_B7) == B_PAWN)
correction += CorneredBishop;
if ( pos.piece_on(SQ_H8) == B_BISHOP
&& pos.piece_on(SQ_G7) == B_PAWN)
correction += CorneredBishop;
return pos.side_to_move() == WHITE ? Value(3 * correction)
: -Value(3 * correction);
}
} // namespace Eval
/// evaluate() is the evaluator for the outer world. It returns a static
@ -1045,42 +1083,36 @@ make_v:
Value Eval::evaluate(const Position& pos) {
Value v;
bool useClassical = false;
if (!Eval::useNNUE)
v = Evaluation<NO_TRACE>(pos).value();
else
// Deciding between classical and NNUE eval (~10 Elo): for high PSQ imbalance we use classical,
// but we switch to NNUE during long shuffling or with high material on the board.
if ( !useNNUE
|| abs(eg_value(pos.psq_score())) * 5 > (849 + pos.non_pawn_material() / 64) * (5 + pos.rule50_count()))
{
// Scale and shift NNUE for compatibility with search and classical evaluation
auto adjusted_NNUE = [&](){
int mat = pos.non_pawn_material() + 2 * PawnValueMg * pos.count<PAWN>();
return NNUE::evaluate(pos) * (641 + mat / 32 - 4 * pos.rule50_count()) / 1024 + Tempo;
};
v = Evaluation<NO_TRACE>(pos).value(); // classical
useClassical = abs(v) >= 298;
}
// If there is PSQ imbalance use classical eval, with small probability if it is small
Value psq = Value(abs(eg_value(pos.psq_score())));
int r50 = 16 + pos.rule50_count();
bool largePsq = psq * 16 > (NNUEThreshold1 + pos.non_pawn_material() / 64) * r50;
bool classical = largePsq || (psq > PawnValueMg / 4 && !(pos.this_thread()->nodes & 0xB));
// If result of a classical evaluation is much lower than threshold fall back to NNUE
if (useNNUE && !useClassical)
{
Value nnue = NNUE::evaluate(pos, true); // NNUE
int scale = 1136 + 20 * pos.non_pawn_material() / 1024;
Color stm = pos.side_to_move();
Value optimism = pos.this_thread()->optimism[stm];
Value psq = (stm == WHITE ? 1 : -1) * eg_value(pos.psq_score());
int complexity = 35 * abs(nnue - psq) / 256;
// Use classical evaluation for really low piece endgames.
// The most critical case is a bishop + A/H file pawn vs naked king draw.
bool strongClassical = pos.non_pawn_material() < 2 * RookValueMg && pos.count<PAWN>() < 2;
optimism = optimism * (44 + complexity) / 32;
v = (nnue + optimism) * scale / 1024 - optimism;
v = classical || strongClassical ? Evaluation<NO_TRACE>(pos).value() : adjusted_NNUE();
// If the classical eval is small and imbalance large, use NNUE nevertheless.
// For the case of opposite colored bishops, switch to NNUE eval with
// small probability if the classical eval is less than the threshold.
if ( largePsq && !strongClassical
&& ( abs(v) * 16 < NNUEThreshold2 * r50
|| ( pos.opposite_bishops()
&& abs(v) * 16 < (NNUEThreshold1 + pos.non_pawn_material() / 64) * r50
&& !(pos.this_thread()->nodes & 0xB))))
v = adjusted_NNUE();
if (pos.is_chess960())
v += fix_FRC(pos);
}
// Damp down the evaluation linearly when shuffling
v = v * (100 - pos.rule50_count()) / 100;
v = v * (208 - pos.rule50_count()) / 208;
// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
@ -1095,7 +1127,7 @@ Value Eval::evaluate(const Position& pos) {
/// descriptions and values of each evaluation term. Useful for debugging.
/// Trace scores are from white's point of view
std::string Eval::trace(const Position& pos) {
std::string Eval::trace(Position& pos) {
if (pos.checkers())
return "Final evaluation: none (in check)";
@ -1107,44 +1139,59 @@ std::string Eval::trace(const Position& pos) {
std::memset(scores, 0, sizeof(scores));
pos.this_thread()->contempt = SCORE_ZERO; // Reset any dynamic contempt
// Reset any global variable used in eval
pos.this_thread()->trend = SCORE_ZERO;
pos.this_thread()->bestValue = VALUE_ZERO;
pos.this_thread()->optimism[WHITE] = VALUE_ZERO;
pos.this_thread()->optimism[BLACK] = VALUE_ZERO;
v = Evaluation<TRACE>(pos).value();
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2)
<< " Term | White | Black | Total \n"
<< " | MG EG | MG EG | MG EG \n"
<< " ------------+-------------+-------------+------------\n"
<< " Material | " << Term(MATERIAL)
<< " Imbalance | " << Term(IMBALANCE)
<< " Pawns | " << Term(PAWN)
<< " Knights | " << Term(KNIGHT)
<< " Bishops | " << Term(BISHOP)
<< " Rooks | " << Term(ROOK)
<< " Queens | " << Term(QUEEN)
<< " Mobility | " << Term(MOBILITY)
<< " King safety | " << Term(KING)
<< " Threats | " << Term(THREAT)
<< " Passed | " << Term(PASSED)
<< " Space | " << Term(SPACE)
<< " Winnable | " << Term(WINNABLE)
<< " ------------+-------------+-------------+------------\n"
<< " Total | " << Term(TOTAL);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nClassical evaluation: " << to_cp(v) << " (white side)\n";
<< " Contributing terms for the classical eval:\n"
<< "+------------+-------------+-------------+-------------+\n"
<< "| Term | White | Black | Total |\n"
<< "| | MG EG | MG EG | MG EG |\n"
<< "+------------+-------------+-------------+-------------+\n"
<< "| Material | " << Term(MATERIAL)
<< "| Imbalance | " << Term(IMBALANCE)
<< "| Pawns | " << Term(PAWN)
<< "| Knights | " << Term(KNIGHT)
<< "| Bishops | " << Term(BISHOP)
<< "| Rooks | " << Term(ROOK)
<< "| Queens | " << Term(QUEEN)
<< "| Mobility | " << Term(MOBILITY)
<< "|King safety | " << Term(KING)
<< "| Threats | " << Term(THREAT)
<< "| Passed | " << Term(PASSED)
<< "| Space | " << Term(SPACE)
<< "| Winnable | " << Term(WINNABLE)
<< "+------------+-------------+-------------+-------------+\n"
<< "| Total | " << Term(TOTAL)
<< "+------------+-------------+-------------+-------------+\n";
if (Eval::useNNUE)
ss << '\n' << NNUE::trace(pos) << '\n';
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nClassical evaluation " << to_cp(v) << " (white side)\n";
if (Eval::useNNUE)
{
v = NNUE::evaluate(pos);
v = NNUE::evaluate(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nNNUE evaluation: " << to_cp(v) << " (white side)\n";
ss << "NNUE evaluation " << to_cp(v) << " (white side)\n";
}
v = evaluate(pos);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nFinal evaluation: " << to_cp(v) << " (white side)\n";
ss << "Final evaluation " << to_cp(v) << " (white side)";
if (Eval::useNNUE)
ss << " [with scaled NNUE, hybrid, ...]";
ss << "\n";
return ss.str();
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -20,33 +20,43 @@
#define EVALUATE_H_INCLUDED
#include <string>
#include <optional>
#include "types.h"
namespace Stockfish {
class Position;
namespace Eval {
std::string trace(const Position& pos);
std::string trace(Position& pos);
Value evaluate(const Position& pos);
extern bool useNNUE;
extern std::string eval_file_loaded;
extern std::string currentEvalFileName;
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-62ef826d1a6d.nnue"
#define EvalFileDefaultName "nn-6877cd24400e.nnue"
namespace NNUE {
Value evaluate(const Position& pos);
bool load_eval(std::string name, std::istream& stream);
std::string trace(Position& pos);
Value evaluate(const Position& pos, bool adjusted = false);
void init();
void verify();
bool load_eval(std::string name, std::istream& stream);
bool save_eval(std::ostream& stream);
bool save_eval(const std::optional<std::string>& filename);
} // namespace NNUE
} // namespace Eval
} // namespace Stockfish
#endif // #ifndef EVALUATE_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -28,6 +28,8 @@
#include "tt.h"
#include "uci.h"
using namespace Stockfish;
int main(int argc, char* argv[]) {
std::cout << engine_info() << std::endl;

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,6 +24,8 @@
using namespace std;
namespace Stockfish {
namespace {
#define S(mg, eg) make_score(mg, eg)
@ -72,7 +74,7 @@ namespace {
bool is_KBPsK(const Position& pos, Color us) {
return pos.non_pawn_material(us) == BishopValueMg
&& pos.count<PAWN >(us) >= 1;
&& pos.count<PAWN>(us) >= 1;
}
bool is_KQKRPs(const Position& pos, Color us) {
@ -223,3 +225,5 @@ Entry* probe(const Position& pos) {
}
} // namespace Material
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,7 +24,7 @@
#include "position.h"
#include "types.h"
namespace Material {
namespace Stockfish::Material {
/// Material::Entry contains various information about a material configuration.
/// It contains a material imbalance evaluation, a function pointer to a special
@ -66,6 +66,6 @@ typedef HashTable<Entry, 8192> Table;
Entry* probe(const Position& pos);
} // namespace Material
} // namespace Stockfish::Material
#endif // #ifndef MATERIAL_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -36,6 +36,8 @@ typedef bool(*fun1_t)(LOGICAL_PROCESSOR_RELATIONSHIP,
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX, PDWORD);
typedef bool(*fun2_t)(USHORT, PGROUP_AFFINITY);
typedef bool(*fun3_t)(HANDLE, CONST GROUP_AFFINITY*, PGROUP_AFFINITY);
typedef bool(*fun4_t)(USHORT, PGROUP_AFFINITY, USHORT, PUSHORT);
typedef WORD(*fun5_t)();
}
#endif
@ -51,7 +53,7 @@ typedef bool(*fun3_t)(HANDLE, CONST GROUP_AFFINITY*, PGROUP_AFFINITY);
#include <sys/mman.h>
#endif
#if defined(__APPLE__) || defined(__ANDROID__) || defined(__OpenBSD__) || (defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC) && !defined(_WIN32))
#if defined(__APPLE__) || defined(__ANDROID__) || defined(__OpenBSD__) || (defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC) && !defined(_WIN32)) || defined(__e2k__)
#define POSIXALIGNEDALLOC
#include <stdlib.h>
#endif
@ -61,6 +63,8 @@ typedef bool(*fun3_t)(HANDLE, CONST GROUP_AFFINITY*, PGROUP_AFFINITY);
using namespace std;
namespace Stockfish {
namespace {
/// Version number. If Version is left empty, then compile date in the format
@ -108,7 +112,14 @@ public:
static Logger l;
if (!fname.empty() && !l.file.is_open())
if (l.file.is_open())
{
cout.rdbuf(l.out.buf);
cin.rdbuf(l.in.buf);
l.file.close();
}
if (!fname.empty())
{
l.file.open(fname, ifstream::out);
@ -121,12 +132,6 @@ public:
cin.rdbuf(&l.in);
cout.rdbuf(&l.out);
}
else if (fname.empty() && l.file.is_open())
{
cout.rdbuf(l.out.buf);
cin.rdbuf(l.in.buf);
l.file.close();
}
}
};
@ -138,7 +143,7 @@ public:
/// the program was compiled) or "Stockfish <Version>", depending on whether
/// Version is empty.
const string engine_info(bool to_uci) {
string engine_info(bool to_uci) {
const string months("Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec");
string month, day, year;
@ -161,7 +166,7 @@ const string engine_info(bool to_uci) {
/// compiler_info() returns a string trying to describe the compiler we use
const std::string compiler_info() {
std::string compiler_info() {
#define stringify2(x) #x
#define stringify(x) stringify2(x)
@ -190,6 +195,18 @@ const std::string compiler_info() {
compiler += "(version ";
compiler += stringify(_MSC_FULL_VER) "." stringify(_MSC_BUILD);
compiler += ")";
#elif defined(__e2k__) && defined(__LCC__)
#define dot_ver2(n) \
compiler += (char)'.'; \
compiler += (char)('0' + (n) / 10); \
compiler += (char)('0' + (n) % 10);
compiler += "MCST LCC ";
compiler += "(version ";
compiler += std::to_string(__LCC__ / 100);
dot_ver2(__LCC__ % 100)
dot_ver2(__LCC_MINOR__)
compiler += ")";
#elif __GNUC__
compiler += "g++ (GNUC) ";
compiler += make_version_string(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);
@ -361,7 +378,12 @@ void std_aligned_free(void* ptr) {
#if defined(_WIN32)
static void* aligned_large_pages_alloc_win(size_t allocSize) {
static void* aligned_large_pages_alloc_windows(size_t allocSize) {
#if !defined(_WIN64)
(void)allocSize; // suppress unused-parameter compiler warning
return nullptr;
#else
HANDLE hProcessToken { };
LUID luid { };
@ -404,12 +426,14 @@ static void* aligned_large_pages_alloc_win(size_t allocSize) {
CloseHandle(hProcessToken);
return mem;
#endif
}
void* aligned_large_pages_alloc(size_t allocSize) {
// Try to allocate large pages
void* mem = aligned_large_pages_alloc_win(allocSize);
void* mem = aligned_large_pages_alloc_windows(allocSize);
// Fall back to regular, page aligned, allocation if necessary
if (!mem)
@ -449,8 +473,9 @@ void aligned_large_pages_free(void* mem) {
if (mem && !VirtualFree(mem, 0, MEM_RELEASE))
{
DWORD err = GetLastError();
std::cerr << "Failed to free transposition table. Error code: 0x" <<
std::hex << err << std::dec << std::endl;
std::cerr << "Failed to free large page memory. Error code: 0x"
<< std::hex << err
<< std::dec << std::endl;
exit(EXIT_FAILURE);
}
}
@ -472,11 +497,11 @@ void bindThisThread(size_t) {}
#else
/// best_group() retrieves logical processor information using Windows specific
/// API and returns the best group id for the thread with index idx. Original
/// best_node() retrieves logical processor information using Windows specific
/// API and returns the best node id for the thread with index idx. Original
/// code from Texel by Peter Österlund.
int best_group(size_t idx) {
int best_node(size_t idx) {
int threads = 0;
int nodes = 0;
@ -490,7 +515,8 @@ int best_group(size_t idx) {
if (!fun1)
return -1;
// First call to get returnLength. We expect it to fail due to null buffer
// First call to GetLogicalProcessorInformationEx() to get returnLength.
// We expect the call to fail due to null buffer.
if (fun1(RelationAll, nullptr, &returnLength))
return -1;
@ -498,7 +524,7 @@ int best_group(size_t idx) {
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *buffer, *ptr;
ptr = buffer = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)malloc(returnLength);
// Second call, now we expect to succeed
// Second call to GetLogicalProcessorInformationEx(), now we expect to succeed
if (!fun1(RelationAll, buffer, &returnLength))
{
free(buffer);
@ -548,22 +574,38 @@ int best_group(size_t idx) {
void bindThisThread(size_t idx) {
// Use only local variables to be thread-safe
int group = best_group(idx);
int node = best_node(idx);
if (group == -1)
if (node == -1)
return;
// Early exit if the needed API are not available at runtime
HMODULE k32 = GetModuleHandle("Kernel32.dll");
auto fun2 = (fun2_t)(void(*)())GetProcAddress(k32, "GetNumaNodeProcessorMaskEx");
auto fun3 = (fun3_t)(void(*)())GetProcAddress(k32, "SetThreadGroupAffinity");
auto fun4 = (fun4_t)(void(*)())GetProcAddress(k32, "GetNumaNodeProcessorMask2");
auto fun5 = (fun5_t)(void(*)())GetProcAddress(k32, "GetMaximumProcessorGroupCount");
if (!fun2 || !fun3)
return;
GROUP_AFFINITY affinity;
if (fun2(group, &affinity))
fun3(GetCurrentThread(), &affinity, nullptr);
if (!fun4 || !fun5)
{
GROUP_AFFINITY affinity;
if (fun2(node, &affinity)) // GetNumaNodeProcessorMaskEx
fun3(GetCurrentThread(), &affinity, nullptr); // SetThreadGroupAffinity
}
else
{
// If a numa node has more than one processor group, we assume they are
// sized equal and we spread threads evenly across the groups.
USHORT elements, returnedElements;
elements = fun5(); // GetMaximumProcessorGroupCount
GROUP_AFFINITY *affinity = (GROUP_AFFINITY*)malloc(elements * sizeof(GROUP_AFFINITY));
if (fun4(node, affinity, elements, &returnedElements)) // GetNumaNodeProcessorMask2
fun3(GetCurrentThread(), &affinity[idx % returnedElements], nullptr); // SetThreadGroupAffinity
free(affinity);
}
}
#endif
@ -626,3 +668,5 @@ void init(int argc, char* argv[]) {
} // namespace CommandLine
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -28,8 +28,10 @@
#include "types.h"
const std::string engine_info(bool to_uci = false);
const std::string compiler_info();
namespace Stockfish {
std::string engine_info(bool to_uci = false);
std::string compiler_info();
void prefetch(void* addr);
void start_logger(const std::string& fname);
void* std_aligned_alloc(size_t alignment, size_t size);
@ -64,9 +66,10 @@ std::ostream& operator<<(std::ostream&, SyncCout);
#define sync_cout std::cout << IO_LOCK
#define sync_endl std::endl << IO_UNLOCK
// `ptr` must point to an array of size at least
// `sizeof(T) * N + alignment` bytes, where `N` is the
// number of elements in the array.
// align_ptr_up() : get the first aligned element of an array.
// ptr must point to an array of size at least `sizeof(T) * N + alignment` bytes,
// where N is the number of elements in the array.
template <uintptr_t Alignment, typename T>
T* align_ptr_up(T* ptr)
{
@ -76,6 +79,95 @@ T* align_ptr_up(T* ptr)
return reinterpret_cast<T*>(reinterpret_cast<char*>((ptrint + (Alignment - 1)) / Alignment * Alignment));
}
// IsLittleEndian : true if and only if the binary is compiled on a little endian machine
static inline const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
static inline const bool IsLittleEndian = (Le.c[0] == 4);
// RunningAverage : a class to calculate a running average of a series of values.
// For efficiency, all computations are done with integers.
class RunningAverage {
public:
// Constructor
RunningAverage() {}
// Reset the running average to rational value p / q
void set(int64_t p, int64_t q)
{ average = p * PERIOD * RESOLUTION / q; }
// Update average with value v
void update(int64_t v)
{ average = RESOLUTION * v + (PERIOD - 1) * average / PERIOD; }
// Test if average is strictly greater than rational a / b
bool is_greater(int64_t a, int64_t b)
{ return b * average > a * PERIOD * RESOLUTION ; }
int64_t value()
{ return average / (PERIOD * RESOLUTION); }
private :
static constexpr int64_t PERIOD = 4096;
static constexpr int64_t RESOLUTION = 1024;
int64_t average;
};
template <typename T, std::size_t MaxSize>
class ValueList {
public:
std::size_t size() const { return size_; }
void resize(std::size_t newSize) { size_ = newSize; }
void push_back(const T& value) { values_[size_++] = value; }
T& operator[](std::size_t index) { return values_[index]; }
T* begin() { return values_; }
T* end() { return values_ + size_; }
const T& operator[](std::size_t index) const { return values_[index]; }
const T* begin() const { return values_; }
const T* end() const { return values_ + size_; }
void swap(ValueList& other) {
const std::size_t maxSize = std::max(size_, other.size_);
for (std::size_t i = 0; i < maxSize; ++i) {
std::swap(values_[i], other.values_[i]);
}
std::swap(size_, other.size_);
}
private:
T values_[MaxSize];
std::size_t size_ = 0;
};
/// sigmoid(t, x0, y0, C, P, Q) implements a sigmoid-like function using only integers,
/// with the following properties:
///
/// - sigmoid is centered in (x0, y0)
/// - sigmoid has amplitude [-P/Q , P/Q] instead of [-1 , +1]
/// - limit is (y0 - P/Q) when t tends to -infinity
/// - limit is (y0 + P/Q) when t tends to +infinity
/// - the slope can be adjusted using C > 0, smaller C giving a steeper sigmoid
/// - the slope of the sigmoid when t = x0 is P/(Q*C)
/// - sigmoid is increasing with t when P > 0 and Q > 0
/// - to get a decreasing sigmoid, call with -t, or change sign of P
/// - mean value of the sigmoid is y0
///
/// Use <https://www.desmos.com/calculator/jhh83sqq92> to draw the sigmoid
inline int64_t sigmoid(int64_t t, int64_t x0,
int64_t y0,
int64_t C,
int64_t P,
int64_t Q)
{
assert(C > 0);
return y0 + P * (t-x0) / (Q * (std::abs(t-x0) + C)) ;
}
/// xorshift64star Pseudo-Random Number Generator
/// This class is based on original code written and dedicated
/// to the public domain by Sebastiano Vigna (2014).
@ -143,4 +235,6 @@ namespace CommandLine {
extern std::string workingDirectory; // path of the working directory
}
} // namespace Stockfish
#endif // #ifndef MISC_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -21,24 +21,21 @@
#include "movegen.h"
#include "position.h"
namespace Stockfish {
namespace {
template<GenType Type, Direction D>
ExtMove* make_promotions(ExtMove* moveList, Square to, Square ksq) {
ExtMove* make_promotions(ExtMove* moveList, Square to) {
if (Type == CAPTURES || Type == EVASIONS || Type == NON_EVASIONS)
{
*moveList++ = make<PROMOTION>(to - D, to, QUEEN);
if (attacks_bb<KNIGHT>(to) & ksq)
*moveList++ = make<PROMOTION>(to - D, to, KNIGHT);
}
if (Type == QUIETS || Type == EVASIONS || Type == NON_EVASIONS)
{
*moveList++ = make<PROMOTION>(to - D, to, ROOK);
*moveList++ = make<PROMOTION>(to - D, to, BISHOP);
if (!(attacks_bb<KNIGHT>(to) & ksq))
*moveList++ = make<PROMOTION>(to - D, to, KNIGHT);
*moveList++ = make<PROMOTION>(to - D, to, KNIGHT);
}
return moveList;
@ -55,20 +52,16 @@ namespace {
constexpr Direction UpRight = (Us == WHITE ? NORTH_EAST : SOUTH_WEST);
constexpr Direction UpLeft = (Us == WHITE ? NORTH_WEST : SOUTH_EAST);
const Square ksq = pos.square<KING>(Them);
Bitboard emptySquares;
const Bitboard emptySquares = ~pos.pieces();
const Bitboard enemies = Type == EVASIONS ? pos.checkers()
: pos.pieces(Them);
Bitboard pawnsOn7 = pos.pieces(Us, PAWN) & TRank7BB;
Bitboard pawnsNotOn7 = pos.pieces(Us, PAWN) & ~TRank7BB;
Bitboard enemies = (Type == EVASIONS ? pos.pieces(Them) & target:
Type == CAPTURES ? target : pos.pieces(Them));
// Single and double pawn pushes, no promotions
if (Type != CAPTURES)
{
emptySquares = (Type == QUIETS || Type == QUIET_CHECKS ? target : ~pos.pieces());
Bitboard b1 = shift<Up>(pawnsNotOn7) & emptySquares;
Bitboard b2 = shift<Up>(b1 & TRank3BB) & emptySquares;
@ -80,33 +73,24 @@ namespace {
if (Type == QUIET_CHECKS)
{
b1 &= pawn_attacks_bb(Them, ksq);
b2 &= pawn_attacks_bb(Them, ksq);
// Add pawn pushes which give discovered check. This is possible only
// if the pawn is not on the same file as the enemy king, because we
// don't generate captures. Note that a possible discovered check
// promotion has been already generated amongst the captures.
Bitboard dcCandidateQuiets = pos.blockers_for_king(Them) & pawnsNotOn7;
if (dcCandidateQuiets)
{
Bitboard dc1 = shift<Up>(dcCandidateQuiets) & emptySquares & ~file_bb(ksq);
Bitboard dc2 = shift<Up>(dc1 & TRank3BB) & emptySquares;
b1 |= dc1;
b2 |= dc2;
}
// To make a quiet check, you either make a direct check by pushing a pawn
// or push a blocker pawn that is not on the same file as the enemy king.
// Discovered check promotion has been already generated amongst the captures.
Square ksq = pos.square<KING>(Them);
Bitboard dcCandidatePawns = pos.blockers_for_king(Them) & ~file_bb(ksq);
b1 &= pawn_attacks_bb(Them, ksq) | shift< Up>(dcCandidatePawns);
b2 &= pawn_attacks_bb(Them, ksq) | shift<Up+Up>(dcCandidatePawns);
}
while (b1)
{
Square to = pop_lsb(&b1);
Square to = pop_lsb(b1);
*moveList++ = make_move(to - Up, to);
}
while (b2)
{
Square to = pop_lsb(&b2);
Square to = pop_lsb(b2);
*moveList++ = make_move(to - Up - Up, to);
}
}
@ -114,24 +98,21 @@ namespace {
// Promotions and underpromotions
if (pawnsOn7)
{
if (Type == CAPTURES)
emptySquares = ~pos.pieces();
if (Type == EVASIONS)
emptySquares &= target;
Bitboard b1 = shift<UpRight>(pawnsOn7) & enemies;
Bitboard b2 = shift<UpLeft >(pawnsOn7) & enemies;
Bitboard b3 = shift<Up >(pawnsOn7) & emptySquares;
if (Type == EVASIONS)
b3 &= target;
while (b1)
moveList = make_promotions<Type, UpRight>(moveList, pop_lsb(&b1), ksq);
moveList = make_promotions<Type, UpRight>(moveList, pop_lsb(b1));
while (b2)
moveList = make_promotions<Type, UpLeft >(moveList, pop_lsb(&b2), ksq);
moveList = make_promotions<Type, UpLeft >(moveList, pop_lsb(b2));
while (b3)
moveList = make_promotions<Type, Up >(moveList, pop_lsb(&b3), ksq);
moveList = make_promotions<Type, Up >(moveList, pop_lsb(b3));
}
// Standard and en passant captures
@ -142,13 +123,13 @@ namespace {
while (b1)
{
Square to = pop_lsb(&b1);
Square to = pop_lsb(b1);
*moveList++ = make_move(to - UpRight, to);
}
while (b2)
{
Square to = pop_lsb(&b2);
Square to = pop_lsb(b2);
*moveList++ = make_move(to - UpLeft, to);
}
@ -156,7 +137,7 @@ namespace {
{
assert(rank_of(pos.ep_square()) == relative_rank(Us, RANK_6));
// An en passant capture cannot resolve a discovered check.
// An en passant capture cannot resolve a discovered check
if (Type == EVASIONS && (target & (pos.ep_square() + Up)))
return moveList;
@ -165,7 +146,7 @@ namespace {
assert(b1);
while (b1)
*moveList++ = make<EN_PASSANT>(pop_lsb(&b1), pos.ep_square());
*moveList++ = make<EN_PASSANT>(pop_lsb(b1), pos.ep_square());
}
}
@ -173,27 +154,24 @@ namespace {
}
template<PieceType Pt, bool Checks>
ExtMove* generate_moves(const Position& pos, ExtMove* moveList, Bitboard piecesToMove, Bitboard target) {
template<Color Us, PieceType Pt, bool Checks>
ExtMove* generate_moves(const Position& pos, ExtMove* moveList, Bitboard target) {
static_assert(Pt != KING && Pt != PAWN, "Unsupported piece type in generate_moves()");
Bitboard bb = piecesToMove & pos.pieces(Pt);
if (!bb)
return moveList;
[[maybe_unused]] const Bitboard checkSquares = pos.check_squares(Pt);
while (bb) {
Square from = pop_lsb(&bb);
Bitboard bb = pos.pieces(Us, Pt);
while (bb)
{
Square from = pop_lsb(bb);
Bitboard b = attacks_bb<Pt>(from, pos.pieces()) & target;
if constexpr (Checks)
b &= checkSquares;
// To check, you either move freely a blocker or make a direct check.
if (Checks && (Pt == QUEEN || !(pos.blockers_for_king(~Us) & from)))
b &= pos.check_squares(Pt);
while (b)
*moveList++ = make_move(from, pop_lsb(&b));
*moveList++ = make_move(from, pop_lsb(b));
}
return moveList;
@ -206,45 +184,34 @@ namespace {
static_assert(Type != LEGAL, "Unsupported type in generate_all()");
constexpr bool Checks = Type == QUIET_CHECKS; // Reduce template instantiations
Bitboard target, piecesToMove = pos.pieces(Us);
const Square ksq = pos.square<KING>(Us);
Bitboard target;
if(Type == QUIET_CHECKS)
piecesToMove &= ~pos.blockers_for_king(~Us);
switch (Type)
// Skip generating non-king moves when in double check
if (Type != EVASIONS || !more_than_one(pos.checkers()))
{
case CAPTURES:
target = pos.pieces(~Us);
break;
case QUIETS:
case QUIET_CHECKS:
target = ~pos.pieces();
break;
case EVASIONS:
{
Square checksq = lsb(pos.checkers());
target = between_bb(pos.square<KING>(Us), checksq) | checksq;
break;
}
case NON_EVASIONS:
target = ~pos.pieces(Us);
break;
target = Type == EVASIONS ? between_bb(ksq, lsb(pos.checkers()))
: Type == NON_EVASIONS ? ~pos.pieces( Us)
: Type == CAPTURES ? pos.pieces(~Us)
: ~pos.pieces( ); // QUIETS || QUIET_CHECKS
moveList = generate_pawn_moves<Us, Type>(pos, moveList, target);
moveList = generate_moves<Us, KNIGHT, Checks>(pos, moveList, target);
moveList = generate_moves<Us, BISHOP, Checks>(pos, moveList, target);
moveList = generate_moves<Us, ROOK, Checks>(pos, moveList, target);
moveList = generate_moves<Us, QUEEN, Checks>(pos, moveList, target);
}
moveList = generate_pawn_moves<Us, Type>(pos, moveList, target);
moveList = generate_moves<KNIGHT, Checks>(pos, moveList, piecesToMove, target);
moveList = generate_moves<BISHOP, Checks>(pos, moveList, piecesToMove, target);
moveList = generate_moves< ROOK, Checks>(pos, moveList, piecesToMove, target);
moveList = generate_moves< QUEEN, Checks>(pos, moveList, piecesToMove, target);
if (Type != QUIET_CHECKS && Type != EVASIONS)
if (!Checks || pos.blockers_for_king(~Us) & ksq)
{
Square ksq = pos.square<KING>(Us);
Bitboard b = attacks_bb<KING>(ksq) & target;
while (b)
*moveList++ = make_move(ksq, pop_lsb(&b));
Bitboard b = attacks_bb<KING>(ksq) & (Type == EVASIONS ? ~pos.pieces(Us) : target);
if (Checks)
b &= ~attacks_bb<QUEEN>(pos.square<KING>(~Us));
if ((Type != CAPTURES) && pos.can_castle(Us & ANY_CASTLING))
while (b)
*moveList++ = make_move(ksq, pop_lsb(b));
if ((Type == QUIETS || Type == NON_EVASIONS) && pos.can_castle(Us & ANY_CASTLING))
for (CastlingRights cr : { Us & KING_SIDE, Us & QUEEN_SIDE } )
if (!pos.castling_impeded(cr) && pos.can_castle(cr))
*moveList++ = make<CASTLING>(ksq, pos.castling_rook_square(cr));
@ -256,8 +223,10 @@ namespace {
} // namespace
/// <CAPTURES> Generates all pseudo-legal captures plus queen and checking knight promotions
/// <QUIETS> Generates all pseudo-legal non-captures and underpromotions (except checking knight)
/// <CAPTURES> Generates all pseudo-legal captures plus queen promotions
/// <QUIETS> Generates all pseudo-legal non-captures and underpromotions
/// <EVASIONS> Generates all pseudo-legal check evasions when the side to move is in check
/// <QUIET_CHECKS> Generates all pseudo-legal non-captures giving check, except castling and promotions
/// <NON_EVASIONS> Generates all pseudo-legal captures and non-captures
///
/// Returns a pointer to the end of the move list.
@ -265,8 +234,8 @@ namespace {
template<GenType Type>
ExtMove* generate(const Position& pos, ExtMove* moveList) {
static_assert(Type == CAPTURES || Type == QUIETS || Type == NON_EVASIONS, "Unsupported type in generate()");
assert(!pos.checkers());
static_assert(Type != LEGAL, "Unsupported type in generate()");
assert((Type == EVASIONS) == (bool)pos.checkers());
Color us = pos.side_to_move();
@ -277,70 +246,11 @@ ExtMove* generate(const Position& pos, ExtMove* moveList) {
// Explicit template instantiations
template ExtMove* generate<CAPTURES>(const Position&, ExtMove*);
template ExtMove* generate<QUIETS>(const Position&, ExtMove*);
template ExtMove* generate<EVASIONS>(const Position&, ExtMove*);
template ExtMove* generate<QUIET_CHECKS>(const Position&, ExtMove*);
template ExtMove* generate<NON_EVASIONS>(const Position&, ExtMove*);
/// generate<QUIET_CHECKS> generates all pseudo-legal non-captures giving check,
/// except castling. Returns a pointer to the end of the move list.
template<>
ExtMove* generate<QUIET_CHECKS>(const Position& pos, ExtMove* moveList) {
assert(!pos.checkers());
Color us = pos.side_to_move();
Bitboard dc = pos.blockers_for_king(~us) & pos.pieces(us) & ~pos.pieces(PAWN);
while (dc)
{
Square from = pop_lsb(&dc);
PieceType pt = type_of(pos.piece_on(from));
Bitboard b = attacks_bb(pt, from, pos.pieces()) & ~pos.pieces();
if (pt == KING)
b &= ~attacks_bb<QUEEN>(pos.square<KING>(~us));
while (b)
*moveList++ = make_move(from, pop_lsb(&b));
}
return us == WHITE ? generate_all<WHITE, QUIET_CHECKS>(pos, moveList)
: generate_all<BLACK, QUIET_CHECKS>(pos, moveList);
}
/// generate<EVASIONS> generates all pseudo-legal check evasions when the side
/// to move is in check. Returns a pointer to the end of the move list.
template<>
ExtMove* generate<EVASIONS>(const Position& pos, ExtMove* moveList) {
assert(pos.checkers());
Color us = pos.side_to_move();
Square ksq = pos.square<KING>(us);
Bitboard sliderAttacks = 0;
Bitboard sliders = pos.checkers() & ~pos.pieces(KNIGHT, PAWN);
// Find all the squares attacked by slider checkers. We will remove them from
// the king evasions in order to skip known illegal moves, which avoids any
// useless legality checks later on.
while (sliders)
sliderAttacks |= line_bb(ksq, pop_lsb(&sliders)) & ~pos.checkers();
// Generate evasions for king, capture and non capture moves
Bitboard b = attacks_bb<KING>(ksq) & ~pos.pieces(us) & ~sliderAttacks;
while (b)
*moveList++ = make_move(ksq, pop_lsb(&b));
if (more_than_one(pos.checkers()))
return moveList; // Double check, only a king move can save the day
// Generate blocking evasions or captures of the checking piece
return us == WHITE ? generate_all<WHITE, EVASIONS>(pos, moveList)
: generate_all<BLACK, EVASIONS>(pos, moveList);
}
/// generate<LEGAL> generates all the legal moves in the given position
template<>
@ -362,3 +272,5 @@ ExtMove* generate<LEGAL>(const Position& pos, ExtMove* moveList) {
return moveList;
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,6 +23,8 @@
#include "types.h"
namespace Stockfish {
class Position;
enum GenType {
@ -70,4 +72,6 @@ private:
ExtMove moveList[MAX_MOVES], *last;
};
} // namespace Stockfish
#endif // #ifndef MOVEGEN_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -20,6 +20,8 @@
#include "movepick.h"
namespace Stockfish {
namespace {
enum Stages {
@ -54,11 +56,14 @@ namespace {
/// ordering is at the current node.
/// MovePicker constructor for the main search
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh, const LowPlyHistory* lp,
const CapturePieceToHistory* cph, const PieceToHistory** ch, Move cm, const Move* killers, int pl)
: pos(p), mainHistory(mh), lowPlyHistory(lp), captureHistory(cph), continuationHistory(ch),
ttMove(ttm), refutations{{killers[0], 0}, {killers[1], 0}, {cm, 0}}, depth(d), ply(pl) {
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh,
const CapturePieceToHistory* cph,
const PieceToHistory** ch,
Move cm,
const Move* killers)
: pos(p), mainHistory(mh), captureHistory(cph), continuationHistory(ch),
ttMove(ttm), refutations{{killers[0], 0}, {killers[1], 0}, {cm, 0}}, depth(d)
{
assert(d > 0);
stage = (pos.checkers() ? EVASION_TT : MAIN_TT) +
@ -67,9 +72,11 @@ MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHist
/// MovePicker constructor for quiescence search
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh,
const CapturePieceToHistory* cph, const PieceToHistory** ch, Square rs)
: pos(p), mainHistory(mh), captureHistory(cph), continuationHistory(ch), ttMove(ttm), recaptureSquare(rs), depth(d) {
const CapturePieceToHistory* cph,
const PieceToHistory** ch,
Square rs)
: pos(p), mainHistory(mh), captureHistory(cph), continuationHistory(ch), ttMove(ttm), recaptureSquare(rs), depth(d)
{
assert(d <= 0);
stage = (pos.checkers() ? EVASION_TT : QSEARCH_TT) +
@ -81,8 +88,8 @@ MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHist
/// MovePicker constructor for ProbCut: we generate captures with SEE greater
/// than or equal to the given threshold.
MovePicker::MovePicker(const Position& p, Move ttm, Value th, const CapturePieceToHistory* cph)
: pos(p), captureHistory(cph), ttMove(ttm), threshold(th) {
: pos(p), captureHistory(cph), ttMove(ttm), threshold(th)
{
assert(!pos.checkers());
stage = PROBCUT_TT + !(ttm && pos.capture(ttm)
@ -108,8 +115,7 @@ void MovePicker::score() {
+ 2 * (*continuationHistory[0])[pos.moved_piece(m)][to_sq(m)]
+ (*continuationHistory[1])[pos.moved_piece(m)][to_sq(m)]
+ (*continuationHistory[3])[pos.moved_piece(m)][to_sq(m)]
+ (*continuationHistory[5])[pos.moved_piece(m)][to_sq(m)]
+ (ply < MAX_LPH ? std::min(4, depth / 3) * (*lowPlyHistory)[ply][from_to(m)] : 0);
+ (*continuationHistory[5])[pos.moved_piece(m)][to_sq(m)];
else // Type == EVASIONS
{
@ -263,3 +269,5 @@ top:
assert(false);
return MOVE_NONE; // Silence warning
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -27,6 +27,8 @@
#include "position.h"
#include "types.h"
namespace Stockfish {
/// StatsEntry stores the stat table value. It is usually a number but could
/// be a move or even a nested history. We use a class instead of naked value
/// to directly call history update operator<<() on the entry so to use stats
@ -84,13 +86,7 @@ enum StatsType { NoCaptures, Captures };
/// unsuccessful during the current search, and is used for reduction and move
/// ordering decisions. It uses 2 tables (one for each color) indexed by
/// the move's from and to squares, see www.chessprogramming.org/Butterfly_Boards
typedef Stats<int16_t, 13365, COLOR_NB, int(SQUARE_NB) * int(SQUARE_NB)> ButterflyHistory;
/// At higher depths LowPlyHistory records successful quiet moves near the root
/// and quiet moves which are/were in the PV (ttPv). It is cleared with each new
/// search and filled during iterative deepening.
constexpr int MAX_LPH = 4;
typedef Stats<int16_t, 10692, MAX_LPH, int(SQUARE_NB) * int(SQUARE_NB)> LowPlyHistory;
typedef Stats<int16_t, 14365, COLOR_NB, int(SQUARE_NB) * int(SQUARE_NB)> ButterflyHistory;
/// CounterMoveHistory stores counter moves indexed by [piece][to] of the previous
/// move, see www.chessprogramming.org/Countermove_Heuristic
@ -121,18 +117,16 @@ class MovePicker {
public:
MovePicker(const MovePicker&) = delete;
MovePicker& operator=(const MovePicker&) = delete;
MovePicker(const Position&, Move, Value, const CapturePieceToHistory*);
MovePicker(const Position&, Move, Depth, const ButterflyHistory*,
const CapturePieceToHistory*,
const PieceToHistory**,
Move,
const Move*);
MovePicker(const Position&, Move, Depth, const ButterflyHistory*,
const CapturePieceToHistory*,
const PieceToHistory**,
Square);
MovePicker(const Position&, Move, Depth, const ButterflyHistory*,
const LowPlyHistory*,
const CapturePieceToHistory*,
const PieceToHistory**,
Move,
const Move*,
int);
MovePicker(const Position&, Move, Value, const CapturePieceToHistory*);
Move next_move(bool skipQuiets = false);
private:
@ -143,7 +137,6 @@ private:
const Position& pos;
const ButterflyHistory* mainHistory;
const LowPlyHistory* lowPlyHistory;
const CapturePieceToHistory* captureHistory;
const PieceToHistory** continuationHistory;
Move ttMove;
@ -152,8 +145,9 @@ private:
Square recaptureSquare;
Value threshold;
Depth depth;
int ply;
ExtMove moves[MAX_MOVES];
};
} // namespace Stockfish
#endif // #ifndef MOVEPICK_H_INCLUDED

View file

@ -1,54 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of input features and network structure used in NNUE evaluation function
#ifndef NNUE_HALFKP_256X2_32_32_H_INCLUDED
#define NNUE_HALFKP_256X2_32_32_H_INCLUDED
#include "../features/feature_set.h"
#include "../features/half_kp.h"
#include "../layers/input_slice.h"
#include "../layers/affine_transform.h"
#include "../layers/clipped_relu.h"
namespace Eval::NNUE {
// Input features used in evaluation function
using RawFeatures = Features::FeatureSet<
Features::HalfKP<Features::Side::kFriend>>;
// Number of input feature dimensions after conversion
constexpr IndexType kTransformedFeatureDimensions = 256;
namespace Layers {
// Define network structure
using InputLayer = InputSlice<kTransformedFeatureDimensions * 2>;
using HiddenLayer1 = ClippedReLU<AffineTransform<InputLayer, 32>>;
using HiddenLayer2 = ClippedReLU<AffineTransform<HiddenLayer1, 32>>;
using OutputLayer = AffineTransform<HiddenLayer2, 1>;
} // namespace Layers
using Network = Layers::OutputLayer;
} // namespace Eval::NNUE
#endif // #ifndef NNUE_HALFKP_256X2_32_32_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -20,6 +20,9 @@
#include <iostream>
#include <set>
#include <sstream>
#include <iomanip>
#include <fstream>
#include "../evaluate.h"
#include "../position.h"
@ -29,29 +32,30 @@
#include "evaluate_nnue.h"
namespace Eval::NNUE {
namespace Stockfish::Eval::NNUE {
// Input feature converter
LargePagePtr<FeatureTransformer> feature_transformer;
LargePagePtr<FeatureTransformer> featureTransformer;
// Evaluation function
AlignedPtr<Network> network;
AlignedPtr<Network> network[LayerStacks];
// Evaluation function file name
std::string fileName;
std::string netDescription;
namespace Detail {
// Initialize the evaluation function parameters
template <typename T>
void Initialize(AlignedPtr<T>& pointer) {
void initialize(AlignedPtr<T>& pointer) {
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
template <typename T>
void Initialize(LargePagePtr<T>& pointer) {
void initialize(LargePagePtr<T>& pointer) {
static_assert(alignof(T) <= 4096, "aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
@ -60,85 +64,340 @@ namespace Eval::NNUE {
// Read evaluation function parameters
template <typename T>
bool ReadParameters(std::istream& stream, T& reference) {
bool read_parameters(std::istream& stream, T& reference) {
std::uint32_t header;
header = read_little_endian<std::uint32_t>(stream);
if (!stream || header != T::GetHashValue()) return false;
return reference.ReadParameters(stream);
if (!stream || header != T::get_hash_value()) return false;
return reference.read_parameters(stream);
}
// Write evaluation function parameters
template <typename T>
bool write_parameters(std::ostream& stream, const T& reference) {
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
return reference.write_parameters(stream);
}
} // namespace Detail
// Initialize the evaluation function parameters
void Initialize() {
void initialize() {
Detail::Initialize(feature_transformer);
Detail::Initialize(network);
Detail::initialize(featureTransformer);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(network[i]);
}
// Read network header
bool ReadHeader(std::istream& stream, std::uint32_t* hash_value, std::string* architecture)
bool read_header(std::istream& stream, std::uint32_t* hashValue, std::string* desc)
{
std::uint32_t version, size;
version = read_little_endian<std::uint32_t>(stream);
*hash_value = read_little_endian<std::uint32_t>(stream);
*hashValue = read_little_endian<std::uint32_t>(stream);
size = read_little_endian<std::uint32_t>(stream);
if (!stream || version != kVersion) return false;
architecture->resize(size);
stream.read(&(*architecture)[0], size);
if (!stream || version != Version) return false;
desc->resize(size);
stream.read(&(*desc)[0], size);
return !stream.fail();
}
// Write network header
bool write_header(std::ostream& stream, std::uint32_t hashValue, const std::string& desc)
{
write_little_endian<std::uint32_t>(stream, Version);
write_little_endian<std::uint32_t>(stream, hashValue);
write_little_endian<std::uint32_t>(stream, desc.size());
stream.write(&desc[0], desc.size());
return !stream.fail();
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
bool read_parameters(std::istream& stream) {
std::uint32_t hash_value;
std::string architecture;
if (!ReadHeader(stream, &hash_value, &architecture)) return false;
if (hash_value != kHashValue) return false;
if (!Detail::ReadParameters(stream, *feature_transformer)) return false;
if (!Detail::ReadParameters(stream, *network)) return false;
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription)) return false;
if (hashValue != HashValue) return false;
if (!Detail::read_parameters(stream, *featureTransformer)) return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::read_parameters(stream, *(network[i]))) return false;
return stream && stream.peek() == std::ios::traits_type::eof();
}
// Write network parameters
bool write_parameters(std::ostream& stream) {
if (!write_header(stream, HashValue, netDescription)) return false;
if (!Detail::write_parameters(stream, *featureTransformer)) return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::write_parameters(stream, *(network[i]))) return false;
return (bool)stream;
}
// Evaluation function. Perform differential calculation.
Value evaluate(const Position& pos) {
Value evaluate(const Position& pos, bool adjusted) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = kCacheLineSize;
constexpr uint64_t alignment = CacheLineSize;
int delta = 7;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformed_features_unaligned[
FeatureTransformer::kBufferSize + alignment / sizeof(TransformedFeatureType)];
char buffer_unaligned[Network::kBufferSize + alignment];
TransformedFeatureType transformedFeaturesUnaligned[
FeatureTransformer::BufferSize + alignment / sizeof(TransformedFeatureType)];
auto* transformed_features = align_ptr_up<alignment>(&transformed_features_unaligned[0]);
auto* buffer = align_ptr_up<alignment>(&buffer_unaligned[0]);
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment)
TransformedFeatureType transformed_features[FeatureTransformer::kBufferSize];
alignas(alignment) char buffer[Network::kBufferSize];
TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
#endif
ASSERT_ALIGNED(transformed_features, alignment);
ASSERT_ALIGNED(buffer, alignment);
ASSERT_ALIGNED(transformedFeatures, alignment);
feature_transformer->Transform(pos, transformed_features);
const auto output = network->Propagate(transformed_features, buffer);
const std::size_t bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
return static_cast<Value>(output[0] / FV_SCALE);
// Give more value to positional evaluation when adjusted flag is set
if (adjusted)
return static_cast<Value>(((128 - delta) * psqt + (128 + delta) * positional) / 128 / OutputScale);
else
return static_cast<Value>((psqt + positional) / OutputScale);
}
struct NnueEvalTrace {
static_assert(LayerStacks == PSQTBuckets);
Value psqt[LayerStacks];
Value positional[LayerStacks];
std::size_t correctBucket;
};
static NnueEvalTrace trace_evaluate(const Position& pos) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned[
FeatureTransformer::BufferSize + alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment)
TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
NnueEvalTrace t{};
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket) {
const auto materialist = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
t.psqt[bucket] = static_cast<Value>( materialist / OutputScale );
t.positional[bucket] = static_cast<Value>( positional / OutputScale );
}
return t;
}
static const std::string PieceToChar(" PNBRQK pnbrqk");
// format_cp_compact() converts a Value into (centi)pawns and writes it in a buffer.
// The buffer must have capacity for at least 5 chars.
static void format_cp_compact(Value v, char* buffer) {
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
int cp = std::abs(100 * v / PawnValueEg);
if (cp >= 10000)
{
buffer[1] = '0' + cp / 10000; cp %= 10000;
buffer[2] = '0' + cp / 1000; cp %= 1000;
buffer[3] = '0' + cp / 100;
buffer[4] = ' ';
}
else if (cp >= 1000)
{
buffer[1] = '0' + cp / 1000; cp %= 1000;
buffer[2] = '0' + cp / 100; cp %= 100;
buffer[3] = '.';
buffer[4] = '0' + cp / 10;
}
else
{
buffer[1] = '0' + cp / 100; cp %= 100;
buffer[2] = '.';
buffer[3] = '0' + cp / 10; cp %= 10;
buffer[4] = '0' + cp / 1;
}
}
// format_cp_aligned_dot() converts a Value into (centi)pawns and writes it in a buffer,
// always keeping two decimals. The buffer must have capacity for at least 7 chars.
static void format_cp_aligned_dot(Value v, char* buffer) {
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
double cp = 1.0 * std::abs(int(v)) / PawnValueEg;
sprintf(&buffer[1], "%6.2f", cp);
}
// trace() returns a string with the value of each piece on a board,
// and a table for (PSQT, Layers) values bucket by bucket.
std::string trace(Position& pos) {
std::stringstream ss;
char board[3*8+1][8*8+2];
std::memset(board, ' ', sizeof(board));
for (int row = 0; row < 3*8+1; ++row)
board[row][8*8+1] = '\0';
// A lambda to output one box of the board
auto writeSquare = [&board](File file, Rank rank, Piece pc, Value value) {
const int x = ((int)file) * 8;
const int y = (7 - (int)rank) * 3;
for (int i = 1; i < 8; ++i)
board[y][x+i] = board[y+3][x+i] = '-';
for (int i = 1; i < 3; ++i)
board[y+i][x] = board[y+i][x+8] = '|';
board[y][x] = board[y][x+8] = board[y+3][x+8] = board[y+3][x] = '+';
if (pc != NO_PIECE)
board[y+1][x+4] = PieceToChar[pc];
if (value != VALUE_NONE)
format_cp_compact(value, &board[y+2][x+2]);
};
// We estimate the value of each piece by doing a differential evaluation from
// the current base eval, simulating the removal of the piece from its square.
Value base = evaluate(pos);
base = pos.side_to_move() == WHITE ? base : -base;
for (File f = FILE_A; f <= FILE_H; ++f)
for (Rank r = RANK_1; r <= RANK_8; ++r)
{
Square sq = make_square(f, r);
Piece pc = pos.piece_on(sq);
Value v = VALUE_NONE;
if (pc != NO_PIECE && type_of(pc) != KING)
{
auto st = pos.state();
pos.remove_piece(sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
Value eval = evaluate(pos);
eval = pos.side_to_move() == WHITE ? eval : -eval;
v = base - eval;
pos.put_piece(pc, sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
}
writeSquare(f, r, pc, v);
}
ss << " NNUE derived piece values:\n";
for (int row = 0; row < 3*8+1; ++row)
ss << board[row] << '\n';
ss << '\n';
auto t = trace_evaluate(pos);
ss << " NNUE network contributions "
<< (pos.side_to_move() == WHITE ? "(White to move)" : "(Black to move)") << std::endl
<< "+------------+------------+------------+------------+\n"
<< "| Bucket | Material | Positional | Total |\n"
<< "| | (PSQT) | (Layers) | |\n"
<< "+------------+------------+------------+------------+\n";
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket)
{
char buffer[3][8];
std::memset(buffer, '\0', sizeof(buffer));
format_cp_aligned_dot(t.psqt[bucket], buffer[0]);
format_cp_aligned_dot(t.positional[bucket], buffer[1]);
format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], buffer[2]);
ss << "| " << bucket << " "
<< " | " << buffer[0] << " "
<< " | " << buffer[1] << " "
<< " | " << buffer[2] << " "
<< " |";
if (bucket == t.correctBucket)
ss << " <-- this bucket is used";
ss << '\n';
}
ss << "+------------+------------+------------+------------+\n";
return ss.str();
}
// Load eval, from a file stream or a memory stream
bool load_eval(std::string name, std::istream& stream) {
Initialize();
initialize();
fileName = name;
return ReadParameters(stream);
return read_parameters(stream);
}
} // namespace Eval::NNUE
// Save eval, to a file stream or a memory stream
bool save_eval(std::ostream& stream) {
if (fileName.empty())
return false;
return write_parameters(stream);
}
/// Save eval, to a file given by its name
bool save_eval(const std::optional<std::string>& filename) {
std::string actualFilename;
std::string msg;
if (filename.has_value())
actualFilename = filename.value();
else
{
if (currentEvalFileName != EvalFileDefaultName)
{
msg = "Failed to export a net. A non-embedded net can only be saved if the filename is specified";
sync_cout << msg << sync_endl;
return false;
}
actualFilename = EvalFileDefaultName;
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save_eval(stream);
msg = saved ? "Network saved successfully to " + actualFilename
: "Failed to export a net";
sync_cout << msg << sync_endl;
return saved;
}
} // namespace Stockfish::Eval::NNUE

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -25,11 +25,11 @@
#include <memory>
namespace Eval::NNUE {
namespace Stockfish::Eval::NNUE {
// Hash value of evaluation function structure
constexpr std::uint32_t kHashValue =
FeatureTransformer::GetHashValue() ^ Network::GetHashValue();
constexpr std::uint32_t HashValue =
FeatureTransformer::get_hash_value() ^ Network::get_hash_value();
// Deleter for automating release of memory area
template <typename T>
@ -54,6 +54,6 @@ namespace Eval::NNUE {
template <typename T>
using LargePagePtr = std::unique_ptr<T, LargePageDeleter<T>>;
} // namespace Eval::NNUE
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_EVALUATE_NNUE_H_INCLUDED

View file

@ -1,69 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// A class template that represents the input feature set of the NNUE evaluation function
#ifndef NNUE_FEATURE_SET_H_INCLUDED
#define NNUE_FEATURE_SET_H_INCLUDED
#include "features_common.h"
#include <array>
namespace Eval::NNUE::Features {
// Class template that represents a list of values
template <typename T, T... Values>
struct CompileTimeList;
template <typename T, T First, T... Remaining>
struct CompileTimeList<T, First, Remaining...> {
static constexpr bool Contains(T value) {
return value == First || CompileTimeList<T, Remaining...>::Contains(value);
}
static constexpr std::array<T, sizeof...(Remaining) + 1>
kValues = {{First, Remaining...}};
};
// Base class of feature set
template <typename Derived>
class FeatureSetBase {
};
// Class template that represents the feature set
template <typename FeatureType>
class FeatureSet<FeatureType> : public FeatureSetBase<FeatureSet<FeatureType>> {
public:
// Hash value embedded in the evaluation file
static constexpr std::uint32_t kHashValue = FeatureType::kHashValue;
// Number of feature dimensions
static constexpr IndexType kDimensions = FeatureType::kDimensions;
// Maximum number of simultaneously active features
static constexpr IndexType kMaxActiveDimensions =
FeatureType::kMaxActiveDimensions;
// Trigger for full calculation instead of difference calculation
using SortedTriggerSet =
CompileTimeList<TriggerEvent, FeatureType::kRefreshTrigger>;
static constexpr auto kRefreshTriggers = SortedTriggerSet::kValues;
};
} // namespace Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURE_SET_H_INCLUDED

View file

@ -1,45 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Common header of input features of NNUE evaluation function
#ifndef NNUE_FEATURES_COMMON_H_INCLUDED
#define NNUE_FEATURES_COMMON_H_INCLUDED
#include "../../evaluate.h"
#include "../nnue_common.h"
namespace Eval::NNUE::Features {
class IndexList;
template <typename... FeatureTypes>
class FeatureSet;
// Trigger to perform full calculations instead of difference only
enum class TriggerEvent {
kFriendKingMoved // calculate full evaluation when own king moves
};
enum class Side {
kFriend // side to move
};
} // namespace Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURES_COMMON_H_INCLUDED

View file

@ -0,0 +1,83 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Definition of input features HalfKAv2_hm of NNUE evaluation function
#include "half_ka_v2_hm.h"
#include "../../position.h"
namespace Stockfish::Eval::NNUE::Features {
// Orient a square according to perspective (rotates by 180 for black)
inline Square HalfKAv2_hm::orient(Color perspective, Square s, Square ksq) {
return Square(int(s) ^ (bool(perspective) * SQ_A8) ^ ((file_of(ksq) < FILE_E) * SQ_H1));
}
// Index of a feature for a given king position and another piece on some square
inline IndexType HalfKAv2_hm::make_index(Color perspective, Square s, Piece pc, Square ksq) {
Square o_ksq = orient(perspective, ksq, ksq);
return IndexType(orient(perspective, s, ksq) + PieceSquareIndex[perspective][pc] + PS_NB * KingBuckets[o_ksq]);
}
// Get a list of indices for active features
void HalfKAv2_hm::append_active_indices(
const Position& pos,
Color perspective,
IndexList& active
) {
Square ksq = pos.square<KING>(perspective);
Bitboard bb = pos.pieces();
while (bb)
{
Square s = pop_lsb(bb);
active.push_back(make_index(perspective, s, pos.piece_on(s), ksq));
}
}
// append_changed_indices() : get a list of indices for recently changed features
void HalfKAv2_hm::append_changed_indices(
Square ksq,
const DirtyPiece& dp,
Color perspective,
IndexList& removed,
IndexList& added
) {
for (int i = 0; i < dp.dirty_num; ++i) {
if (dp.from[i] != SQ_NONE)
removed.push_back(make_index(perspective, dp.from[i], dp.piece[i], ksq));
if (dp.to[i] != SQ_NONE)
added.push_back(make_index(perspective, dp.to[i], dp.piece[i], ksq));
}
}
int HalfKAv2_hm::update_cost(const StateInfo* st) {
return st->dirtyPiece.dirty_num;
}
int HalfKAv2_hm::refresh_cost(const Position& pos) {
return pos.count<ALL_PIECES>();
}
bool HalfKAv2_hm::requires_refresh(const StateInfo* st, Color perspective) {
return st->dirtyPiece.piece[0] == make_piece(perspective, KING);
}
} // namespace Stockfish::Eval::NNUE::Features

View file

@ -0,0 +1,124 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Definition of input features HalfKP of NNUE evaluation function
#ifndef NNUE_FEATURES_HALF_KA_V2_HM_H_INCLUDED
#define NNUE_FEATURES_HALF_KA_V2_HM_H_INCLUDED
#include "../nnue_common.h"
#include "../../evaluate.h"
#include "../../misc.h"
namespace Stockfish {
struct StateInfo;
}
namespace Stockfish::Eval::NNUE::Features {
// Feature HalfKAv2_hm: Combination of the position of own king
// and the position of pieces. Position mirrored such that king always on e..h files.
class HalfKAv2_hm {
// unique number for each piece type on each square
enum {
PS_NONE = 0,
PS_W_PAWN = 0,
PS_B_PAWN = 1 * SQUARE_NB,
PS_W_KNIGHT = 2 * SQUARE_NB,
PS_B_KNIGHT = 3 * SQUARE_NB,
PS_W_BISHOP = 4 * SQUARE_NB,
PS_B_BISHOP = 5 * SQUARE_NB,
PS_W_ROOK = 6 * SQUARE_NB,
PS_B_ROOK = 7 * SQUARE_NB,
PS_W_QUEEN = 8 * SQUARE_NB,
PS_B_QUEEN = 9 * SQUARE_NB,
PS_KING = 10 * SQUARE_NB,
PS_NB = 11 * SQUARE_NB
};
static constexpr IndexType PieceSquareIndex[COLOR_NB][PIECE_NB] = {
// convention: W - us, B - them
// viewed from other side, W and B are reversed
{ PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE },
{ PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE }
};
// Orient a square according to perspective (rotates by 180 for black)
static Square orient(Color perspective, Square s, Square ksq);
// Index of a feature for a given king position and another piece on some square
static IndexType make_index(Color perspective, Square s, Piece pc, Square ksq);
public:
// Feature name
static constexpr const char* Name = "HalfKAv2_hm(Friend)";
// Hash value embedded in the evaluation file
static constexpr std::uint32_t HashValue = 0x7f234cb8u;
// Number of feature dimensions
static constexpr IndexType Dimensions =
static_cast<IndexType>(SQUARE_NB) * static_cast<IndexType>(PS_NB) / 2;
static constexpr int KingBuckets[64] = {
-1, -1, -1, -1, 31, 30, 29, 28,
-1, -1, -1, -1, 27, 26, 25, 24,
-1, -1, -1, -1, 23, 22, 21, 20,
-1, -1, -1, -1, 19, 18, 17, 16,
-1, -1, -1, -1, 15, 14, 13, 12,
-1, -1, -1, -1, 11, 10, 9, 8,
-1, -1, -1, -1, 7, 6, 5, 4,
-1, -1, -1, -1, 3, 2, 1, 0
};
// Maximum number of simultaneously active features.
static constexpr IndexType MaxActiveDimensions = 32;
using IndexList = ValueList<IndexType, MaxActiveDimensions>;
// Get a list of indices for active features
static void append_active_indices(
const Position& pos,
Color perspective,
IndexList& active);
// Get a list of indices for recently changed features
static void append_changed_indices(
Square ksq,
const DirtyPiece& dp,
Color perspective,
IndexList& removed,
IndexList& added
);
// Returns the cost of updating one perspective, the most costly one.
// Assumes no refresh needed.
static int update_cost(const StateInfo* st);
static int refresh_cost(const Position& pos);
// Returns whether the change stored in this StateInfo means that
// a full accumulator refresh is required.
static bool requires_refresh(const StateInfo* st, Color perspective);
};
} // namespace Stockfish::Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURES_HALF_KA_V2_HM_H_INCLUDED

View file

@ -1,68 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Definition of input features HalfKP of NNUE evaluation function
#include "half_kp.h"
#include "index_list.h"
namespace Eval::NNUE::Features {
// Orient a square according to perspective (rotates by 180 for black)
inline Square orient(Color perspective, Square s) {
return Square(int(s) ^ (bool(perspective) * 63));
}
// Index of a feature for a given king position and another piece on some square
inline IndexType make_index(Color perspective, Square s, Piece pc, Square ksq) {
return IndexType(orient(perspective, s) + kpp_board_index[perspective][pc] + PS_END * ksq);
}
// Get a list of indices for active features
template <Side AssociatedKing>
void HalfKP<AssociatedKing>::AppendActiveIndices(
const Position& pos, Color perspective, IndexList* active) {
Square ksq = orient(perspective, pos.square<KING>(perspective));
Bitboard bb = pos.pieces() & ~pos.pieces(KING);
while (bb) {
Square s = pop_lsb(&bb);
active->push_back(make_index(perspective, s, pos.piece_on(s), ksq));
}
}
// Get a list of indices for recently changed features
template <Side AssociatedKing>
void HalfKP<AssociatedKing>::AppendChangedIndices(
const Position& pos, const DirtyPiece& dp, Color perspective,
IndexList* removed, IndexList* added) {
Square ksq = orient(perspective, pos.square<KING>(perspective));
for (int i = 0; i < dp.dirty_num; ++i) {
Piece pc = dp.piece[i];
if (type_of(pc) == KING) continue;
if (dp.from[i] != SQ_NONE)
removed->push_back(make_index(perspective, dp.from[i], pc, ksq));
if (dp.to[i] != SQ_NONE)
added->push_back(make_index(perspective, dp.to[i], pc, ksq));
}
}
template class HalfKP<Side::kFriend>;
} // namespace Eval::NNUE::Features

View file

@ -1,59 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Definition of input features HalfKP of NNUE evaluation function
#ifndef NNUE_FEATURES_HALF_KP_H_INCLUDED
#define NNUE_FEATURES_HALF_KP_H_INCLUDED
#include "../../evaluate.h"
#include "features_common.h"
namespace Eval::NNUE::Features {
// Feature HalfKP: Combination of the position of own king
// and the position of pieces other than kings
template <Side AssociatedKing>
class HalfKP {
public:
// Feature name
static constexpr const char* kName = "HalfKP(Friend)";
// Hash value embedded in the evaluation file
static constexpr std::uint32_t kHashValue =
0x5D69D5B9u ^ (AssociatedKing == Side::kFriend);
// Number of feature dimensions
static constexpr IndexType kDimensions =
static_cast<IndexType>(SQUARE_NB) * static_cast<IndexType>(PS_END);
// Maximum number of simultaneously active features
static constexpr IndexType kMaxActiveDimensions = 30; // Kings don't count
// Trigger for full calculation instead of difference calculation
static constexpr TriggerEvent kRefreshTrigger = TriggerEvent::kFriendKingMoved;
// Get a list of indices for active features
static void AppendActiveIndices(const Position& pos, Color perspective,
IndexList* active);
// Get a list of indices for recently changed features
static void AppendChangedIndices(const Position& pos, const DirtyPiece& dp, Color perspective,
IndexList* removed, IndexList* added);
};
} // namespace Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURES_HALF_KP_H_INCLUDED

View file

@ -1,64 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of index list of input features
#ifndef NNUE_FEATURES_INDEX_LIST_H_INCLUDED
#define NNUE_FEATURES_INDEX_LIST_H_INCLUDED
#include "../../position.h"
#include "../nnue_architecture.h"
namespace Eval::NNUE::Features {
// Class template used for feature index list
template <typename T, std::size_t MaxSize>
class ValueList {
public:
std::size_t size() const { return size_; }
void resize(std::size_t size) { size_ = size; }
void push_back(const T& value) { values_[size_++] = value; }
T& operator[](std::size_t index) { return values_[index]; }
T* begin() { return values_; }
T* end() { return values_ + size_; }
const T& operator[](std::size_t index) const { return values_[index]; }
const T* begin() const { return values_; }
const T* end() const { return values_ + size_; }
void swap(ValueList& other) {
const std::size_t max_size = std::max(size_, other.size_);
for (std::size_t i = 0; i < max_size; ++i) {
std::swap(values_[i], other.values_[i]);
}
std::swap(size_, other.size_);
}
private:
T values_[MaxSize];
std::size_t size_ = 0;
};
//Type of feature index list
class IndexList
: public ValueList<IndexType, RawFeatures::kMaxActiveDimensions> {
};
} // namespace Eval::NNUE::Features
#endif // NNUE_FEATURES_INDEX_LIST_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -22,410 +22,338 @@
#define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#include <iostream>
#include <algorithm>
#include <type_traits>
#include "../nnue_common.h"
#include "../../simd.h"
namespace Eval::NNUE::Layers {
/*
This file contains the definition for a fully connected layer (aka affine transform).
Two approaches are employed, depending on the sizes of the transform.
// Affine transformation layer
template <typename PreviousLayer, IndexType OutputDimensions>
class AffineTransform {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using OutputType = std::int32_t;
static_assert(std::is_same<InputType, std::uint8_t>::value, "");
Approach 1:
- used when the PaddedInputDimensions >= 128
- uses AVX512 if possible
- processes inputs in batches of 2*InputSimdWidth
- so in batches of 128 for AVX512
- the weight blocks of size InputSimdWidth are transposed such that
access is sequential
- N columns of the weight matrix are processed a time, where N
depends on the architecture (the amount of registers)
- accumulate + hadd is used
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = OutputDimensions;
static constexpr IndexType kPaddedInputDimensions =
CeilToMultiple<IndexType>(kInputDimensions, kMaxSimdWidth);
#if defined (USE_AVX512)
static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 2;
#elif defined (USE_SSSE3)
static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 4;
#endif
Approach 2:
- used when the PaddedInputDimensions < 128
- does not use AVX512
- expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32.
- that's why AVX512 is hard to implement
- expected use-case is small layers
- not optimized as well as the approach 1
- inputs are processed in chunks of 4, weights are respectively transposed
- accumulation happens directly to int32s
*/
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
namespace Stockfish::Eval::NNUE::Layers {
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
// Fallback implementation for older/other architectures.
// Identical for both approaches. Requires the input to be padded to at least 16 values.
#if !defined(USE_SSSE3)
template <IndexType InputDimensions, IndexType PaddedInputDimensions, IndexType OutputDimensions>
static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input)
{
# if defined(USE_SSE2)
// At least a multiple of 16, with SSE2.
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast<const __m128i*>(input);
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xCC03DAE4u;
hash_value += kOutputDimensions;
hash_value ^= PreviousLayer::GetHashValue() >> 1;
hash_value ^= PreviousLayer::GetHashValue() << 31;
return hash_value;
# elif defined(USE_MMX)
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / 8;
const __m64 Zeros = _mm_setzero_si64();
const auto inputVector = reinterpret_cast<const __m64*>(input);
# elif defined(USE_NEON)
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
# endif
for (IndexType i = 0; i < OutputDimensions; ++i) {
const IndexType offset = i * PaddedInputDimensions;
# if defined(USE_SSE2)
__m128i sumLo = _mm_cvtsi32_si128(biases[i]);
__m128i sumHi = Zeros;
const auto row = reinterpret_cast<const __m128i*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&inputVector[j]);
__m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
__m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
__m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
__m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_epi32(sumLo, productLo);
sumHi = _mm_add_epi32(sumHi, productHi);
}
__m128i sum = _mm_add_epi32(sumLo, sumHi);
__m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sumHigh_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
# elif defined(USE_MMX)
__m64 sumLo = _mm_cvtsi32_si64(biases[i]);
__m64 sumHi = Zeros;
const auto row = reinterpret_cast<const __m64*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m64 row_j = row[j];
__m64 input_j = inputVector[j];
__m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
__m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
__m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros);
__m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros);
__m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo);
__m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_pi32(sumLo, productLo);
sumHi = _mm_add_pi32(sumHi, productHi);
}
__m64 sum = _mm_add_pi32(sumLo, sumHi);
sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum));
output[i] = _mm_cvtsi64_si32(sum);
# elif defined(USE_NEON)
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
# else
std::int32_t sum = biases[i];
for (IndexType j = 0; j < InputDimensions; ++j) {
sum += weights[offset + j] * input[j];
}
output[i] = sum;
# endif
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
if (!previous_layer_.ReadParameters(stream)) return false;
for (std::size_t i = 0; i < kOutputDimensions; ++i)
biases_[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < kOutputDimensions * kPaddedInputDimensions; ++i)
#if !defined (USE_SSSE3)
weights_[i] = read_little_endian<WeightType>(stream);
# if defined(USE_MMX)
_mm_empty();
# endif
}
#endif
template <IndexType InDims, IndexType OutDims, typename Enabled = void>
class AffineTransform;
// A specialization for large inputs.
template <IndexType InDims, IndexType OutDims>
class AffineTransform<InDims, OutDims, std::enable_if_t<(ceil_to_multiple<IndexType>(InDims, MaxSimdWidth) >= 2*64)>> {
public:
// Input/output type
using InputType = std::uint8_t;
using OutputType = std::int32_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);
using OutputBuffer = OutputType[PaddedOutputDimensions];
static_assert(PaddedInputDimensions >= 128, "Something went wrong. This specialization should not have been chosen.");
#if defined (USE_AVX512)
static constexpr const IndexType InputSimdWidth = 64;
static constexpr const IndexType MaxNumOutputRegs = 16;
#elif defined (USE_AVX2)
static constexpr const IndexType InputSimdWidth = 32;
static constexpr const IndexType MaxNumOutputRegs = 8;
#elif defined (USE_SSSE3)
static constexpr const IndexType InputSimdWidth = 16;
static constexpr const IndexType MaxNumOutputRegs = 8;
#elif defined (USE_NEON)
static constexpr const IndexType InputSimdWidth = 8;
static constexpr const IndexType MaxNumOutputRegs = 8;
#else
weights_[
(i / 4) % (kPaddedInputDimensions / 4) * kOutputDimensions * 4 +
i / kPaddedInputDimensions * 4 +
i % 4
] = read_little_endian<WeightType>(stream);
// Determine if eights of weight and input products can be summed using 16bits
// without saturation. We assume worst case combinations of 0 and 127 for all inputs.
if (kOutputDimensions > 1 && !stream.fail())
{
canSaturate16.count = 0;
#if !defined(USE_VNNI)
for (IndexType i = 0; i < kPaddedInputDimensions; i += 16)
for (IndexType j = 0; j < kOutputDimensions; ++j)
for (int x = 0; x < 2; ++x)
{
WeightType* w = &weights_[i * kOutputDimensions + j * 4 + x * 2];
int sum[2] = {0, 0};
for (int k = 0; k < 8; ++k)
{
IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
sum[w[idx] < 0] += w[idx];
}
for (int sign : {-1, 1})
while (sign * sum[sign == -1] > 258)
{
int maxK = 0, maxW = 0;
for (int k = 0; k < 8; ++k)
{
IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
if (maxW < sign * w[idx])
maxK = k, maxW = sign * w[idx];
}
IndexType idx = maxK / 2 * kOutputDimensions * 4 + maxK % 2;
sum[sign == -1] -= w[idx];
canSaturate16.add(j, i + maxK / 2 * 4 + maxK % 2 + x * 2, w[idx]);
w[idx] = 0;
}
}
// Non functional optimization for faster more linear access
std::sort(canSaturate16.ids, canSaturate16.ids + canSaturate16.count,
[](const typename CanSaturate::Entry& e1, const typename CanSaturate::Entry& e2)
{ return e1.in == e2.in ? e1.out < e2.out : e1.in < e2.in; });
#endif
}
// The fallback implementation will not have permuted weights.
// We define these to avoid a lot of ifdefs later.
static constexpr const IndexType InputSimdWidth = 1;
static constexpr const IndexType MaxNumOutputRegs = 1;
#endif
// A big block is a region in the weight matrix of the size [PaddedInputDimensions, NumOutputRegs].
// A small block is a region of size [InputSimdWidth, 1]
static constexpr const IndexType NumOutputRegs = std::min(MaxNumOutputRegs, OutputDimensions);
static constexpr const IndexType SmallBlockSize = InputSimdWidth;
static constexpr const IndexType BigBlockSize = NumOutputRegs * PaddedInputDimensions;
static constexpr const IndexType NumSmallBlocksInBigBlock = BigBlockSize / SmallBlockSize;
static constexpr const IndexType NumSmallBlocksPerOutput = PaddedInputDimensions / SmallBlockSize;
static constexpr const IndexType NumBigBlocks = OutputDimensions / NumOutputRegs;
static_assert(OutputDimensions % NumOutputRegs == 0);
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}
/*
Transposes the small blocks within a block.
Effectively means that weights can be traversed sequentially during inference.
*/
static IndexType get_weight_index(IndexType i)
{
const IndexType smallBlock = (i / SmallBlockSize) % NumSmallBlocksInBigBlock;
const IndexType smallBlockCol = smallBlock / NumSmallBlocksPerOutput;
const IndexType smallBlockRow = smallBlock % NumSmallBlocksPerOutput;
const IndexType bigBlock = i / BigBlockSize;
const IndexType rest = i % SmallBlockSize;
const IndexType idx =
bigBlock * BigBlockSize
+ smallBlockRow * SmallBlockSize * NumOutputRegs
+ smallBlockCol * SmallBlockSize
+ rest;
return idx;
}
// Read network parameters
bool read_parameters(std::istream& stream) {
for (std::size_t i = 0; i < OutputDimensions; ++i)
biases[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
for (std::size_t i = 0; i < OutputDimensions; ++i)
write_little_endian<BiasType>(stream, biases[i]);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
return !stream.fail();
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const OutputType* propagate(
const InputType* input, OutputType* output) const {
#if defined (USE_AVX512)
[[maybe_unused]] const __m512i kOnes512 = _mm512_set1_epi16(1);
[[maybe_unused]] auto m512_hadd = [](__m512i sum, int bias) -> int {
return _mm512_reduce_add_epi32(sum) + bias;
};
[[maybe_unused]] auto m512_add_dpbusd_epi32 = [=](__m512i& acc, __m512i a, __m512i b) {
#if defined (USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a, b);
#else
__m512i product0 = _mm512_maddubs_epi16(a, b);
product0 = _mm512_madd_epi16(product0, kOnes512);
acc = _mm512_add_epi32(acc, product0);
#endif
};
[[maybe_unused]] auto m512_add_dpbusd_epi32x4 = [=](__m512i& acc, __m512i a0, __m512i b0, __m512i a1, __m512i b1,
__m512i a2, __m512i b2, __m512i a3, __m512i b3) {
#if defined (USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a0, b0);
acc = _mm512_dpbusd_epi32(acc, a1, b1);
acc = _mm512_dpbusd_epi32(acc, a2, b2);
acc = _mm512_dpbusd_epi32(acc, a3, b3);
#else
__m512i product0 = _mm512_maddubs_epi16(a0, b0);
__m512i product1 = _mm512_maddubs_epi16(a1, b1);
__m512i product2 = _mm512_maddubs_epi16(a2, b2);
__m512i product3 = _mm512_maddubs_epi16(a3, b3);
product0 = _mm512_add_epi16(product0, product1);
product2 = _mm512_add_epi16(product2, product3);
product0 = _mm512_add_epi16(product0, product2);
product0 = _mm512_madd_epi16(product0, kOnes512);
acc = _mm512_add_epi32(acc, product0);
#endif
};
#endif
#if defined (USE_AVX2)
[[maybe_unused]] const __m256i kOnes256 = _mm256_set1_epi16(1);
[[maybe_unused]] auto m256_hadd = [](__m256i sum, int bias) -> int {
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB));
return _mm_cvtsi128_si32(sum128) + bias;
};
[[maybe_unused]] auto m256_add_dpbusd_epi32 = [=](__m256i& acc, __m256i a, __m256i b) {
#if defined (USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a, b);
#else
__m256i product0 = _mm256_maddubs_epi16(a, b);
product0 = _mm256_madd_epi16(product0, kOnes256);
acc = _mm256_add_epi32(acc, product0);
#endif
};
[[maybe_unused]] auto m256_add_dpbusd_epi32x4 = [=](__m256i& acc, __m256i a0, __m256i b0, __m256i a1, __m256i b1,
__m256i a2, __m256i b2, __m256i a3, __m256i b3) {
#if defined (USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a0, b0);
acc = _mm256_dpbusd_epi32(acc, a1, b1);
acc = _mm256_dpbusd_epi32(acc, a2, b2);
acc = _mm256_dpbusd_epi32(acc, a3, b3);
#else
__m256i product0 = _mm256_maddubs_epi16(a0, b0);
__m256i product1 = _mm256_maddubs_epi16(a1, b1);
__m256i product2 = _mm256_maddubs_epi16(a2, b2);
__m256i product3 = _mm256_maddubs_epi16(a3, b3);
product0 = _mm256_add_epi16(product0, product1);
product2 = _mm256_add_epi16(product2, product3);
product0 = _mm256_add_epi16(product0, product2);
product0 = _mm256_madd_epi16(product0, kOnes256);
acc = _mm256_add_epi32(acc, product0);
#endif
};
#endif
#if defined (USE_SSSE3)
[[maybe_unused]] const __m128i kOnes128 = _mm_set1_epi16(1);
[[maybe_unused]] auto m128_hadd = [](__m128i sum, int bias) -> int {
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB
return _mm_cvtsi128_si32(sum) + bias;
};
[[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) {
__m128i product0 = _mm_maddubs_epi16(a, b);
product0 = _mm_madd_epi16(product0, kOnes128);
acc = _mm_add_epi32(acc, product0);
};
[[maybe_unused]] auto m128_add_dpbusd_epi32x4 = [=](__m128i& acc, __m128i a0, __m128i b0, __m128i a1, __m128i b1,
__m128i a2, __m128i b2, __m128i a3, __m128i b3) {
__m128i product0 = _mm_maddubs_epi16(a0, b0);
__m128i product1 = _mm_maddubs_epi16(a1, b1);
__m128i product2 = _mm_maddubs_epi16(a2, b2);
__m128i product3 = _mm_maddubs_epi16(a3, b3);
product0 = _mm_adds_epi16(product0, product1);
product2 = _mm_adds_epi16(product2, product3);
product0 = _mm_adds_epi16(product0, product2);
product0 = _mm_madd_epi16(product0, kOnes128);
acc = _mm_add_epi32(acc, product0);
};
#endif
#if defined (USE_AVX512)
using vec_t = __m512i;
#define vec_setzero _mm512_setzero_si512
#define vec_set_32 _mm512_set1_epi32
auto& vec_add_dpbusd_32 = m512_add_dpbusd_epi32;
auto& vec_add_dpbusd_32x4 = m512_add_dpbusd_epi32x4;
auto& vec_hadd = m512_hadd;
using acc_vec_t = __m512i;
using bias_vec_t = __m128i;
using weight_vec_t = __m512i;
using in_vec_t = __m512i;
#define vec_zero _mm512_setzero_si512()
#define vec_add_dpbusd_32x2 Simd::m512_add_dpbusd_epi32x2
#define vec_hadd Simd::m512_hadd
#define vec_haddx4 Simd::m512_haddx4
#elif defined (USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
auto& vec_add_dpbusd_32 = m256_add_dpbusd_epi32;
auto& vec_add_dpbusd_32x4 = m256_add_dpbusd_epi32x4;
auto& vec_hadd = m256_hadd;
using acc_vec_t = __m256i;
using bias_vec_t = __m128i;
using weight_vec_t = __m256i;
using in_vec_t = __m256i;
#define vec_zero _mm256_setzero_si256()
#define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2
#define vec_hadd Simd::m256_hadd
#define vec_haddx4 Simd::m256_haddx4
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
auto& vec_add_dpbusd_32 = m128_add_dpbusd_epi32;
auto& vec_add_dpbusd_32x4 = m128_add_dpbusd_epi32x4;
auto& vec_hadd = m128_hadd;
using acc_vec_t = __m128i;
using bias_vec_t = __m128i;
using weight_vec_t = __m128i;
using in_vec_t = __m128i;
#define vec_zero _mm_setzero_si128()
#define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2
#define vec_hadd Simd::m128_hadd
#define vec_haddx4 Simd::m128_haddx4
#elif defined (USE_NEON)
using acc_vec_t = int32x4_t;
using bias_vec_t = int32x4_t;
using weight_vec_t = int8x8_t;
using in_vec_t = int8x8_t;
#define vec_zero {0}
#define vec_add_dpbusd_32x2 Simd::neon_m128_add_dpbusd_epi32x2
#define vec_hadd Simd::neon_m128_hadd
#define vec_haddx4 Simd::neon_m128_haddx4
#endif
#if defined (USE_SSSE3)
#if defined (USE_SSSE3) || defined (USE_NEON)
const in_vec_t* invec = reinterpret_cast<const in_vec_t*>(input);
const auto output = reinterpret_cast<OutputType*>(buffer);
const auto input_vector = reinterpret_cast<const vec_t*>(input);
static_assert(kOutputDimensions % kOutputSimdWidth == 0 || kOutputDimensions == 1);
// kOutputDimensions is either 1 or a multiple of kSimdWidth
// because then it is also an input dimension.
if constexpr (kOutputDimensions % kOutputSimdWidth == 0)
// Perform accumulation to registers for each big block
for (IndexType bigBlock = 0; bigBlock < NumBigBlocks; ++bigBlock)
{
constexpr IndexType kNumChunks = kPaddedInputDimensions / 4;
acc_vec_t acc[NumOutputRegs] = { vec_zero };
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
vec_t* outptr = reinterpret_cast<vec_t*>(output);
std::memcpy(output, biases_, kOutputDimensions * sizeof(OutputType));
// Each big block has NumOutputRegs small blocks in each "row", one per register.
// We process two small blocks at a time to save on one addition without VNNI.
for (IndexType smallBlock = 0; smallBlock < NumSmallBlocksPerOutput; smallBlock += 2)
{
const weight_vec_t* weightvec =
reinterpret_cast<const weight_vec_t*>(
weights
+ bigBlock * BigBlockSize
+ smallBlock * SmallBlockSize * NumOutputRegs);
for (int i = 0; i < (int)kNumChunks - 3; i += 4)
const in_vec_t in0 = invec[smallBlock + 0];
const in_vec_t in1 = invec[smallBlock + 1];
for (IndexType k = 0; k < NumOutputRegs; ++k)
vec_add_dpbusd_32x2(acc[k], in0, weightvec[k], in1, weightvec[k + NumOutputRegs]);
}
// Horizontally add all accumulators.
if constexpr (NumOutputRegs % 4 == 0)
{
bias_vec_t* outputvec = reinterpret_cast<bias_vec_t*>(output);
const bias_vec_t* biasvec = reinterpret_cast<const bias_vec_t*>(biases);
for (IndexType k = 0; k < NumOutputRegs; k += 4)
{
const vec_t in0 = vec_set_32(input32[i + 0]);
const vec_t in1 = vec_set_32(input32[i + 1]);
const vec_t in2 = vec_set_32(input32[i + 2]);
const vec_t in3 = vec_set_32(input32[i + 3]);
const auto col0 = reinterpret_cast<const vec_t*>(&weights_[(i + 0) * kOutputDimensions * 4]);
const auto col1 = reinterpret_cast<const vec_t*>(&weights_[(i + 1) * kOutputDimensions * 4]);
const auto col2 = reinterpret_cast<const vec_t*>(&weights_[(i + 2) * kOutputDimensions * 4]);
const auto col3 = reinterpret_cast<const vec_t*>(&weights_[(i + 3) * kOutputDimensions * 4]);
for (int j = 0; j * kOutputSimdWidth < kOutputDimensions; ++j)
vec_add_dpbusd_32x4(outptr[j], in0, col0[j], in1, col1[j], in2, col2[j], in3, col3[j]);
const IndexType idx = (bigBlock * NumOutputRegs + k) / 4;
outputvec[idx] = vec_haddx4(acc[k+0], acc[k+1], acc[k+2], acc[k+3], biasvec[idx]);
}
for (int i = 0; i < canSaturate16.count; ++i)
output[canSaturate16.ids[i].out] += input[canSaturate16.ids[i].in] * canSaturate16.ids[i].w;
}
else if constexpr (kOutputDimensions == 1)
{
#if defined (USE_AVX512)
if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) != 0)
}
else
{
for (IndexType k = 0; k < NumOutputRegs; ++k)
{
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector256 = reinterpret_cast<const __m256i*>(input);
__m256i sum0 = _mm256_setzero_si256();
const auto row0 = reinterpret_cast<const __m256i*>(&weights_[0]);
for (int j = 0; j < (int)kNumChunks; ++j)
{
const __m256i in = input_vector256[j];
m256_add_dpbusd_epi32(sum0, in, row0[j]);
}
output[0] = m256_hadd(sum0, biases_[0]);
}
else
#endif
{
#if defined (USE_AVX512)
constexpr IndexType kNumChunks = kPaddedInputDimensions / (kSimdWidth * 2);
#else
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
#endif
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast<const vec_t*>(&weights_[0]);
for (int j = 0; j < (int)kNumChunks; ++j)
{
const vec_t in = input_vector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
}
output[0] = vec_hadd(sum0, biases_[0]);
const IndexType idx = (bigBlock * NumOutputRegs + k);
output[idx] = vec_hadd(acc[k], biases[idx]);
}
}
}
# undef vec_zero
# undef vec_add_dpbusd_32x2
# undef vec_hadd
# undef vec_haddx4
#else
// Use old implementation for the other architectures.
auto output = reinterpret_cast<OutputType*>(buffer);
#if defined(USE_SSE2)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const __m128i kZeros = _mm_setzero_si128();
const auto input_vector = reinterpret_cast<const __m128i*>(input);
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const __m64 kZeros = _mm_setzero_si64();
const auto input_vector = reinterpret_cast<const __m64*>(input);
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector = reinterpret_cast<const int8x8_t*>(input);
#endif
for (IndexType i = 0; i < kOutputDimensions; ++i) {
const IndexType offset = i * kPaddedInputDimensions;
#if defined(USE_SSE2)
__m128i sum_lo = _mm_cvtsi32_si128(biases_[i]);
__m128i sum_hi = kZeros;
const auto row = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&input_vector[j]);
__m128i extended_row_lo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extended_row_hi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extended_input_lo = _mm_unpacklo_epi8(input_j, kZeros);
__m128i extended_input_hi = _mm_unpackhi_epi8(input_j, kZeros);
__m128i product_lo = _mm_madd_epi16(extended_row_lo, extended_input_lo);
__m128i product_hi = _mm_madd_epi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_epi32(sum_lo, product_lo);
sum_hi = _mm_add_epi32(sum_hi, product_hi);
}
__m128i sum = _mm_add_epi32(sum_lo, sum_hi);
__m128i sum_high_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_high_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
#elif defined(USE_MMX)
__m64 sum_lo = _mm_cvtsi32_si64(biases_[i]);
__m64 sum_hi = kZeros;
const auto row = reinterpret_cast<const __m64*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m64 row_j = row[j];
__m64 input_j = input_vector[j];
__m64 extended_row_lo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
__m64 extended_row_hi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
__m64 extended_input_lo = _mm_unpacklo_pi8(input_j, kZeros);
__m64 extended_input_hi = _mm_unpackhi_pi8(input_j, kZeros);
__m64 product_lo = _mm_madd_pi16(extended_row_lo, extended_input_lo);
__m64 product_hi = _mm_madd_pi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_pi32(sum_lo, product_lo);
sum_hi = _mm_add_pi32(sum_hi, product_hi);
}
__m64 sum = _mm_add_pi32(sum_lo, sum_hi);
sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum));
output[i] = _mm_cvtsi64_si32(sum);
#elif defined(USE_NEON)
int32x4_t sum = {biases_[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t product = vmull_s8(input_vector[j * 2], row[j * 2]);
product = vmlal_s8(product, input_vector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
#else
OutputType sum = biases_[i];
for (IndexType j = 0; j < kInputDimensions; ++j) {
sum += weights_[offset + j] * input[j];
}
output[i] = sum;
#endif
}
#if defined(USE_MMX)
_mm_empty();
#endif
// Use old implementation for the other architectures.
affine_transform_non_ssse3<
InputDimensions,
PaddedInputDimensions,
OutputDimensions>(output, weights, biases, input);
#endif
@ -436,29 +364,176 @@ namespace Eval::NNUE::Layers {
using BiasType = OutputType;
using WeightType = std::int8_t;
PreviousLayer previous_layer_;
alignas(kCacheLineSize) BiasType biases_[kOutputDimensions];
alignas(kCacheLineSize) WeightType weights_[kOutputDimensions * kPaddedInputDimensions];
#if defined (USE_SSSE3)
struct CanSaturate {
int count;
struct Entry {
uint16_t out;
uint16_t in;
int8_t w;
} ids[kPaddedInputDimensions * kOutputDimensions * 3 / 4];
void add(int i, int j, int8_t w) {
ids[count].out = i;
ids[count].in = j;
ids[count].w = w;
++count;
}
} canSaturate16;
#endif
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
} // namespace Eval::NNUE::Layers
template <IndexType InDims, IndexType OutDims>
class AffineTransform<InDims, OutDims, std::enable_if_t<(ceil_to_multiple<IndexType>(InDims, MaxSimdWidth) < 2*64)>> {
public:
// Input/output type
// Input/output type
using InputType = std::uint8_t;
using OutputType = std::int32_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);
using OutputBuffer = OutputType[PaddedOutputDimensions];
static_assert(PaddedInputDimensions < 128, "Something went wrong. This specialization should not have been chosen.");
#if defined (USE_SSSE3)
static constexpr const IndexType OutputSimdWidth = SimdWidth / 4;
static constexpr const IndexType InputSimdWidth = SimdWidth;
#endif
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}
static IndexType get_weight_index_scrambled(IndexType i)
{
return
(i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 +
i / PaddedInputDimensions * 4 +
i % 4;
}
static IndexType get_weight_index(IndexType i)
{
#if defined (USE_SSSE3)
return get_weight_index_scrambled(i);
#else
return i;
#endif
}
// Read network parameters
bool read_parameters(std::istream& stream) {
for (std::size_t i = 0; i < OutputDimensions; ++i)
biases[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
for (std::size_t i = 0; i < OutputDimensions; ++i)
write_little_endian<BiasType>(stream, biases[i]);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
return !stream.fail();
}
// Forward propagation
const OutputType* propagate(
const InputType* input, OutputType* output) const {
#if defined (USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2
#define vec_add_dpbusd_32x4 Simd::m256_add_dpbusd_epi32x4
#define vec_hadd Simd::m256_hadd
#define vec_haddx4 Simd::m256_haddx4
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2
#define vec_add_dpbusd_32x4 Simd::m128_add_dpbusd_epi32x4
#define vec_hadd Simd::m128_hadd
#define vec_haddx4 Simd::m128_haddx4
#endif
#if defined (USE_SSSE3)
const auto inputVector = reinterpret_cast<const vec_t*>(input);
static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1);
if constexpr (OutputDimensions % OutputSimdWidth == 0)
{
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / 4;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
const vec_t* biasvec = reinterpret_cast<const vec_t*>(biases);
vec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasvec[k];
for (IndexType i = 0; i < NumChunks; i += 2)
{
const vec_t in0 = vec_set_32(input32[i + 0]);
const vec_t in1 = vec_set_32(input32[i + 1]);
const auto col0 = reinterpret_cast<const vec_t*>(&weights[(i + 0) * OutputDimensions * 4]);
const auto col1 = reinterpret_cast<const vec_t*>(&weights[(i + 1) * OutputDimensions * 4]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32x2(acc[k], in0, col0[k], in1, col1[k]);
}
vec_t* outptr = reinterpret_cast<vec_t*>(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
}
else if constexpr (OutputDimensions == 1)
{
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast<const vec_t*>(&weights[0]);
for (int j = 0; j < (int)NumChunks; ++j)
{
const vec_t in = inputVector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
}
output[0] = vec_hadd(sum0, biases[0]);
}
# undef vec_setzero
# undef vec_set_32
# undef vec_add_dpbusd_32
# undef vec_add_dpbusd_32x2
# undef vec_add_dpbusd_32x4
# undef vec_hadd
# undef vec_haddx4
#else
// Use old implementation for the other architectures.
affine_transform_non_ssse3<
InputDimensions,
PaddedInputDimensions,
OutputDimensions>(output, weights, biases, input);
#endif
return output;
}
private:
using BiasType = OutputType;
using WeightType = std::int8_t;
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,144 +23,166 @@
#include "../nnue_common.h"
namespace Eval::NNUE::Layers {
namespace Stockfish::Eval::NNUE::Layers {
// Clipped ReLU
template <typename PreviousLayer>
template <IndexType InDims>
class ClippedReLU {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using InputType = std::int32_t;
using OutputType = std::uint8_t;
static_assert(std::is_same<InputType, std::int32_t>::value, "");
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = kInputDimensions;
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = InputDimensions;
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, 32);
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
using OutputBuffer = OutputType[PaddedOutputDimensions];
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0x538D24C7u;
hash_value += PreviousLayer::GetHashValue();
return hash_value;
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0x538D24C7u;
hashValue += prevHash;
return hashValue;
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
return previous_layer_.ReadParameters(stream);
bool read_parameters(std::istream&) {
return true;
}
// Write network parameters
bool write_parameters(std::ostream&) const {
return true;
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
const OutputType* propagate(
const InputType* input, OutputType* output) const {
#if defined(USE_AVX2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m256i kZero = _mm256_setzero_si256();
const __m256i kOffsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])), kWeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])), kWeightScaleBits);
_mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), kZero), kOffsets));
if constexpr (InputDimensions % SimdWidth == 0) {
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m256i Zero = _mm256_setzero_si256();
const __m256i Offsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])), WeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])), WeightScaleBits);
_mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), Zero), Offsets));
}
} else {
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const __m128i Zero = _mm_setzero_si128();
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i], _mm_max_epi8(packedbytes, Zero));
}
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start =
InputDimensions % SimdWidth == 0
? InputDimensions / SimdWidth * SimdWidth
: InputDimensions / (SimdWidth / 2) * (SimdWidth / 2);
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
#ifdef USE_SSE41
const __m128i kZero = _mm_setzero_si128();
const __m128i Zero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), kWeightScaleBits);
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), kWeightScaleBits);
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, kZero)
_mm_max_epi8(packedbytes, Zero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
const auto in = reinterpret_cast<const __m64*>(input);
const auto out = reinterpret_cast<__m64*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
const __m64 words0 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]),
kWeightScaleBits);
WeightScaleBits);
const __m64 words1 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]),
kWeightScaleBits);
WeightScaleBits);
const __m64 packedbytes = _mm_packs_pi16(words0, words1);
out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
_mm_empty();
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kInputDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const int8x8_t Zero = {0};
const auto in = reinterpret_cast<const int32x4_t*>(input);
const auto out = reinterpret_cast<int8x8_t*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
int16x8_t shifted;
const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], kWeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], kWeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), kZero);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], WeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], WeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), Zero);
}
constexpr IndexType kStart = kNumChunks * (kSimdWidth / 2);
constexpr IndexType Start = NumChunks * (SimdWidth / 2);
#else
constexpr IndexType kStart = 0;
constexpr IndexType Start = 0;
#endif
for (IndexType i = kStart; i < kInputDimensions; ++i) {
for (IndexType i = Start; i < InputDimensions; ++i) {
output[i] = static_cast<OutputType>(
std::max(0, std::min(127, input[i] >> kWeightScaleBits)));
std::max(0, std::min(127, input[i] >> WeightScaleBits)));
}
// Affine transform layers expect that there is at least
// ceil_to_multiple(OutputDimensions, 32) initialized values.
// We cannot do this in the affine transform because it requires
// preallocating space here.
for (IndexType i = OutputDimensions; i < PaddedOutputDimensions; ++i) {
output[i] = 0;
}
return output;
}
private:
PreviousLayer previous_layer_;
};
} // namespace Eval::NNUE::Layers
} // namespace Stockfish::Eval::NNUE::Layers
#endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED

View file

@ -1,68 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// NNUE evaluation function layer InputSlice definition
#ifndef NNUE_LAYERS_INPUT_SLICE_H_INCLUDED
#define NNUE_LAYERS_INPUT_SLICE_H_INCLUDED
#include "../nnue_common.h"
namespace Eval::NNUE::Layers {
// Input layer
template <IndexType OutputDimensions, IndexType Offset = 0>
class InputSlice {
public:
// Need to maintain alignment
static_assert(Offset % kMaxSimdWidth == 0, "");
// Output type
using OutputType = TransformedFeatureType;
// Output dimensionality
static constexpr IndexType kOutputDimensions = OutputDimensions;
// Size of forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize = 0;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xEC42E90Du;
hash_value ^= kOutputDimensions ^ (Offset << 10);
return hash_value;
}
// Read network parameters
bool ReadParameters(std::istream& /*stream*/) {
return true;
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features,
char* /*buffer*/) const {
return transformed_features + Offset;
}
private:
};
} // namespace Layers
#endif // #ifndef NNUE_LAYERS_INPUT_SLICE_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,18 +23,15 @@
#include "nnue_architecture.h"
namespace Eval::NNUE {
// The accumulator of a StateInfo without parent is set to the INIT state
enum AccumulatorState { EMPTY, COMPUTED, INIT };
namespace Stockfish::Eval::NNUE {
// Class that holds the result of affine transformation of input features
struct alignas(kCacheLineSize) Accumulator {
std::int16_t
accumulation[2][kRefreshTriggers.size()][kTransformedFeatureDimensions];
AccumulatorState state[2];
struct alignas(CacheLineSize) Accumulator {
std::int16_t accumulation[2][TransformedFeatureDimensions];
std::int32_t psqtAccumulation[2][PSQTBuckets];
bool computed[2];
};
} // namespace Eval::NNUE
} // namespace Stockfish::Eval::NNUE
#endif // NNUE_ACCUMULATOR_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -21,18 +21,111 @@
#ifndef NNUE_ARCHITECTURE_H_INCLUDED
#define NNUE_ARCHITECTURE_H_INCLUDED
// Defines the network structure
#include "architectures/halfkp_256x2-32-32.h"
#include "nnue_common.h"
namespace Eval::NNUE {
#include "features/half_ka_v2_hm.h"
static_assert(kTransformedFeatureDimensions % kMaxSimdWidth == 0, "");
static_assert(Network::kOutputDimensions == 1, "");
static_assert(std::is_same<Network::OutputType, std::int32_t>::value, "");
#include "layers/affine_transform.h"
#include "layers/clipped_relu.h"
// Trigger for full calculation instead of difference calculation
constexpr auto kRefreshTriggers = RawFeatures::kRefreshTriggers;
#include "../misc.h"
} // namespace Eval::NNUE
namespace Stockfish::Eval::NNUE {
// Input features used in evaluation function
using FeatureSet = Features::HalfKAv2_hm;
// Number of input feature dimensions after conversion
constexpr IndexType TransformedFeatureDimensions = 1024;
constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;
struct Network
{
static constexpr int FC_0_OUTPUTS = 15;
static constexpr int FC_1_OUTPUTS = 32;
Layers::AffineTransform<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
Layers::ClippedReLU<FC_0_OUTPUTS> ac_0;
Layers::AffineTransform<FC_0_OUTPUTS, FC_1_OUTPUTS> fc_1;
Layers::ClippedReLU<FC_1_OUTPUTS> ac_1;
Layers::AffineTransform<FC_1_OUTPUTS, 1> fc_2;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
// input slice hash
std::uint32_t hashValue = 0xEC42E90Du;
hashValue ^= TransformedFeatureDimensions * 2;
hashValue = decltype(fc_0)::get_hash_value(hashValue);
hashValue = decltype(ac_0)::get_hash_value(hashValue);
hashValue = decltype(fc_1)::get_hash_value(hashValue);
hashValue = decltype(ac_1)::get_hash_value(hashValue);
hashValue = decltype(fc_2)::get_hash_value(hashValue);
return hashValue;
}
// Read network parameters
bool read_parameters(std::istream& stream) {
if (!fc_0.read_parameters(stream)) return false;
if (!ac_0.read_parameters(stream)) return false;
if (!fc_1.read_parameters(stream)) return false;
if (!ac_1.read_parameters(stream)) return false;
if (!fc_2.read_parameters(stream)) return false;
return true;
}
// Read network parameters
bool write_parameters(std::ostream& stream) const {
if (!fc_0.write_parameters(stream)) return false;
if (!ac_0.write_parameters(stream)) return false;
if (!fc_1.write_parameters(stream)) return false;
if (!ac_1.write_parameters(stream)) return false;
if (!fc_2.write_parameters(stream)) return false;
return true;
}
std::int32_t propagate(const TransformedFeatureType* transformedFeatures)
{
constexpr uint64_t alignment = CacheLineSize;
struct Buffer
{
alignas(CacheLineSize) decltype(fc_0)::OutputBuffer fc_0_out;
alignas(CacheLineSize) decltype(ac_0)::OutputBuffer ac_0_out;
alignas(CacheLineSize) decltype(fc_1)::OutputBuffer fc_1_out;
alignas(CacheLineSize) decltype(ac_1)::OutputBuffer ac_1_out;
alignas(CacheLineSize) decltype(fc_2)::OutputBuffer fc_2_out;
};
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
char bufferRaw[sizeof(Buffer) + alignment];
char* bufferRawAligned = align_ptr_up<alignment>(&bufferRaw[0]);
Buffer& buffer = *(new (bufferRawAligned) Buffer);
#else
alignas(alignment) Buffer buffer;
#endif
fc_0.propagate(transformedFeatures, buffer.fc_0_out);
ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out);
fc_1.propagate(buffer.ac_0_out, buffer.fc_1_out);
ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out);
fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);
// buffer.fc_0_out[FC_0_OUTPUTS] is such that 1.0 is equal to 127*(1<<WeightScaleBits) in quantized form
// but we want 1.0 to be equal to 600*OutputScale
std::int32_t fwdOut = int(buffer.fc_0_out[FC_0_OUTPUTS]) * (600*OutputScale) / (127*(1<<WeightScaleBits));
std::int32_t outputValue = buffer.fc_2_out[0] + fwdOut;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
buffer.~Buffer();
#endif
return outputValue;
}
};
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_ARCHITECTURE_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,6 +24,8 @@
#include <cstring>
#include <iostream>
#include "../misc.h" // for IsLittleEndian
#if defined(USE_AVX2)
#include <immintrin.h>
@ -43,61 +45,33 @@
#include <arm_neon.h>
#endif
namespace Eval::NNUE {
namespace Stockfish::Eval::NNUE {
// Version of the evaluation file
constexpr std::uint32_t kVersion = 0x7AF32F16u;
constexpr std::uint32_t Version = 0x7AF32F20u;
// Constant used in evaluation value calculation
constexpr int FV_SCALE = 16;
constexpr int kWeightScaleBits = 6;
constexpr int OutputScale = 16;
constexpr int WeightScaleBits = 6;
// Size of cache line (in bytes)
constexpr std::size_t kCacheLineSize = 64;
constexpr std::size_t CacheLineSize = 64;
// SIMD width (in bytes)
#if defined(USE_AVX2)
constexpr std::size_t kSimdWidth = 32;
constexpr std::size_t SimdWidth = 32;
#elif defined(USE_SSE2)
constexpr std::size_t kSimdWidth = 16;
constexpr std::size_t SimdWidth = 16;
#elif defined(USE_MMX)
constexpr std::size_t kSimdWidth = 8;
constexpr std::size_t SimdWidth = 8;
#elif defined(USE_NEON)
constexpr std::size_t kSimdWidth = 16;
constexpr std::size_t SimdWidth = 16;
#endif
constexpr std::size_t kMaxSimdWidth = 32;
// unique number for each piece type on each square
enum {
PS_NONE = 0,
PS_W_PAWN = 1,
PS_B_PAWN = 1 * SQUARE_NB + 1,
PS_W_KNIGHT = 2 * SQUARE_NB + 1,
PS_B_KNIGHT = 3 * SQUARE_NB + 1,
PS_W_BISHOP = 4 * SQUARE_NB + 1,
PS_B_BISHOP = 5 * SQUARE_NB + 1,
PS_W_ROOK = 6 * SQUARE_NB + 1,
PS_B_ROOK = 7 * SQUARE_NB + 1,
PS_W_QUEEN = 8 * SQUARE_NB + 1,
PS_B_QUEEN = 9 * SQUARE_NB + 1,
PS_W_KING = 10 * SQUARE_NB + 1,
PS_END = PS_W_KING, // pieces without kings (pawns included)
PS_B_KING = 11 * SQUARE_NB + 1,
PS_END2 = 12 * SQUARE_NB + 1
};
constexpr uint32_t kpp_board_index[COLOR_NB][PIECE_NB] = {
// convention: W - us, B - them
// viewed from other side, W and B are reversed
{ PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_W_KING, PS_NONE,
PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_B_KING, PS_NONE },
{ PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_B_KING, PS_NONE,
PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_W_KING, PS_NONE }
};
constexpr std::size_t MaxSimdWidth = 32;
// Type of input feature after conversion
using TransformedFeatureType = std::uint8_t;
@ -105,7 +79,7 @@ namespace Eval::NNUE {
// Round n up to be a multiple of base
template <typename IntType>
constexpr IntType CeilToMultiple(IntType n, IntType base) {
constexpr IntType ceil_to_multiple(IntType n, IntType base) {
return (n + base - 1) / base * base;
}
@ -114,19 +88,77 @@ namespace Eval::NNUE {
// necessary to return a result with the byte ordering of the compiling machine.
template <typename IntType>
inline IntType read_little_endian(std::istream& stream) {
IntType result;
std::uint8_t u[sizeof(IntType)];
typename std::make_unsigned<IntType>::type v = 0;
stream.read(reinterpret_cast<char*>(u), sizeof(IntType));
for (std::size_t i = 0; i < sizeof(IntType); ++i)
v = (v << 8) | u[sizeof(IntType) - i - 1];
if (IsLittleEndian)
stream.read(reinterpret_cast<char*>(&result), sizeof(IntType));
else
{
std::uint8_t u[sizeof(IntType)];
typename std::make_unsigned<IntType>::type v = 0;
stream.read(reinterpret_cast<char*>(u), sizeof(IntType));
for (std::size_t i = 0; i < sizeof(IntType); ++i)
v = (v << 8) | u[sizeof(IntType) - i - 1];
std::memcpy(&result, &v, sizeof(IntType));
}
std::memcpy(&result, &v, sizeof(IntType));
return result;
}
} // namespace Eval::NNUE
// write_little_endian() is our utility to write an integer (signed or unsigned, any size)
// to a stream in little-endian order. We swap the byte order before the write if
// necessary to always write in little endian order, independently of the byte
// ordering of the compiling machine.
template <typename IntType>
inline void write_little_endian(std::ostream& stream, IntType value) {
if (IsLittleEndian)
stream.write(reinterpret_cast<const char*>(&value), sizeof(IntType));
else
{
std::uint8_t u[sizeof(IntType)];
typename std::make_unsigned<IntType>::type v = value;
std::size_t i = 0;
// if constexpr to silence the warning about shift by 8
if constexpr (sizeof(IntType) > 1)
{
for (; i + 1 < sizeof(IntType); ++i)
{
u[i] = v;
v >>= 8;
}
}
u[i] = v;
stream.write(reinterpret_cast<char*>(u), sizeof(IntType));
}
}
// read_little_endian(s, out, N) : read integers in bulk from a little indian stream.
// This reads N integers from stream s and put them in array out.
template <typename IntType>
inline void read_little_endian(std::istream& stream, IntType* out, std::size_t count) {
if (IsLittleEndian)
stream.read(reinterpret_cast<char*>(out), sizeof(IntType) * count);
else
for (std::size_t i = 0; i < count; ++i)
out[i] = read_little_endian<IntType>(stream);
}
// write_little_endian(s, values, N) : write integers in bulk to a little indian stream.
// This takes N integers from array values and writes them on stream s.
template <typename IntType>
inline void write_little_endian(std::ostream& stream, const IntType* values, std::size_t count) {
if (IsLittleEndian)
stream.write(reinterpret_cast<const char*>(values), sizeof(IntType) * count);
else
for (std::size_t i = 0; i < count; ++i)
write_little_endian<IntType>(stream, values[i]);
}
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_COMMON_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,72 +23,158 @@
#include "nnue_common.h"
#include "nnue_architecture.h"
#include "features/index_list.h"
#include <cstring> // std::memset()
namespace Eval::NNUE {
namespace Stockfish::Eval::NNUE {
using BiasType = std::int16_t;
using WeightType = std::int16_t;
using PSQTWeightType = std::int32_t;
// If vector instructions are enabled, we update and refresh the
// accumulator tile by tile such that each tile fits in the CPU's
// vector registers.
#define VECTOR
static_assert(PSQTBuckets % 8 == 0,
"Per feature PSQT values cannot be processed at granularity lower than 8 at a time.");
#ifdef USE_AVX512
typedef __m512i vec_t;
typedef __m256i psqt_vec_t;
#define vec_load(a) _mm512_load_si512(a)
#define vec_store(a,b) _mm512_store_si512(a,b)
#define vec_add_16(a,b) _mm512_add_epi16(a,b)
#define vec_sub_16(a,b) _mm512_sub_epi16(a,b)
static constexpr IndexType kNumRegs = 8; // only 8 are needed
#define vec_load_psqt(a) _mm256_load_si256(a)
#define vec_store_psqt(a,b) _mm256_store_si256(a,b)
#define vec_add_psqt_32(a,b) _mm256_add_epi32(a,b)
#define vec_sub_psqt_32(a,b) _mm256_sub_epi32(a,b)
#define vec_zero_psqt() _mm256_setzero_si256()
#define NumRegistersSIMD 32
#elif USE_AVX2
typedef __m256i vec_t;
typedef __m256i psqt_vec_t;
#define vec_load(a) _mm256_load_si256(a)
#define vec_store(a,b) _mm256_store_si256(a,b)
#define vec_add_16(a,b) _mm256_add_epi16(a,b)
#define vec_sub_16(a,b) _mm256_sub_epi16(a,b)
static constexpr IndexType kNumRegs = 16;
#define vec_load_psqt(a) _mm256_load_si256(a)
#define vec_store_psqt(a,b) _mm256_store_si256(a,b)
#define vec_add_psqt_32(a,b) _mm256_add_epi32(a,b)
#define vec_sub_psqt_32(a,b) _mm256_sub_epi32(a,b)
#define vec_zero_psqt() _mm256_setzero_si256()
#define NumRegistersSIMD 16
#elif USE_SSE2
typedef __m128i vec_t;
typedef __m128i psqt_vec_t;
#define vec_load(a) (*(a))
#define vec_store(a,b) *(a)=(b)
#define vec_add_16(a,b) _mm_add_epi16(a,b)
#define vec_sub_16(a,b) _mm_sub_epi16(a,b)
static constexpr IndexType kNumRegs = Is64Bit ? 16 : 8;
#define vec_load_psqt(a) (*(a))
#define vec_store_psqt(a,b) *(a)=(b)
#define vec_add_psqt_32(a,b) _mm_add_epi32(a,b)
#define vec_sub_psqt_32(a,b) _mm_sub_epi32(a,b)
#define vec_zero_psqt() _mm_setzero_si128()
#define NumRegistersSIMD (Is64Bit ? 16 : 8)
#elif USE_MMX
typedef __m64 vec_t;
typedef __m64 psqt_vec_t;
#define vec_load(a) (*(a))
#define vec_store(a,b) *(a)=(b)
#define vec_add_16(a,b) _mm_add_pi16(a,b)
#define vec_sub_16(a,b) _mm_sub_pi16(a,b)
static constexpr IndexType kNumRegs = 8;
#define vec_load_psqt(a) (*(a))
#define vec_store_psqt(a,b) *(a)=(b)
#define vec_add_psqt_32(a,b) _mm_add_pi32(a,b)
#define vec_sub_psqt_32(a,b) _mm_sub_pi32(a,b)
#define vec_zero_psqt() _mm_setzero_si64()
#define NumRegistersSIMD 8
#elif USE_NEON
typedef int16x8_t vec_t;
typedef int32x4_t psqt_vec_t;
#define vec_load(a) (*(a))
#define vec_store(a,b) *(a)=(b)
#define vec_add_16(a,b) vaddq_s16(a,b)
#define vec_sub_16(a,b) vsubq_s16(a,b)
static constexpr IndexType kNumRegs = 16;
#define vec_load_psqt(a) (*(a))
#define vec_store_psqt(a,b) *(a)=(b)
#define vec_add_psqt_32(a,b) vaddq_s32(a,b)
#define vec_sub_psqt_32(a,b) vsubq_s32(a,b)
#define vec_zero_psqt() psqt_vec_t{0}
#define NumRegistersSIMD 16
#else
#undef VECTOR
#endif
#ifdef VECTOR
// Compute optimal SIMD register count for feature transformer accumulation.
// We use __m* types as template arguments, which causes GCC to emit warnings
// about losing some attribute information. This is irrelevant to us as we
// only take their size, so the following pragma are harmless.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-attributes"
template <typename SIMDRegisterType,
typename LaneType,
int NumLanes,
int MaxRegisters>
static constexpr int BestRegisterCount()
{
#define RegisterSize sizeof(SIMDRegisterType)
#define LaneSize sizeof(LaneType)
static_assert(RegisterSize >= LaneSize);
static_assert(MaxRegisters <= NumRegistersSIMD);
static_assert(MaxRegisters > 0);
static_assert(NumRegistersSIMD > 0);
static_assert(RegisterSize % LaneSize == 0);
static_assert((NumLanes * LaneSize) % RegisterSize == 0);
const int ideal = (NumLanes * LaneSize) / RegisterSize;
if (ideal <= MaxRegisters)
return ideal;
// Look for the largest divisor of the ideal register count that is smaller than MaxRegisters
for (int divisor = MaxRegisters; divisor > 1; --divisor)
if (ideal % divisor == 0)
return divisor;
return 1;
}
static constexpr int NumRegs = BestRegisterCount<vec_t, WeightType, TransformedFeatureDimensions, NumRegistersSIMD>();
static constexpr int NumPsqtRegs = BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
#pragma GCC diagnostic pop
#endif
// Input feature converter
class FeatureTransformer {
private:
// Number of output dimensions for one side
static constexpr IndexType kHalfDimensions = kTransformedFeatureDimensions;
static constexpr IndexType HalfDimensions = TransformedFeatureDimensions;
#ifdef VECTOR
static constexpr IndexType kTileHeight = kNumRegs * sizeof(vec_t) / 2;
static_assert(kHalfDimensions % kTileHeight == 0, "kTileHeight must divide kHalfDimensions");
static constexpr IndexType TileHeight = NumRegs * sizeof(vec_t) / 2;
static constexpr IndexType PsqtTileHeight = NumPsqtRegs * sizeof(psqt_vec_t) / 4;
static_assert(HalfDimensions % TileHeight == 0, "TileHeight must divide HalfDimensions");
static_assert(PSQTBuckets % PsqtTileHeight == 0, "PsqtTileHeight must divide PSQTBuckets");
#endif
public:
@ -96,174 +182,213 @@ namespace Eval::NNUE {
using OutputType = TransformedFeatureType;
// Number of input/output dimensions
static constexpr IndexType kInputDimensions = RawFeatures::kDimensions;
static constexpr IndexType kOutputDimensions = kHalfDimensions * 2;
static constexpr IndexType InputDimensions = FeatureSet::Dimensions;
static constexpr IndexType OutputDimensions = HalfDimensions;
// Size of forward propagation buffer
static constexpr std::size_t kBufferSize =
kOutputDimensions * sizeof(OutputType);
static constexpr std::size_t BufferSize =
OutputDimensions * sizeof(OutputType);
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
return RawFeatures::kHashValue ^ kOutputDimensions;
static constexpr std::uint32_t get_hash_value() {
return FeatureSet::HashValue ^ (OutputDimensions * 2);
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
bool read_parameters(std::istream& stream) {
read_little_endian<BiasType >(stream, biases , HalfDimensions );
read_little_endian<WeightType >(stream, weights , HalfDimensions * InputDimensions);
read_little_endian<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian<BiasType >(stream, biases , HalfDimensions );
write_little_endian<WeightType >(stream, weights , HalfDimensions * InputDimensions);
write_little_endian<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
for (std::size_t i = 0; i < kHalfDimensions; ++i)
biases_[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < kHalfDimensions * kInputDimensions; ++i)
weights_[i] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
// Convert input features
void Transform(const Position& pos, OutputType* output) const {
UpdateAccumulator(pos, WHITE);
UpdateAccumulator(pos, BLACK);
const auto& accumulation = pos.state()->accumulator.accumulation;
#if defined(USE_AVX512)
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth * 2);
static_assert(kHalfDimensions % (kSimdWidth * 2) == 0);
const __m512i kControl = _mm512_setr_epi64(0, 2, 4, 6, 1, 3, 5, 7);
const __m512i kZero = _mm512_setzero_si512();
#elif defined(USE_AVX2)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
constexpr int kControl = 0b11011000;
const __m256i kZero = _mm256_setzero_si256();
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
#ifdef USE_SSE41
const __m128i kZero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
#endif
std::int32_t transform(const Position& pos, OutputType* output, int bucket) const {
update_accumulator(pos, WHITE);
update_accumulator(pos, BLACK);
const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()};
for (IndexType p = 0; p < 2; ++p) {
const IndexType offset = kHalfDimensions * p;
const auto& accumulation = pos.state()->accumulator.accumulation;
const auto& psqtAccumulation = pos.state()->accumulator.psqtAccumulation;
#if defined(USE_AVX512)
auto out = reinterpret_cast<__m512i*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m512i sum0 = _mm512_load_si512(
&reinterpret_cast<const __m512i*>(accumulation[perspectives[p]][0])[j * 2 + 0]);
__m512i sum1 = _mm512_load_si512(
&reinterpret_cast<const __m512i*>(accumulation[perspectives[p]][0])[j * 2 + 1]);
_mm512_store_si512(&out[j], _mm512_permutexvar_epi64(kControl,
_mm512_max_epi8(_mm512_packs_epi16(sum0, sum1), kZero)));
}
const auto psqt = (
psqtAccumulation[perspectives[0]][bucket]
- psqtAccumulation[perspectives[1]][bucket]
) / 2;
#elif defined(USE_AVX2)
auto out = reinterpret_cast<__m256i*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m256i sum0 = _mm256_load_si256(
&reinterpret_cast<const __m256i*>(accumulation[perspectives[p]][0])[j * 2 + 0]);
__m256i sum1 = _mm256_load_si256(
&reinterpret_cast<const __m256i*>(accumulation[perspectives[p]][0])[j * 2 + 1]);
_mm256_store_si256(&out[j], _mm256_permute4x64_epi64(_mm256_max_epi8(
_mm256_packs_epi16(sum0, sum1), kZero), kControl));
}
#elif defined(USE_SSE2)
auto out = reinterpret_cast<__m128i*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m128i sum0 = _mm_load_si128(&reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][0])[j * 2 + 0]);
__m128i sum1 = _mm_load_si128(&reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][0])[j * 2 + 1]);
const __m128i packedbytes = _mm_packs_epi16(sum0, sum1);
for (IndexType p = 0; p < 2; ++p)
{
const IndexType offset = (HalfDimensions / 2) * p;
_mm_store_si128(&out[j],
#if defined(USE_AVX512)
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, kZero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
constexpr IndexType OutputChunkSize = 512 / 8;
static_assert((HalfDimensions / 2) % OutputChunkSize == 0);
constexpr IndexType NumOutputChunks = HalfDimensions / 2 / OutputChunkSize;
);
}
const __m512i Zero = _mm512_setzero_si512();
const __m512i One = _mm512_set1_epi16(127);
const __m512i Control = _mm512_setr_epi64(0, 2, 4, 6, 1, 3, 5, 7);
#elif defined(USE_MMX)
auto out = reinterpret_cast<__m64*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m64 sum0 = *(&reinterpret_cast<const __m64*>(
accumulation[perspectives[p]][0])[j * 2 + 0]);
__m64 sum1 = *(&reinterpret_cast<const __m64*>(
accumulation[perspectives[p]][0])[j * 2 + 1]);
const __m64 packedbytes = _mm_packs_pi16(sum0, sum1);
out[j] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
const __m512i* in0 = reinterpret_cast<const __m512i*>(&(accumulation[perspectives[p]][0]));
const __m512i* in1 = reinterpret_cast<const __m512i*>(&(accumulation[perspectives[p]][HalfDimensions / 2]));
__m512i* out = reinterpret_cast< __m512i*>(output + offset);
#elif defined(USE_NEON)
const auto out = reinterpret_cast<int8x8_t*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t sum = reinterpret_cast<const int16x8_t*>(
accumulation[perspectives[p]][0])[j];
out[j] = vmax_s8(vqmovn_s16(sum), kZero);
}
for (IndexType j = 0; j < NumOutputChunks; j += 1)
{
const __m512i sum0a = _mm512_max_epi16(_mm512_min_epi16(in0[j * 2 + 0], One), Zero);
const __m512i sum0b = _mm512_max_epi16(_mm512_min_epi16(in0[j * 2 + 1], One), Zero);
const __m512i sum1a = _mm512_max_epi16(_mm512_min_epi16(in1[j * 2 + 0], One), Zero);
const __m512i sum1b = _mm512_max_epi16(_mm512_min_epi16(in1[j * 2 + 1], One), Zero);
#else
for (IndexType j = 0; j < kHalfDimensions; ++j) {
BiasType sum = accumulation[static_cast<int>(perspectives[p])][0][j];
output[offset + j] = static_cast<OutputType>(
std::max<int>(0, std::min<int>(127, sum)));
}
#endif
const __m512i pa = _mm512_srli_epi16(_mm512_mullo_epi16(sum0a, sum1a), 7);
const __m512i pb = _mm512_srli_epi16(_mm512_mullo_epi16(sum0b, sum1b), 7);
out[j] = _mm512_permutexvar_epi64(Control, _mm512_packs_epi16(pa, pb));
}
#elif defined(USE_AVX2)
constexpr IndexType OutputChunkSize = 256 / 8;
static_assert((HalfDimensions / 2) % OutputChunkSize == 0);
constexpr IndexType NumOutputChunks = HalfDimensions / 2 / OutputChunkSize;
const __m256i Zero = _mm256_setzero_si256();
const __m256i One = _mm256_set1_epi16(127);
constexpr int Control = 0b11011000;
const __m256i* in0 = reinterpret_cast<const __m256i*>(&(accumulation[perspectives[p]][0]));
const __m256i* in1 = reinterpret_cast<const __m256i*>(&(accumulation[perspectives[p]][HalfDimensions / 2]));
__m256i* out = reinterpret_cast< __m256i*>(output + offset);
for (IndexType j = 0; j < NumOutputChunks; j += 1)
{
const __m256i sum0a = _mm256_max_epi16(_mm256_min_epi16(in0[j * 2 + 0], One), Zero);
const __m256i sum0b = _mm256_max_epi16(_mm256_min_epi16(in0[j * 2 + 1], One), Zero);
const __m256i sum1a = _mm256_max_epi16(_mm256_min_epi16(in1[j * 2 + 0], One), Zero);
const __m256i sum1b = _mm256_max_epi16(_mm256_min_epi16(in1[j * 2 + 1], One), Zero);
const __m256i pa = _mm256_srli_epi16(_mm256_mullo_epi16(sum0a, sum1a), 7);
const __m256i pb = _mm256_srli_epi16(_mm256_mullo_epi16(sum0b, sum1b), 7);
out[j] = _mm256_permute4x64_epi64(_mm256_packs_epi16(pa, pb), Control);
}
#elif defined(USE_SSE2)
constexpr IndexType OutputChunkSize = 128 / 8;
static_assert((HalfDimensions / 2) % OutputChunkSize == 0);
constexpr IndexType NumOutputChunks = HalfDimensions / 2 / OutputChunkSize;
const __m128i Zero = _mm_setzero_si128();
const __m128i One = _mm_set1_epi16(127);
const __m128i* in0 = reinterpret_cast<const __m128i*>(&(accumulation[perspectives[p]][0]));
const __m128i* in1 = reinterpret_cast<const __m128i*>(&(accumulation[perspectives[p]][HalfDimensions / 2]));
__m128i* out = reinterpret_cast< __m128i*>(output + offset);
for (IndexType j = 0; j < NumOutputChunks; j += 1)
{
const __m128i sum0a = _mm_max_epi16(_mm_min_epi16(in0[j * 2 + 0], One), Zero);
const __m128i sum0b = _mm_max_epi16(_mm_min_epi16(in0[j * 2 + 1], One), Zero);
const __m128i sum1a = _mm_max_epi16(_mm_min_epi16(in1[j * 2 + 0], One), Zero);
const __m128i sum1b = _mm_max_epi16(_mm_min_epi16(in1[j * 2 + 1], One), Zero);
const __m128i pa = _mm_srli_epi16(_mm_mullo_epi16(sum0a, sum1a), 7);
const __m128i pb = _mm_srli_epi16(_mm_mullo_epi16(sum0b, sum1b), 7);
out[j] = _mm_packs_epi16(pa, pb);
}
#elif defined(USE_NEON)
constexpr IndexType OutputChunkSize = 128 / 8;
static_assert((HalfDimensions / 2) % OutputChunkSize == 0);
constexpr IndexType NumOutputChunks = HalfDimensions / 2 / OutputChunkSize;
const int16x8_t Zero = vdupq_n_s16(0);
const int16x8_t One = vdupq_n_s16(127);
const int16x8_t* in0 = reinterpret_cast<const int16x8_t*>(&(accumulation[perspectives[p]][0]));
const int16x8_t* in1 = reinterpret_cast<const int16x8_t*>(&(accumulation[perspectives[p]][HalfDimensions / 2]));
int8x16_t* out = reinterpret_cast< int8x16_t*>(output + offset);
for (IndexType j = 0; j < NumOutputChunks; j += 1)
{
const int16x8_t sum0a = vmaxq_s16(vminq_s16(in0[j * 2 + 0], One), Zero);
const int16x8_t sum0b = vmaxq_s16(vminq_s16(in0[j * 2 + 1], One), Zero);
const int16x8_t sum1a = vmaxq_s16(vminq_s16(in1[j * 2 + 0], One), Zero);
const int16x8_t sum1b = vmaxq_s16(vminq_s16(in1[j * 2 + 1], One), Zero);
const int8x8_t pa = vshrn_n_s16(vmulq_s16(sum0a, sum1a), 7);
const int8x8_t pb = vshrn_n_s16(vmulq_s16(sum0b, sum1b), 7);
out[j] = vcombine_s8(pa, pb);
}
#else
for (IndexType j = 0; j < HalfDimensions / 2; ++j) {
BiasType sum0 = accumulation[static_cast<int>(perspectives[p])][j + 0];
BiasType sum1 = accumulation[static_cast<int>(perspectives[p])][j + HalfDimensions / 2];
sum0 = std::max<int>(0, std::min<int>(127, sum0));
sum1 = std::max<int>(0, std::min<int>(127, sum1));
output[offset + j] = static_cast<OutputType>(sum0 * sum1 / 128);
}
#endif
}
#if defined(USE_MMX)
_mm_empty();
#endif
}
return psqt;
} // end of function transform()
private:
void UpdateAccumulator(const Position& pos, const Color c) const {
void update_accumulator(const Position& pos, const Color perspective) const {
// The size must be enough to contain the largest possible update.
// That might depend on the feature set and generally relies on the
// feature set's update cost calculation to be correct and never
// allow updates with more added/removed features than MaxActiveDimensions.
#ifdef VECTOR
// Gcc-10.2 unnecessarily spills AVX2 registers if this array
// is defined in the VECTOR code below, once in each branch
vec_t acc[kNumRegs];
vec_t acc[NumRegs];
psqt_vec_t psqt[NumPsqtRegs];
#endif
// Look for a usable accumulator of an earlier position. We keep track
// of the estimated gain in terms of features to be added/subtracted.
StateInfo *st = pos.state(), *next = nullptr;
int gain = pos.count<ALL_PIECES>() - 2;
while (st->accumulator.state[c] == EMPTY)
int gain = FeatureSet::refresh_cost(pos);
while (st->previous && !st->accumulator.computed[perspective])
{
auto& dp = st->dirtyPiece;
// The first condition tests whether an incremental update is
// possible at all: if this side's king has moved, it is not possible.
static_assert(std::is_same_v<RawFeatures::SortedTriggerSet,
Features::CompileTimeList<Features::TriggerEvent, Features::TriggerEvent::kFriendKingMoved>>,
"Current code assumes that only kFriendlyKingMoved refresh trigger is being used.");
if ( dp.piece[0] == make_piece(c, KING)
|| (gain -= dp.dirty_num + 1) < 0)
// This governs when a full feature refresh is needed and how many
// updates are better than just one full refresh.
if ( FeatureSet::requires_refresh(st, perspective)
|| (gain -= FeatureSet::update_cost(st) + 1) < 0)
break;
next = st;
st = st->previous;
}
if (st->accumulator.state[c] == COMPUTED)
if (st->accumulator.computed[perspective])
{
if (next == nullptr)
return;
@ -271,85 +396,129 @@ namespace Eval::NNUE {
// Update incrementally in two steps. First, we update the "next"
// accumulator. Then, we update the current accumulator (pos.state()).
// Gather all features to be updated. This code assumes HalfKP features
// only and doesn't support refresh triggers.
static_assert(std::is_same_v<Features::FeatureSet<Features::HalfKP<Features::Side::kFriend>>,
RawFeatures>);
Features::IndexList removed[2], added[2];
Features::HalfKP<Features::Side::kFriend>::AppendChangedIndices(pos,
next->dirtyPiece, c, &removed[0], &added[0]);
// Gather all features to be updated.
const Square ksq = pos.square<KING>(perspective);
FeatureSet::IndexList removed[2], added[2];
FeatureSet::append_changed_indices(
ksq, next->dirtyPiece, perspective, removed[0], added[0]);
for (StateInfo *st2 = pos.state(); st2 != next; st2 = st2->previous)
Features::HalfKP<Features::Side::kFriend>::AppendChangedIndices(pos,
st2->dirtyPiece, c, &removed[1], &added[1]);
FeatureSet::append_changed_indices(
ksq, st2->dirtyPiece, perspective, removed[1], added[1]);
// Mark the accumulators as computed.
next->accumulator.state[c] = COMPUTED;
pos.state()->accumulator.state[c] = COMPUTED;
next->accumulator.computed[perspective] = true;
pos.state()->accumulator.computed[perspective] = true;
// Now update the accumulators listed in info[], where the last element is a sentinel.
StateInfo *info[3] =
// Now update the accumulators listed in states_to_update[], where the last element is a sentinel.
StateInfo *states_to_update[3] =
{ next, next == pos.state() ? nullptr : pos.state(), nullptr };
#ifdef VECTOR
for (IndexType j = 0; j < kHalfDimensions / kTileHeight; ++j)
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
{
// Load accumulator
auto accTile = reinterpret_cast<vec_t*>(
&st->accumulator.accumulation[c][0][j * kTileHeight]);
for (IndexType k = 0; k < kNumRegs; ++k)
&st->accumulator.accumulation[perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_load(&accTile[k]);
for (IndexType i = 0; info[i]; ++i)
for (IndexType i = 0; states_to_update[i]; ++i)
{
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = kHalfDimensions * index + j * kTileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights_[offset]);
for (IndexType k = 0; k < kNumRegs; ++k)
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_sub_16(acc[k], column[k]);
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = kHalfDimensions * index + j * kTileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights_[offset]);
for (IndexType k = 0; k < kNumRegs; ++k)
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_add_16(acc[k], column[k]);
}
// Store accumulator
accTile = reinterpret_cast<vec_t*>(
&info[i]->accumulator.accumulation[c][0][j * kTileHeight]);
for (IndexType k = 0; k < kNumRegs; ++k)
&states_to_update[i]->accumulator.accumulation[perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_store(&accTile[k], acc[k]);
}
}
#else
for (IndexType i = 0; info[i]; ++i)
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
{
std::memcpy(info[i]->accumulator.accumulation[c][0],
st->accumulator.accumulation[c][0],
kHalfDimensions * sizeof(BiasType));
st = info[i];
// Load accumulator
auto accTilePsqt = reinterpret_cast<psqt_vec_t*>(
&st->accumulator.psqtAccumulation[perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_load_psqt(&accTilePsqt[k]);
for (IndexType i = 0; states_to_update[i]; ++i)
{
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
}
// Store accumulator
accTilePsqt = reinterpret_cast<psqt_vec_t*>(
&states_to_update[i]->accumulator.psqtAccumulation[perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&accTilePsqt[k], psqt[k]);
}
}
#else
for (IndexType i = 0; states_to_update[i]; ++i)
{
std::memcpy(states_to_update[i]->accumulator.accumulation[perspective],
st->accumulator.accumulation[perspective],
HalfDimensions * sizeof(BiasType));
for (std::size_t k = 0; k < PSQTBuckets; ++k)
states_to_update[i]->accumulator.psqtAccumulation[perspective][k] = st->accumulator.psqtAccumulation[perspective][k];
st = states_to_update[i];
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = kHalfDimensions * index;
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < kHalfDimensions; ++j)
st->accumulator.accumulation[c][0][j] -= weights_[offset + j];
for (IndexType j = 0; j < HalfDimensions; ++j)
st->accumulator.accumulation[perspective][j] -= weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
st->accumulator.psqtAccumulation[perspective][k] -= psqtWeights[index * PSQTBuckets + k];
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = kHalfDimensions * index;
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < kHalfDimensions; ++j)
st->accumulator.accumulation[c][0][j] += weights_[offset + j];
for (IndexType j = 0; j < HalfDimensions; ++j)
st->accumulator.accumulation[perspective][j] += weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
st->accumulator.psqtAccumulation[perspective][k] += psqtWeights[index * PSQTBuckets + k];
}
}
#endif
@ -358,43 +527,69 @@ namespace Eval::NNUE {
{
// Refresh the accumulator
auto& accumulator = pos.state()->accumulator;
accumulator.state[c] = COMPUTED;
Features::IndexList active;
Features::HalfKP<Features::Side::kFriend>::AppendActiveIndices(pos, c, &active);
accumulator.computed[perspective] = true;
FeatureSet::IndexList active;
FeatureSet::append_active_indices(pos, perspective, active);
#ifdef VECTOR
for (IndexType j = 0; j < kHalfDimensions / kTileHeight; ++j)
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
{
auto biasesTile = reinterpret_cast<const vec_t*>(
&biases_[j * kTileHeight]);
for (IndexType k = 0; k < kNumRegs; ++k)
&biases[j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasesTile[k];
for (const auto index : active)
{
const IndexType offset = kHalfDimensions * index + j * kTileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights_[offset]);
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (unsigned k = 0; k < kNumRegs; ++k)
for (unsigned k = 0; k < NumRegs; ++k)
acc[k] = vec_add_16(acc[k], column[k]);
}
auto accTile = reinterpret_cast<vec_t*>(
&accumulator.accumulation[c][0][j * kTileHeight]);
for (unsigned k = 0; k < kNumRegs; k++)
&accumulator.accumulation[perspective][j * TileHeight]);
for (unsigned k = 0; k < NumRegs; k++)
vec_store(&accTile[k], acc[k]);
}
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
{
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_zero_psqt();
for (const auto index : active)
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
}
auto accTilePsqt = reinterpret_cast<psqt_vec_t*>(
&accumulator.psqtAccumulation[perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&accTilePsqt[k], psqt[k]);
}
#else
std::memcpy(accumulator.accumulation[c][0], biases_,
kHalfDimensions * sizeof(BiasType));
std::memcpy(accumulator.accumulation[perspective], biases,
HalfDimensions * sizeof(BiasType));
for (std::size_t k = 0; k < PSQTBuckets; ++k)
accumulator.psqtAccumulation[perspective][k] = 0;
for (const auto index : active)
{
const IndexType offset = kHalfDimensions * index;
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < kHalfDimensions; ++j)
accumulator.accumulation[c][0][j] += weights_[offset + j];
for (IndexType j = 0; j < HalfDimensions; ++j)
accumulator.accumulation[perspective][j] += weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
accumulator.psqtAccumulation[perspective][k] += psqtWeights[index * PSQTBuckets + k];
}
#endif
}
@ -404,14 +599,11 @@ namespace Eval::NNUE {
#endif
}
using BiasType = std::int16_t;
using WeightType = std::int16_t;
alignas(kCacheLineSize) BiasType biases_[kHalfDimensions];
alignas(kCacheLineSize)
WeightType weights_[kHalfDimensions * kInputDimensions];
alignas(CacheLineSize) BiasType biases[HalfDimensions];
alignas(CacheLineSize) WeightType weights[HalfDimensions * InputDimensions];
alignas(CacheLineSize) PSQTWeightType psqtWeights[InputDimensions * PSQTBuckets];
};
} // namespace Eval::NNUE
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,6 +24,8 @@
#include "position.h"
#include "thread.h"
namespace Stockfish {
namespace {
#define V Value
@ -107,8 +109,9 @@ namespace {
e->blockedCount += popcount(shift<Up>(ourPawns) & (theirPawns | doubleAttackThem));
// Loop through all pawns of the current color and score each pawn
while (b) {
s = pop_lsb(&b);
while (b)
{
s = pop_lsb(b);
assert(pos.piece_on(s) == make_piece(Us, PAWN));
@ -288,7 +291,7 @@ Score Entry::do_king_safety(const Position& pos) {
if (pawns & attacks_bb<KING>(ksq))
minPawnDist = 1;
else while (pawns)
minPawnDist = std::min(minPawnDist, distance(ksq, pop_lsb(&pawns)));
minPawnDist = std::min(minPawnDist, distance(ksq, pop_lsb(pawns)));
return shelter - make_score(0, 16 * minPawnDist);
}
@ -298,3 +301,5 @@ template Score Entry::do_king_safety<WHITE>(const Position& pos);
template Score Entry::do_king_safety<BLACK>(const Position& pos);
} // namespace Pawns
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,7 +23,7 @@
#include "position.h"
#include "types.h"
namespace Pawns {
namespace Stockfish::Pawns {
/// Pawns::Entry contains various information about a pawn structure. A lookup
/// to the pawn hash table (performed by calling the probe function) returns a
@ -65,6 +65,6 @@ typedef HashTable<Entry, 131072> Table;
Entry* probe(const Position& pos);
} // namespace Pawns
} // namespace Stockfish::Pawns
#endif // #ifndef PAWNS_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -34,6 +34,8 @@
using std::string;
namespace Stockfish {
namespace Zobrist {
Key psq[PIECE_NB][SQUARE_NB];
@ -71,13 +73,13 @@ std::ostream& operator<<(std::ostream& os, const Position& pos) {
<< std::setfill(' ') << std::dec << "\nCheckers: ";
for (Bitboard b = pos.checkers(); b; )
os << UCI::square(pop_lsb(&b)) << " ";
os << UCI::square(pop_lsb(b)) << " ";
if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces())
&& !pos.can_castle(ANY_CASTLING))
{
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::kCacheLineSize);
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
Position p;
p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread());
@ -249,8 +251,6 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th
set_castling_right(c, rsq);
}
set_state(st);
// 4. En passant square.
// Ignore if square is invalid or not on side to move relative rank 6.
bool enpassant = false;
@ -264,24 +264,12 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th
// a) side to move have a pawn threatening epSquare
// b) there is an enemy pawn in front of epSquare
// c) there is no piece on epSquare or behind epSquare
// d) enemy pawn didn't block a check of its own color by moving forward
enpassant = pawn_attacks_bb(~sideToMove, st->epSquare) & pieces(sideToMove, PAWN)
&& (pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove)))
&& !(pieces() & (st->epSquare | (st->epSquare + pawn_push(sideToMove))))
&& ( file_of(square<KING>(sideToMove)) == file_of(st->epSquare)
|| !(blockers_for_king(sideToMove) & (st->epSquare + pawn_push(~sideToMove))));
&& !(pieces() & (st->epSquare | (st->epSquare + pawn_push(sideToMove))));
}
// It's necessary for st->previous to be intialized in this way because legality check relies on its existence
if (enpassant) {
st->previous = new StateInfo();
remove_piece(st->epSquare - pawn_push(sideToMove));
st->previous->checkersBB = attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove);
st->previous->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), st->previous->pinners[BLACK]);
st->previous->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), st->previous->pinners[WHITE]);
put_piece(make_piece(~sideToMove, PAWN), st->epSquare - pawn_push(sideToMove));
}
else
if (!enpassant)
st->epSquare = SQ_NONE;
// 5-6. Halfmove clock and fullmove number
@ -293,8 +281,7 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th
chess960 = isChess960;
thisThread = th;
st->accumulator.state[WHITE] = Eval::NNUE::INIT;
st->accumulator.state[BLACK] = Eval::NNUE::INIT;
set_state(st);
assert(pos_is_ok());
@ -318,7 +305,7 @@ void Position::set_castling_right(Color c, Square rfrom) {
Square kto = relative_square(c, cr & KING_SIDE ? SQ_G1 : SQ_C1);
Square rto = relative_square(c, cr & KING_SIDE ? SQ_F1 : SQ_D1);
castlingPath[cr] = (between_bb(rfrom, rto) | between_bb(kfrom, kto) | rto | kto)
castlingPath[cr] = (between_bb(rfrom, rto) | between_bb(kfrom, kto))
& ~(kfrom | rfrom);
}
@ -357,7 +344,7 @@ void Position::set_state(StateInfo* si) const {
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
Square s = pop_lsb(b);
Piece pc = piece_on(s);
si->key ^= Zobrist::psq[pc][s];
@ -408,7 +395,7 @@ Position& Position::set(const string& code, Color c, StateInfo* si) {
/// Position::fen() returns a FEN representation of the position. In case of
/// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function.
const string Position::fen() const {
string Position::fen() const {
int emptyCnt;
std::ostringstream ss;
@ -474,7 +461,7 @@ Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners
while (snipers)
{
Square sniperSq = pop_lsb(&snipers);
Square sniperSq = pop_lsb(snipers);
Bitboard b = between_bb(s, sniperSq) & occupancy;
if (b && !more_than_one(b))
@ -515,11 +502,23 @@ bool Position::legal(Move m) const {
assert(color_of(moved_piece(m)) == us);
assert(piece_on(square<KING>(us)) == make_piece(us, KING));
// st->previous->blockersForKing consider capsq as empty.
// If pinned, it has to move along the king ray.
// En passant captures are a tricky special case. Because they are rather
// uncommon, we do it simply by testing whether the king is attacked after
// the move is made.
if (type_of(m) == EN_PASSANT)
return !(st->previous->blockersForKing[sideToMove] & from)
|| aligned(from, to, square<KING>(us));
{
Square ksq = square<KING>(us);
Square capsq = to - pawn_push(us);
Bitboard occupied = (pieces() ^ from ^ capsq) | to;
assert(to == ep_square());
assert(moved_piece(m) == make_piece(us, PAWN));
assert(piece_on(capsq) == make_piece(~us, PAWN));
assert(piece_on(to) == NO_PIECE);
return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK))
&& !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP));
}
// Castling moves generation does not check if the castling path is clear of
// enemy attacks, it is delayed at a later time: now!
@ -542,7 +541,7 @@ bool Position::legal(Move m) const {
// If the moving piece is a king, check whether the destination square is
// attacked by the opponent.
if (type_of(piece_on(from)) == KING)
return !(attackers_to(to) & pieces(~us));
return !(attackers_to(to, pieces() ^ from) & pieces(~us));
// A non-king move is legal if and only if it is not pinned or it
// is moving along the ray towards or away from the king.
@ -611,8 +610,8 @@ bool Position::pseudo_legal(const Move m) const {
if (more_than_one(checkers()))
return false;
// Our move must be a blocking evasion or a capture of the checking piece
if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to))
// Our move must be a blocking interposition or a capture of the checking piece
if (!(between_bb(square<KING>(us), lsb(checkers())) & to))
return false;
}
// In case of king moves under check we have to remove king so as to catch
@ -652,15 +651,18 @@ bool Position::gives_check(Move m) const {
case PROMOTION:
return attacks_bb(promotion_type(m), to, pieces() ^ from) & square<KING>(~sideToMove);
// The double-pushed pawn blocked a check? En Passant will remove the blocker.
// The only discovery check that wasn't handle is through capsq and fromsq
// So the King must be in the same rank as fromsq to consider this possibility.
// st->previous->blockersForKing consider capsq as empty.
// En passant capture with check? We have already handled the case
// of direct checks and ordinary discovered check, so the only case we
// need to handle is the unusual case of a discovered check through
// the captured pawn.
case EN_PASSANT:
return st->previous->checkersBB
|| ( rank_of(square<KING>(~sideToMove)) == rank_of(from)
&& st->previous->blockersForKing[~sideToMove] & from);
{
Square capsq = make_square(file_of(to), rank_of(from));
Bitboard b = (pieces() ^ from ^ capsq) | to;
return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK))
| (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP));
}
default: //CASTLING
{
// Castling is encoded as 'king captures the rook'
@ -700,8 +702,8 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
++st->pliesFromNull;
// Used by NNUE
st->accumulator.state[WHITE] = Eval::NNUE::EMPTY;
st->accumulator.state[BLACK] = Eval::NNUE::EMPTY;
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
auto& dp = st->dirtyPiece;
dp.dirty_num = 1;
@ -986,7 +988,7 @@ void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Squ
}
/// Position::do(undo)_null_move() is used to do(undo) a "null move": it flips
/// Position::do_null_move() is used to do a "null move": it flips
/// the side to move without executing any move on the board.
void Position::do_null_move(StateInfo& newSt) {
@ -1001,8 +1003,8 @@ void Position::do_null_move(StateInfo& newSt) {
st->dirtyPiece.dirty_num = 0;
st->dirtyPiece.piece[0] = NO_PIECE; // Avoid checks in UpdateAccumulator()
st->accumulator.state[WHITE] = Eval::NNUE::EMPTY;
st->accumulator.state[BLACK] = Eval::NNUE::EMPTY;
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
if (st->epSquare != SQ_NONE)
{
@ -1011,9 +1013,9 @@ void Position::do_null_move(StateInfo& newSt) {
}
st->key ^= Zobrist::side;
++st->rule50;
prefetch(TT.first_entry(key()));
++st->rule50;
st->pliesFromNull = 0;
sideToMove = ~sideToMove;
@ -1025,6 +1027,9 @@ void Position::do_null_move(StateInfo& newSt) {
assert(pos_is_ok());
}
/// Position::undo_null_move() must be used to undo a "null move"
void Position::undo_null_move() {
assert(!checkers());
@ -1075,8 +1080,9 @@ bool Position::see_ge(Move m, Value threshold) const {
if (swap <= 0)
return true;
assert(color_of(piece_on(from)) == sideToMove);
Bitboard occupied = pieces() ^ from ^ to;
Color stm = color_of(piece_on(from));
Color stm = sideToMove;
Bitboard attackers = attackers_to(to, occupied);
Bitboard stmAttackers, bb;
int res = 1;
@ -1090,8 +1096,8 @@ bool Position::see_ge(Move m, Value threshold) const {
if (!(stmAttackers = attackers & pieces(stm)))
break;
// Don't allow pinned pieces to attack (except the king) as long as
// there are pinners on their original square.
// Don't allow pinned pieces to attack as long as there are
// pinners on their original square.
if (pinners(~stm) & occupied)
stmAttackers &= ~blockers_for_king(stm);
@ -1107,7 +1113,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = PawnValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
attackers |= attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN);
}
@ -1116,7 +1122,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = KnightValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
}
else if ((bb = stmAttackers & pieces(BISHOP)))
@ -1124,7 +1130,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = BishopValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
attackers |= attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN);
}
@ -1133,7 +1139,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = RookValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
attackers |= attacks_bb<ROOK>(to, occupied) & pieces(ROOK, QUEEN);
}
@ -1142,7 +1148,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = QueenValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
attackers |= (attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN))
| (attacks_bb<ROOK >(to, occupied) & pieces(ROOK , QUEEN));
}
@ -1216,7 +1222,7 @@ bool Position::has_game_cycle(int ply) const {
Square s1 = from_sq(move);
Square s2 = to_sq(move);
if (!(between_bb(s1, s2) & pieces()))
if (!((between_bb(s1, s2) ^ s2) & pieces()))
{
if (ply > i)
return true;
@ -1313,7 +1319,7 @@ bool Position::pos_is_ok() const {
assert(0 && "pos_is_ok: Bitboards");
StateInfo si = *st;
ASSERT_ALIGNED(&si, Eval::NNUE::kCacheLineSize);
ASSERT_ALIGNED(&si, Eval::NNUE::CacheLineSize);
set_state(&si);
if (std::memcmp(&si, st, sizeof(StateInfo)))
@ -1338,3 +1344,5 @@ bool Position::pos_is_ok() const {
return true;
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -31,6 +31,7 @@
#include "nnue/nnue_accumulator.h"
namespace Stockfish {
/// StateInfo struct stores information needed to restore a Position object to
/// its previous state when we retract a move. Whenever a move is made on the
@ -50,11 +51,11 @@ struct StateInfo {
// Not copied when making a move (will be recomputed anyhow)
Key key;
Bitboard checkersBB;
Piece capturedPiece;
StateInfo* previous;
Bitboard blockersForKing[COLOR_NB];
Bitboard pinners[COLOR_NB];
Bitboard checkSquares[PIECE_TYPE_NB];
Piece capturedPiece;
int repetition;
// Used by NNUE
@ -87,7 +88,7 @@ public:
// FEN string input/output
Position& set(const std::string& fenStr, bool isChess960, StateInfo* si, Thread* th);
Position& set(const std::string& code, Color c, StateInfo* si);
const std::string fen() const;
std::string fen() const;
// Position representation
Bitboard pieces(PieceType pt) const;
@ -114,7 +115,6 @@ public:
Bitboard blockers_for_king(Color c) const;
Bitboard check_squares(PieceType pt) const;
Bitboard pinners(Color c) const;
bool is_discovered_check_on_king(Color c, Move m) const;
// Attacks to/from a given square
Bitboard attackers_to(Square s) const;
@ -127,7 +127,6 @@ public:
bool capture(Move m) const;
bool capture_or_promotion(Move m) const;
bool gives_check(Move m) const;
bool advanced_pawn_push(Move m) const;
Piece moved_piece(Move m) const;
Piece captured_piece() const;
@ -172,6 +171,9 @@ public:
// Used by NNUE
StateInfo* state() const;
void put_piece(Piece pc, Square s);
void remove_piece(Square s);
private:
// Initialization helpers (used while setting up a position)
void set_castling_right(Color c, Square rfrom);
@ -179,8 +181,6 @@ private:
void set_check_info(StateInfo* si) const;
// Other helpers
void put_piece(Piece pc, Square s);
void remove_piece(Square s);
void move_piece(Square from, Square to);
template<bool Do>
void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto);
@ -193,11 +193,11 @@ private:
int castlingRightsMask[SQUARE_NB];
Square castlingRookSquare[CASTLING_RIGHT_NB];
Bitboard castlingPath[CASTLING_RIGHT_NB];
Thread* thisThread;
StateInfo* st;
int gamePly;
Color sideToMove;
Score psq;
Thread* thisThread;
StateInfo* st;
bool chess960;
};
@ -301,19 +301,10 @@ inline Bitboard Position::check_squares(PieceType pt) const {
return st->checkSquares[pt];
}
inline bool Position::is_discovered_check_on_king(Color c, Move m) const {
return st->blockersForKing[c] & from_sq(m);
}
inline bool Position::pawn_passed(Color c, Square s) const {
return !(pieces(~c, PAWN) & passed_pawn_span(c, s));
}
inline bool Position::advanced_pawn_push(Move m) const {
return type_of(moved_piece(m)) == PAWN
&& relative_rank(sideToMove, to_sq(m)) > RANK_5;
}
inline int Position::pawns_on_same_color_squares(Color c, Square s) const {
return popcount(pieces(c, PAWN) & ((DarkSquares & s) ? DarkSquares : ~DarkSquares));
}
@ -396,7 +387,7 @@ inline void Position::remove_piece(Square s) {
byTypeBB[ALL_PIECES] ^= s;
byTypeBB[type_of(pc)] ^= s;
byColorBB[color_of(pc)] ^= s;
/* board[s] = NO_PIECE; Not needed, overwritten by the capturing one */
board[s] = NO_PIECE;
pieceCount[pc]--;
pieceCount[make_piece(color_of(pc), ALL_PIECES)]--;
psq -= PSQT::psq[pc][s];
@ -423,4 +414,6 @@ inline StateInfo* Position::state() const {
return st;
}
} // namespace Stockfish
#endif // #ifndef POSITION_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,6 +24,7 @@
#include "bitboard.h"
#include "types.h"
namespace Stockfish {
namespace
{
@ -126,3 +127,5 @@ void init() {
}
} // namespace PSQT
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,7 +24,7 @@
#include "types.h"
namespace PSQT
namespace Stockfish::PSQT
{
extern Score psq[PIECE_NB][SQUARE_NB];
@ -32,7 +32,7 @@ extern Score psq[PIECE_NB][SQUARE_NB];
// Fill psqt array from a set of internally linked parameters
extern void init();
} // namespace PSQT
} // namespace Stockfish::PSQT
#endif // PSQT_H_INCLUDED

File diff suppressed because it is too large Load diff

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -25,6 +25,8 @@
#include "movepick.h"
#include "types.h"
namespace Stockfish {
class Position;
namespace Search {
@ -45,11 +47,13 @@ struct Stack {
Move excludedMove;
Move killers[2];
Value staticEval;
Depth depth;
int statScore;
int moveCount;
bool inCheck;
bool ttPv;
bool ttHit;
int doubleExtensions;
};
@ -69,6 +73,7 @@ struct RootMove {
Value score = -VALUE_INFINITE;
Value previousScore = -VALUE_INFINITE;
Value averageScore = -VALUE_INFINITE;
int selDepth = 0;
int tbRank = 0;
Value tbScore;
@ -106,4 +111,6 @@ void clear();
} // namespace Search
} // namespace Stockfish
#endif // #ifndef SEARCH_H_INCLUDED

387
src/simd.h Normal file
View file

@ -0,0 +1,387 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef STOCKFISH_SIMD_H_INCLUDED
#define STOCKFISH_SIMD_H_INCLUDED
#if defined(USE_AVX2)
# include <immintrin.h>
#elif defined(USE_SSE41)
# include <smmintrin.h>
#elif defined(USE_SSSE3)
# include <tmmintrin.h>
#elif defined(USE_SSE2)
# include <emmintrin.h>
#elif defined(USE_MMX)
# include <mmintrin.h>
#elif defined(USE_NEON)
# include <arm_neon.h>
#endif
// The inline asm is only safe for GCC, where it is necessary to get good codegen.
// See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101693
// Clang does fine without it.
// Play around here: https://godbolt.org/z/7EWqrYq51
#if (defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER))
#define USE_INLINE_ASM
#endif
// Use either the AVX512 or AVX-VNNI version of the VNNI instructions.
#if defined(USE_AVXVNNI)
#define VNNI_PREFIX "%{vex%} "
#else
#define VNNI_PREFIX ""
#endif
namespace Stockfish::Simd {
#if defined (USE_AVX512)
[[maybe_unused]] static int m512_hadd(__m512i sum, int bias) {
return _mm512_reduce_add_epi32(sum) + bias;
}
/*
Parameters:
sum0 = [zmm0.i128[0], zmm0.i128[1], zmm0.i128[2], zmm0.i128[3]]
sum1 = [zmm1.i128[0], zmm1.i128[1], zmm1.i128[2], zmm1.i128[3]]
sum2 = [zmm2.i128[0], zmm2.i128[1], zmm2.i128[2], zmm2.i128[3]]
sum3 = [zmm3.i128[0], zmm3.i128[1], zmm3.i128[2], zmm3.i128[3]]
Returns:
ret = [
reduce_add_epi32(zmm0.i128[0]), reduce_add_epi32(zmm1.i128[0]), reduce_add_epi32(zmm2.i128[0]), reduce_add_epi32(zmm3.i128[0]),
reduce_add_epi32(zmm0.i128[1]), reduce_add_epi32(zmm1.i128[1]), reduce_add_epi32(zmm2.i128[1]), reduce_add_epi32(zmm3.i128[1]),
reduce_add_epi32(zmm0.i128[2]), reduce_add_epi32(zmm1.i128[2]), reduce_add_epi32(zmm2.i128[2]), reduce_add_epi32(zmm3.i128[2]),
reduce_add_epi32(zmm0.i128[3]), reduce_add_epi32(zmm1.i128[3]), reduce_add_epi32(zmm2.i128[3]), reduce_add_epi32(zmm3.i128[3])
]
*/
[[maybe_unused]] static __m512i m512_hadd128x16_interleave(
__m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3) {
__m512i sum01a = _mm512_unpacklo_epi32(sum0, sum1);
__m512i sum01b = _mm512_unpackhi_epi32(sum0, sum1);
__m512i sum23a = _mm512_unpacklo_epi32(sum2, sum3);
__m512i sum23b = _mm512_unpackhi_epi32(sum2, sum3);
__m512i sum01 = _mm512_add_epi32(sum01a, sum01b);
__m512i sum23 = _mm512_add_epi32(sum23a, sum23b);
__m512i sum0123a = _mm512_unpacklo_epi64(sum01, sum23);
__m512i sum0123b = _mm512_unpackhi_epi64(sum01, sum23);
return _mm512_add_epi32(sum0123a, sum0123b);
}
[[maybe_unused]] static __m128i m512_haddx4(
__m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3,
__m128i bias) {
__m512i sum = m512_hadd128x16_interleave(sum0, sum1, sum2, sum3);
__m256i sum256lo = _mm512_castsi512_si256(sum);
__m256i sum256hi = _mm512_extracti64x4_epi64(sum, 1);
sum256lo = _mm256_add_epi32(sum256lo, sum256hi);
__m128i sum128lo = _mm256_castsi256_si128(sum256lo);
__m128i sum128hi = _mm256_extracti128_si256(sum256lo, 1);
return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias);
}
[[maybe_unused]] static void m512_add_dpbusd_epi32(
__m512i& acc,
__m512i a,
__m512i b) {
# if defined (USE_VNNI)
# if defined (USE_INLINE_ASM)
asm(
"vpdpbusd %[b], %[a], %[acc]\n\t"
: [acc]"+v"(acc)
: [a]"v"(a), [b]"vm"(b)
);
# else
acc = _mm512_dpbusd_epi32(acc, a, b);
# endif
# else
# if defined (USE_INLINE_ASM)
__m512i tmp = _mm512_maddubs_epi16(a, b);
asm(
"vpmaddwd %[tmp], %[ones], %[tmp]\n\t"
"vpaddd %[acc], %[tmp], %[acc]\n\t"
: [acc]"+v"(acc), [tmp]"+&v"(tmp)
: [ones]"v"(_mm512_set1_epi16(1))
);
# else
__m512i product0 = _mm512_maddubs_epi16(a, b);
product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1));
acc = _mm512_add_epi32(acc, product0);
# endif
# endif
}
[[maybe_unused]] static void m512_add_dpbusd_epi32x2(
__m512i& acc,
__m512i a0, __m512i b0,
__m512i a1, __m512i b1) {
# if defined (USE_VNNI)
# if defined (USE_INLINE_ASM)
asm(
"vpdpbusd %[b0], %[a0], %[acc]\n\t"
"vpdpbusd %[b1], %[a1], %[acc]\n\t"
: [acc]"+v"(acc)
: [a0]"v"(a0), [b0]"vm"(b0), [a1]"v"(a1), [b1]"vm"(b1)
);
# else
acc = _mm512_dpbusd_epi32(acc, a0, b0);
acc = _mm512_dpbusd_epi32(acc, a1, b1);
# endif
# else
# if defined (USE_INLINE_ASM)
__m512i tmp0 = _mm512_maddubs_epi16(a0, b0);
__m512i tmp1 = _mm512_maddubs_epi16(a1, b1);
asm(
"vpaddsw %[tmp0], %[tmp1], %[tmp0]\n\t"
"vpmaddwd %[tmp0], %[ones], %[tmp0]\n\t"
"vpaddd %[acc], %[tmp0], %[acc]\n\t"
: [acc]"+v"(acc), [tmp0]"+&v"(tmp0)
: [tmp1]"v"(tmp1), [ones]"v"(_mm512_set1_epi16(1))
);
# else
__m512i product0 = _mm512_maddubs_epi16(a0, b0);
__m512i product1 = _mm512_maddubs_epi16(a1, b1);
product0 = _mm512_adds_epi16(product0, product1);
product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1));
acc = _mm512_add_epi32(acc, product0);
# endif
# endif
}
#endif
#if defined (USE_AVX2)
[[maybe_unused]] static int m256_hadd(__m256i sum, int bias) {
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB));
return _mm_cvtsi128_si32(sum128) + bias;
}
[[maybe_unused]] static __m128i m256_haddx4(
__m256i sum0, __m256i sum1, __m256i sum2, __m256i sum3,
__m128i bias) {
sum0 = _mm256_hadd_epi32(sum0, sum1);
sum2 = _mm256_hadd_epi32(sum2, sum3);
sum0 = _mm256_hadd_epi32(sum0, sum2);
__m128i sum128lo = _mm256_castsi256_si128(sum0);
__m128i sum128hi = _mm256_extracti128_si256(sum0, 1);
return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias);
}
[[maybe_unused]] static void m256_add_dpbusd_epi32(
__m256i& acc,
__m256i a,
__m256i b) {
# if defined (USE_VNNI)
# if defined (USE_INLINE_ASM)
asm(
VNNI_PREFIX "vpdpbusd %[b], %[a], %[acc]\n\t"
: [acc]"+v"(acc)
: [a]"v"(a), [b]"vm"(b)
);
# else
acc = _mm256_dpbusd_epi32(acc, a, b);
# endif
# else
# if defined (USE_INLINE_ASM)
__m256i tmp = _mm256_maddubs_epi16(a, b);
asm(
"vpmaddwd %[tmp], %[ones], %[tmp]\n\t"
"vpaddd %[acc], %[tmp], %[acc]\n\t"
: [acc]"+v"(acc), [tmp]"+&v"(tmp)
: [ones]"v"(_mm256_set1_epi16(1))
);
# else
__m256i product0 = _mm256_maddubs_epi16(a, b);
product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1));
acc = _mm256_add_epi32(acc, product0);
# endif
# endif
}
[[maybe_unused]] static void m256_add_dpbusd_epi32x2(
__m256i& acc,
__m256i a0, __m256i b0,
__m256i a1, __m256i b1) {
# if defined (USE_VNNI)
# if defined (USE_INLINE_ASM)
asm(
VNNI_PREFIX "vpdpbusd %[b0], %[a0], %[acc]\n\t"
VNNI_PREFIX "vpdpbusd %[b1], %[a1], %[acc]\n\t"
: [acc]"+v"(acc)
: [a0]"v"(a0), [b0]"vm"(b0), [a1]"v"(a1), [b1]"vm"(b1)
);
# else
acc = _mm256_dpbusd_epi32(acc, a0, b0);
acc = _mm256_dpbusd_epi32(acc, a1, b1);
# endif
# else
# if defined (USE_INLINE_ASM)
__m256i tmp0 = _mm256_maddubs_epi16(a0, b0);
__m256i tmp1 = _mm256_maddubs_epi16(a1, b1);
asm(
"vpaddsw %[tmp0], %[tmp1], %[tmp0]\n\t"
"vpmaddwd %[tmp0], %[ones], %[tmp0]\n\t"
"vpaddd %[acc], %[tmp0], %[acc]\n\t"
: [acc]"+v"(acc), [tmp0]"+&v"(tmp0)
: [tmp1]"v"(tmp1), [ones]"v"(_mm256_set1_epi16(1))
);
# else
__m256i product0 = _mm256_maddubs_epi16(a0, b0);
__m256i product1 = _mm256_maddubs_epi16(a1, b1);
product0 = _mm256_adds_epi16(product0, product1);
product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1));
acc = _mm256_add_epi32(acc, product0);
# endif
# endif
}
#endif
#if defined (USE_SSSE3)
[[maybe_unused]] static int m128_hadd(__m128i sum, int bias) {
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB
return _mm_cvtsi128_si32(sum) + bias;
}
[[maybe_unused]] static __m128i m128_haddx4(
__m128i sum0, __m128i sum1, __m128i sum2, __m128i sum3,
__m128i bias) {
sum0 = _mm_hadd_epi32(sum0, sum1);
sum2 = _mm_hadd_epi32(sum2, sum3);
sum0 = _mm_hadd_epi32(sum0, sum2);
return _mm_add_epi32(sum0, bias);
}
[[maybe_unused]] static void m128_add_dpbusd_epi32(
__m128i& acc,
__m128i a,
__m128i b) {
# if defined (USE_INLINE_ASM)
__m128i tmp = _mm_maddubs_epi16(a, b);
asm(
"pmaddwd %[ones], %[tmp]\n\t"
"paddd %[tmp], %[acc]\n\t"
: [acc]"+v"(acc), [tmp]"+&v"(tmp)
: [ones]"v"(_mm_set1_epi16(1))
);
# else
__m128i product0 = _mm_maddubs_epi16(a, b);
product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1));
acc = _mm_add_epi32(acc, product0);
# endif
}
[[maybe_unused]] static void m128_add_dpbusd_epi32x2(
__m128i& acc,
__m128i a0, __m128i b0,
__m128i a1, __m128i b1) {
# if defined (USE_INLINE_ASM)
__m128i tmp0 = _mm_maddubs_epi16(a0, b0);
__m128i tmp1 = _mm_maddubs_epi16(a1, b1);
asm(
"paddsw %[tmp1], %[tmp0]\n\t"
"pmaddwd %[ones], %[tmp0]\n\t"
"paddd %[tmp0], %[acc]\n\t"
: [acc]"+v"(acc), [tmp0]"+&v"(tmp0)
: [tmp1]"v"(tmp1), [ones]"v"(_mm_set1_epi16(1))
);
# else
__m128i product0 = _mm_maddubs_epi16(a0, b0);
__m128i product1 = _mm_maddubs_epi16(a1, b1);
product0 = _mm_adds_epi16(product0, product1);
product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1));
acc = _mm_add_epi32(acc, product0);
# endif
}
#endif
#if defined (USE_NEON)
[[maybe_unused]] static int neon_m128_reduce_add_epi32(int32x4_t s) {
# if USE_NEON >= 8
return vaddvq_s32(s);
# else
return s[0] + s[1] + s[2] + s[3];
# endif
}
[[maybe_unused]] static int neon_m128_hadd(int32x4_t sum, int bias) {
return neon_m128_reduce_add_epi32(sum) + bias;
}
[[maybe_unused]] static int32x4_t neon_m128_haddx4(
int32x4_t sum0, int32x4_t sum1, int32x4_t sum2, int32x4_t sum3,
int32x4_t bias) {
int32x4_t hsums {
neon_m128_reduce_add_epi32(sum0),
neon_m128_reduce_add_epi32(sum1),
neon_m128_reduce_add_epi32(sum2),
neon_m128_reduce_add_epi32(sum3)
};
return vaddq_s32(hsums, bias);
}
[[maybe_unused]] static void neon_m128_add_dpbusd_epi32x2(
int32x4_t& acc,
int8x8_t a0, int8x8_t b0,
int8x8_t a1, int8x8_t b1) {
int16x8_t product = vmull_s8(a0, b0);
product = vmlal_s8(product, a1, b1);
acc = vpadalq_s16(acc, product);
}
#endif
}
#endif // STOCKFISH_SIMD_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -50,9 +50,11 @@
#include <windows.h>
#endif
using namespace Tablebases;
using namespace Stockfish::Tablebases;
int Tablebases::MaxCardinality;
int Stockfish::Tablebases::MaxCardinality;
namespace Stockfish {
namespace {
@ -103,9 +105,6 @@ template<> inline void swap_endian<uint8_t>(uint8_t&) {}
template<typename T, int LE> T number(void* addr)
{
static const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
static const bool IsLittleEndian = (Le.c[0] == 4);
T v;
if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare)
@ -190,7 +189,8 @@ public:
std::stringstream ss(Paths);
std::string path;
while (std::getline(ss, path, SepChar)) {
while (std::getline(ss, path, SepChar))
{
fname = path + "/" + f;
std::ifstream::open(fname);
if (is_open())
@ -565,7 +565,8 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
int buf64Size = 64;
Sym sym;
while (true) {
while (true)
{
int len = 0; // This is the symbol length - d->min_sym_len
// Now get the symbol length. For any symbol s64 of length l right-padded
@ -603,8 +604,8 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
// We binary-search for our value recursively expanding into the left and
// right child symbols until we reach a leaf node where symlen[sym] + 1 == 1
// that will store the value we need.
while (d->symlen[sym]) {
while (d->symlen[sym])
{
Sym left = d->btree[sym].get<LR::Left>();
// If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and
@ -709,7 +710,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
leadPawns = b = pos.pieces(color_of(pc), PAWN);
do
squares[size++] = pop_lsb(&b) ^ flipSquares;
squares[size++] = pop_lsb(b) ^ flipSquares;
while (b);
leadPawnsCnt = size;
@ -729,7 +730,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
// directly map them to the correct color and square.
b = pos.pieces() ^ leadPawns;
do {
Square s = pop_lsb(&b);
Square s = pop_lsb(b);
squares[size] = s ^ flipSquares;
pieces[size++] = Piece(pos.piece_on(s) ^ flipColor);
} while (b);
@ -768,7 +769,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
goto encode_remaining; // With pawns we have finished special treatments
}
// In positions withouth pawns, we further flip the squares to ensure leading
// In positions without pawns, we further flip the squares to ensure leading
// piece is below RANK_5.
if (rank_of(squares[0]) > RANK_4)
for (int i = 0; i < size; ++i)
@ -811,7 +812,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
// Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be
// swapped and still get the same position.)
//
// In case we have at least 3 unique pieces (inlcuded kings) we encode them
// In case we have at least 3 unique pieces (included kings) we encode them
// together.
if (entry->hasUniquePieces) {
@ -826,7 +827,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
+ (squares[1] - adjust1)) * 62
+ squares[2] - adjust2;
// First piece is on a1-h8 diagonal, second below: map this occurence to
// First piece is on a1-h8 diagonal, second below: map this occurrence to
// 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal
// to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27.
else if (off_A1H8(squares[1]))
@ -856,7 +857,7 @@ encode_remaining:
idx *= d->groupIdx[0];
Square* groupSq = squares + d->groupLen[0];
// Encode remainig pawns then pieces according to square, in ascending order
// Encode remaining pawns then pieces according to square, in ascending order
bool remainingPawns = entry->hasPawns && entry->pawnCount[1];
while (d->groupLen[++next])
@ -884,7 +885,7 @@ encode_remaining:
// Group together pieces that will be encoded together. The general rule is that
// a group contains pieces of same type and color. The exception is the leading
// group that, in case of positions withouth pawns, can be formed by 3 different
// group that, in case of positions without pawns, can be formed by 3 different
// pieces (default) or by the king pair when there is not a unique piece apart
// from the kings. When there are pawns, pawns are always first in pieces[].
//
@ -916,7 +917,7 @@ void set_groups(T& e, PairsData* d, int order[], File f) {
//
// This ensures unique encoding for the whole position. The order of the
// groups is a per-table parameter and could not follow the canonical leading
// pawns/pieces -> remainig pawns -> remaining pieces. In particular the
// pawns/pieces -> remaining pawns -> remaining pieces. In particular the
// first group is at order[0] position and the remaining pawns, when present,
// are at order[1] position.
bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides
@ -936,7 +937,7 @@ void set_groups(T& e, PairsData* d, int order[], File f) {
d->groupIdx[1] = idx;
idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]];
}
else // Remainig pieces
else // Remaining pieces
{
d->groupIdx[next] = idx;
idx *= Binomial[d->groupLen[next]][freeSquares];
@ -946,7 +947,7 @@ void set_groups(T& e, PairsData* d, int order[], File f) {
d->groupIdx[n] = idx;
}
// In Recursive Pairing each symbol represents a pair of childern symbols. So
// In Recursive Pairing each symbol represents a pair of children symbols. So
// read d->btree[] symbols data and expand each one in his left and right child
// symbol until reaching the leafs that represent the symbol value.
uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) {
@ -1316,7 +1317,7 @@ void Tablebases::init(const std::string& paths) {
for (auto p : bothOnDiagonal)
MapKK[p.first][p.second] = code++;
// Binomial[] stores the Binomial Coefficents using Pascal rule. There
// Binomial[] stores the Binomial Coefficients using Pascal rule. There
// are Binomial[k][n] ways to choose k elements from a set of n elements.
Binomial[0][0] = 1;
@ -1336,7 +1337,7 @@ void Tablebases::init(const std::string& paths) {
for (int leadPawnsCnt = 1; leadPawnsCnt <= 5; ++leadPawnsCnt)
for (File f = FILE_A; f <= FILE_D; ++f)
{
// Restart the index at every file because TB table is splitted
// Restart the index at every file because TB table is split
// by file, so we can reuse the same index for different files.
int idx = 0;
@ -1535,6 +1536,14 @@ bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) {
WDLScore wdl = -probe_wdl(pos, &result);
dtz = dtz_before_zeroing(wdl);
}
else if (pos.is_draw(1))
{
// In case a root move leads to a draw by repetition or
// 50-move rule, we set dtz to zero. Note: since we are
// only 1 ply from the root, this must be a true 3-fold
// repetition inside the game history.
dtz = 0;
}
else
{
// Otherwise, take dtz for the new position and correct by 1 ply
@ -1585,6 +1594,7 @@ bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) {
ProbeState result;
StateInfo st;
WDLScore wdl;
bool rule50 = Options["Syzygy50MoveRule"];
@ -1593,7 +1603,10 @@ bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) {
{
pos.do_move(m.pv[0], st);
WDLScore wdl = -probe_wdl(pos, &result);
if (pos.is_draw(1))
wdl = WDLDraw;
else
wdl = -probe_wdl(pos, &result);
pos.undo_move(m.pv[0]);
@ -1610,3 +1623,5 @@ bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) {
return true;
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,7 +23,7 @@
#include "../search.h"
namespace Tablebases {
namespace Stockfish::Tablebases {
enum WDLScore {
WDLLoss = -2, // Loss
@ -38,7 +38,7 @@ enum WDLScore {
// Possible states after a probing operation
enum ProbeState {
FAIL = 0, // Probe failed (missing file table)
OK = 1, // Probe succesful
OK = 1, // Probe successful
CHANGE_STM = -1, // DTZ should check the other side
ZEROING_BEST_MOVE = 2 // Best move zeroes DTZ (capture or pawn move)
};
@ -73,6 +73,6 @@ inline std::ostream& operator<<(std::ostream& os, const ProbeState v) {
return os;
}
}
} // namespace Stockfish::Tablebases
#endif

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -26,6 +26,8 @@
#include "syzygy/tbprobe.h"
#include "tt.h"
namespace Stockfish {
ThreadPool Threads; // Global object
@ -57,7 +59,6 @@ void Thread::clear() {
counterMoves.fill(MOVE_NONE);
mainHistory.fill(0);
lowPlyHistory.fill(0);
captureHistory.fill(0);
for (bool inCheck : { false, true })
@ -65,7 +66,7 @@ void Thread::clear() {
{
for (auto& to : continuationHistory[inCheck][c])
for (auto& h : to)
h->fill(0);
h->fill(-71);
continuationHistory[inCheck][c][NO_PIECE][0]->fill(Search::CounterMovePruneThreshold - 1);
}
}
@ -126,14 +127,16 @@ void Thread::idle_loop() {
void ThreadPool::set(size_t requested) {
if (size() > 0) { // destroy any existing thread(s)
if (size() > 0) // destroy any existing thread(s)
{
main()->wait_for_search_finished();
while (size() > 0)
delete back(), pop_back();
}
if (requested > 0) { // create new thread(s)
if (requested > 0) // create new thread(s)
{
push_back(new MainThread(0));
while (size() < requested)
@ -158,6 +161,7 @@ void ThreadPool::clear() {
main()->callsCnt = 0;
main()->bestPreviousScore = VALUE_INFINITE;
main()->bestPreviousAverageScore = VALUE_INFINITE;
main()->previousTimeReduction = 1.0;
}
@ -258,3 +262,5 @@ void ThreadPool::wait_for_search_finished() const {
if (th != front())
th->wait_for_search_finished();
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -32,6 +32,7 @@
#include "search.h"
#include "thread_win32_osx.h"
namespace Stockfish {
/// Thread class keeps together all the thread-related stuff. We use
/// per-thread pawn and material hash tables so that once we get a
@ -54,26 +55,27 @@ public:
void idle_loop();
void start_searching();
void wait_for_search_finished();
size_t id() const { return idx; }
Pawns::Table pawnsTable;
Material::Table materialTable;
size_t pvIdx, pvLast;
uint64_t ttHitAverage;
RunningAverage complexityAverage;
std::atomic<uint64_t> nodes, tbHits, bestMoveChanges;
int selDepth, nmpMinPly;
Color nmpColor;
std::atomic<uint64_t> nodes, tbHits, bestMoveChanges;
Value bestValue, optimism[COLOR_NB];
Position rootPos;
StateInfo rootState;
Search::RootMoves rootMoves;
Depth rootDepth, completedDepth;
Value rootDelta;
CounterMoveHistory counterMoves;
ButterflyHistory mainHistory;
LowPlyHistory lowPlyHistory;
CapturePieceToHistory captureHistory;
ContinuationHistory continuationHistory[2][2];
Score contempt;
int failedHighCnt;
Score trend;
};
@ -88,6 +90,7 @@ struct MainThread : public Thread {
double previousTimeReduction;
Value bestPreviousScore;
Value bestPreviousAverageScore;
Value iterValue[4];
int callsCnt;
bool stopOnPonderhit;
@ -128,4 +131,6 @@ private:
extern ThreadPool Threads;
} // namespace Stockfish
#endif // #ifndef THREAD_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -31,6 +31,8 @@
#include <pthread.h>
namespace Stockfish {
static const size_t TH_STACK_SIZE = 8 * 1024 * 1024;
template <class T, class P = std::pair<T*, void(T::*)()>>
@ -57,10 +59,16 @@ public:
void join() { pthread_join(thread, NULL); }
};
} // namespace Stockfish
#else // Default case: use STL classes
namespace Stockfish {
typedef std::thread NativeThread;
} // namespace Stockfish
#endif
#endif // #ifndef THREAD_WIN32_OSX_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,6 +24,8 @@
#include "timeman.h"
#include "uci.h"
namespace Stockfish {
TimeManagement Time; // Our global time management object
@ -66,6 +68,9 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
TimePoint timeLeft = std::max(TimePoint(1),
limits.time[us] + limits.inc[us] * (mtg - 1) - moveOverhead * (2 + mtg));
// Use extra time with larger increments
double optExtra = std::clamp(1.0 + 12.0 * limits.inc[us] / limits.time[us], 1.0, 1.12);
// A user may scale time usage by setting UCI option "Slow Mover"
// Default is 100 and changing this value will probably lose elo.
timeLeft = slowMover * timeLeft / 100;
@ -76,15 +81,16 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
if (limits.movestogo == 0)
{
optScale = std::min(0.0084 + std::pow(ply + 3.0, 0.5) * 0.0042,
0.2 * limits.time[us] / double(timeLeft));
0.2 * limits.time[us] / double(timeLeft))
* optExtra;
maxScale = std::min(7.0, 4.0 + ply / 12.0);
}
// x moves in y seconds (+ z increment)
else
{
optScale = std::min((0.8 + ply / 128.0) / mtg,
0.8 * limits.time[us] / double(timeLeft));
optScale = std::min((0.88 + ply / 116.4) / mtg,
0.88 * limits.time[us] / double(timeLeft));
maxScale = std::min(6.3, 1.5 + 0.11 * mtg);
}
@ -95,3 +101,5 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
if (Options["Ponder"])
optimumTime += optimumTime / 4;
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,6 +23,8 @@
#include "search.h"
#include "thread.h"
namespace Stockfish {
/// The TimeManagement class computes the optimal time to think depending on
/// the maximum available time, the game move number and other parameters.
@ -44,4 +46,6 @@ private:
extern TimeManagement Time;
} // namespace Stockfish
#endif // #ifndef TIMEMAN_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -26,6 +26,8 @@
#include "tt.h"
#include "uci.h"
namespace Stockfish {
TranspositionTable TT; // Our global transposition table
/// TTEntry::save() populates the TTEntry with a new node's data, possibly
@ -38,9 +40,9 @@ void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev)
move16 = (uint16_t)m;
// Overwrite less valuable entries (cheapest checks first)
if (b == BOUND_EXACT
if ( b == BOUND_EXACT
|| (uint16_t)k != key16
|| d - DEPTH_OFFSET > depth8 - 4)
|| d - DEPTH_OFFSET + 2 * pv > depth8 - 4)
{
assert(d > DEPTH_OFFSET);
assert(d < 256 + DEPTH_OFFSET);
@ -156,3 +158,5 @@ int TranspositionTable::hashfull() const {
return cnt / ClusterSize;
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -22,6 +22,8 @@
#include "misc.h"
#include "types.h"
namespace Stockfish {
/// TTEntry struct is the 10 bytes transposition table entry, defined as below:
///
/// key 16 bit
@ -100,4 +102,6 @@ private:
extern TranspositionTable TT;
} // namespace Stockfish
#endif // #ifndef TT_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -26,9 +26,10 @@
using std::string;
namespace Stockfish {
bool Tune::update_on_last;
const UCI::Option* LastOption = nullptr;
BoolConditions Conditions;
static std::map<std::string, int> TuneResults;
string Tune::next(string& names, bool pop) {
@ -108,23 +109,7 @@ template<> void Tune::Entry<Score>::read_option() {
template<> void Tune::Entry<Tune::PostUpdate>::init_option() {}
template<> void Tune::Entry<Tune::PostUpdate>::read_option() { value(); }
// Set binary conditions according to a probability that depends
// on the corresponding parameter value.
void BoolConditions::set() {
static PRNG rng(now());
static bool startup = true; // To workaround fishtest bench
for (size_t i = 0; i < binary.size(); i++)
binary[i] = !startup && (values[i] + int(rng.rand<unsigned>() % variance) > threshold);
startup = false;
for (size_t i = 0; i < binary.size(); i++)
sync_cout << binary[i] << sync_endl;
}
} // namespace Stockfish
// Init options with tuning session results instead of default values. Useful to
@ -138,7 +123,11 @@ void BoolConditions::set() {
#include <cmath>
namespace Stockfish {
void Tune::read_results() {
/* ...insert your values here... */
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,6 +24,8 @@
#include <type_traits>
#include <vector>
namespace Stockfish {
typedef std::pair<int, int> Range; // Option's min-max values
typedef Range (RangeFun) (int);
@ -44,27 +46,6 @@ struct SetRange {
#define SetDefaultRange SetRange(default_range)
/// BoolConditions struct is used to tune boolean conditions in the
/// code by toggling them on/off according to a probability that
/// depends on the value of a tuned integer parameter: for high
/// values of the parameter condition is always disabled, for low
/// values is always enabled, otherwise it is enabled with a given
/// probability that depnends on the parameter under tuning.
struct BoolConditions {
void init(size_t size) { values.resize(size, defaultValue), binary.resize(size, 0); }
void set();
std::vector<int> binary, values;
int defaultValue = 465, variance = 40, threshold = 500;
SetRange range = SetRange(0, 1000);
};
extern BoolConditions Conditions;
inline void set_conditions() { Conditions.set(); }
/// Tune class implements the 'magic' code that makes the setup of a fishtest
/// tuning session as easy as it can be. Mainly you have just to remove const
/// qualifiers from the variables you want to tune and flag them for tuning, so
@ -103,7 +84,7 @@ class Tune {
static Tune& instance() { static Tune t; return t; } // Singleton
// Use polymorphism to accomodate Entry of different types in the same vector
// Use polymorphism to accommodate Entry of different types in the same vector
struct EntryBase {
virtual ~EntryBase() = default;
virtual void init_option() = 0;
@ -157,14 +138,6 @@ class Tune {
return add(value, (next(names), std::move(names)), args...);
}
// Template specialization for BoolConditions
template<typename... Args>
int add(const SetRange& range, std::string&& names, BoolConditions& cond, Args&&... args) {
for (size_t size = cond.values.size(), i = 0; i < size; i++)
add(cond.range, next(names, i == size - 1) + "_" + std::to_string(i), cond.values[i]);
return add(range, std::move(names), args...);
}
std::vector<std::unique_ptr<EntryBase>> list;
public:
@ -185,9 +158,6 @@ public:
#define UPDATE_ON_LAST() bool UNIQUE(p, __LINE__) = Tune::update_on_last = true
// Some macro to tune toggling of boolean conditions
#define CONDITION(x) (Conditions.binary[__COUNTER__] || (x))
#define TUNE_CONDITIONS() int UNIQUE(c, __LINE__) = (Conditions.init(__COUNTER__), 0); \
TUNE(Conditions, set_conditions)
} // namespace Stockfish
#endif // #ifndef TUNE_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -83,6 +83,8 @@
# define pext(b, m) 0
#endif
namespace Stockfish {
#ifdef USE_POPCNT
constexpr bool HasPopCnt = true;
#else
@ -189,7 +191,6 @@ enum Value : int {
BishopValueMg = 825, BishopValueEg = 915,
RookValueMg = 1276, RookValueEg = 1380,
QueenValueMg = 2538, QueenValueEg = 2682,
Tempo = 28,
MidgameLimit = 15258, EndgameLimit = 3915
};
@ -466,10 +467,6 @@ constexpr Move make_move(Square from, Square to) {
return Move((from << 6) + to);
}
constexpr Move reverse_move(Move m) {
return make_move(to_sq(m), from_sq(m));
}
template<MoveType T>
constexpr Move make(Square from, Square to, PieceType pt = KNIGHT) {
return Move(T + ((pt - KNIGHT) << 12) + (from << 6) + to);
@ -484,6 +481,8 @@ constexpr Key make_key(uint64_t seed) {
return seed * 6364136223846793005ULL + 1442695040888963407ULL;
}
} // namespace Stockfish
#endif // #ifndef TYPES_H_INCLUDED
#include "tune.h" // Global visibility to tuning setup

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -34,6 +34,8 @@
using namespace std;
namespace Stockfish {
extern vector<string> setup_bench(const Position&, istream&);
namespace {
@ -205,13 +207,13 @@ namespace {
// Coefficients of a 3rd order polynomial fit based on fishtest data
// for two parameters needed to transform eval to the argument of a
// logistic function.
double as[] = {-8.24404295, 64.23892342, -95.73056462, 153.86478679};
double bs[] = {-3.37154371, 28.44489198, -56.67657741, 72.05858751};
double as[] = {-3.68389304, 30.07065921, -60.52878723, 149.53378557};
double bs[] = {-2.0181857, 15.85685038, -29.83452023, 47.59078827};
double a = (((as[0] * m + as[1]) * m + as[2]) * m) + as[3];
double b = (((bs[0] * m + bs[1]) * m + bs[2]) * m) + bs[3];
// Transform eval to centipawns with limited range
double x = std::clamp(double(100 * v) / PawnValueEg, -1000.0, 1000.0);
double x = std::clamp(double(100 * v) / PawnValueEg, -2000.0, 2000.0);
// Return win rate in per mille (rounded to nearest)
return int(0.5 + 1000 / (1 + std::exp((a - x) / b)));
@ -275,7 +277,15 @@ void UCI::loop(int argc, char* argv[]) {
else if (token == "d") sync_cout << pos << sync_endl;
else if (token == "eval") trace_eval(pos);
else if (token == "compiler") sync_cout << compiler_info() << sync_endl;
else
else if (token == "export_net")
{
std::optional<std::string> filename;
std::string f;
if (is >> skipws >> f)
filename = f;
Eval::NNUE::save_eval(filename);
}
else if (!token.empty() && token[0] != '#')
sync_cout << "Unknown command: " << cmd << sync_endl;
} while (token != "quit" && argc == 1); // Command line args are one-shot
@ -369,3 +379,5 @@ Move UCI::to_move(const Position& pos, string& str) {
return MOVE_NONE;
}
} // namespace Stockfish

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,6 +24,8 @@
#include "types.h"
namespace Stockfish {
class Position;
namespace UCI {
@ -78,4 +80,6 @@ Move to_move(const Position& pos, std::string& str);
extern UCI::OptionsMap Options;
} // namespace Stockfish
#endif // #ifndef UCI_H_INCLUDED

View file

@ -1,6 +1,6 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -31,6 +31,8 @@
using std::string;
namespace Stockfish {
UCI::OptionsMap Options; // Global object
namespace UCI {
@ -59,8 +61,6 @@ void init(OptionsMap& o) {
constexpr int MaxHashMB = Is64Bit ? 33554432 : 2048;
o["Debug Log File"] << Option("", on_logger);
o["Contempt"] << Option(24, -100, 100);
o["Analysis Contempt"] << Option("Both var Off var White var Black var Both", "Both");
o["Threads"] << Option(1, 1, 512, on_threads);
o["Hash"] << Option(16, 1, MaxHashMB, on_hash_size);
o["Clear Hash"] << Option(on_clear_hash);
@ -164,7 +164,7 @@ Option& Option::operator=(const string& v) {
assert(!type.empty());
if ( (type != "button" && v.empty())
if ( (type != "button" && type != "string" && v.empty())
|| (type == "check" && v != "true" && v != "false")
|| (type == "spin" && (stof(v) < min || stof(v) > max)))
return *this;
@ -190,3 +190,5 @@ Option& Option::operator=(const string& v) {
}
} // namespace UCI
} // namespace Stockfish

View file

@ -13,7 +13,7 @@ case $1 in
--valgrind)
echo "valgrind testing started"
prefix=''
exeprefix='valgrind --error-exitcode=42'
exeprefix='valgrind --error-exitcode=42 --errors-for-leak-kinds=all --leak-check=full'
postfix='1>/dev/null'
threads="1"
;;
@ -39,16 +39,16 @@ case $1 in
threads="2"
cat << EOF > tsan.supp
race:TTEntry::move
race:TTEntry::depth
race:TTEntry::bound
race:TTEntry::save
race:TTEntry::value
race:TTEntry::eval
race:TTEntry::is_pv
race:Stockfish::TTEntry::move
race:Stockfish::TTEntry::depth
race:Stockfish::TTEntry::bound
race:Stockfish::TTEntry::save
race:Stockfish::TTEntry::value
race:Stockfish::TTEntry::eval
race:Stockfish::TTEntry::is_pv
race:TranspositionTable::probe
race:TranspositionTable::hashfull
race:Stockfish::TranspositionTable::probe
race:Stockfish::TranspositionTable::hashfull
EOF
@ -98,7 +98,7 @@ cat << EOF > game.exp
expect "bestmove"
send "position fen 5rk1/1K4p1/8/8/3B4/8/8/8 b - - 0 1\n"
send "go depth 20\n"
send "go depth 10\n"
expect "bestmove"
send "quit\n"

View file

@ -10,7 +10,7 @@ trap 'error ${LINENO}' ERR
echo "reprosearch testing started"
# repeat two short games, separated by ucinewgame.
# repeat two short games, separated by ucinewgame.
# with go nodes $nodes they should result in exactly
# the same node count for each iteration.
cat << EOF > repeat.exp
@ -43,7 +43,7 @@ cat << EOF > repeat.exp
expect eof
EOF
# to increase the likelyhood of finding a non-reproducible case,
# to increase the likelihood of finding a non-reproducible case,
# the allowed number of nodes are varied systematically
for i in `seq 1 20`
do